Conference paper Open Access
Xygkis, Athanasios; Papadopoulos, Lazaros; Moloney, David; Soudris, Dimitrios; Yous, Sofiane
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/ee5e138a-e4a1-4c1c-a3c5-c30450f53c59/Efficient_Winograd-based2.pdf" }, "checksum": "md5:b23e0fe233b68b39515e3278fdff0b96", "bucket": "ee5e138a-e4a1-4c1c-a3c5-c30450f53c59", "key": "Efficient_Winograd-based2.pdf", "type": "pdf", "size": 350657 } ], "owners": [ 43983 ], "doi": "10.1145/3195970.3196041", "stats": { "version_unique_downloads": 1782.0, "unique_views": 47.0, "views": 53.0, "version_views": 53.0, "unique_downloads": 1782.0, "version_unique_views": 47.0, "volume": 648715450.0, "version_downloads": 1850.0, "downloads": 1850.0, "version_volume": 648715450.0 }, "links": { "doi": "https://doi.org/10.1145/3195970.3196041", "latest_html": "https://zenodo.org/record/3347180", "bucket": "https://zenodo.org/api/files/ee5e138a-e4a1-4c1c-a3c5-c30450f53c59", "badge": "https://zenodo.org/badge/doi/10.1145/3195970.3196041.svg", "html": "https://zenodo.org/record/3347180", "latest": "https://zenodo.org/api/records/3347180" }, "created": "2019-07-23T17:12:04.838678+00:00", "updated": "2020-01-20T17:17:28.768684+00:00", "conceptrecid": "3347179", "revision": 4, "id": 3347180, "metadata": { "access_right_category": "success", "doi": "10.1145/3195970.3196041", "description": "<p>The implementation of Convolutional Neural Networks on edge Internet of Things (IoT) devices is a significant programming challenge, due to the limited computational resources and the real-time requirements of modern applications. This work focuses on the efficient implementation of the Winograd convolution, based on a set of application-independent and Winograd-specific software techniques for improving the utilization of the edge devices computational resources. The proposed techniques were evaluated in Intel/Movidius Myriad2 platform, using 4 CNNs of various computational requirements. The results show significant performance improvements, up to 54%, over other convolution algorithms.</p>", "license": { "id": "CC-BY-4.0" }, "title": "Efficient Winograd-based Convolution Kernel Implementation on Edge Devices", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3347179" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3347180" } } ] }, "grants": [ { "code": "780572", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::780572" }, "title": "Software Development toolKit for Energy optimization and technical Debt elimination", "acronym": "SDK4ED", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "publication_date": "2018-09-20", "creators": [ { "affiliation": "Intel Corporation, Ireland", "name": "Xygkis, Athanasios" }, { "affiliation": "School of ECE, NTUA, Greece", "name": "Papadopoulos, Lazaros" }, { "affiliation": "Intel Corporation, Ireland", "name": "Moloney, David" }, { "affiliation": "School of ECE, NTUA, Greece", "name": "Soudris, Dimitrios" }, { "affiliation": "Intel Corporation, Ireland", "name": "Yous, Sofiane" } ], "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" } } }
Views | 53 |
Downloads | 1,850 |
Data volume | 648.7 MB |
Unique views | 47 |
Unique downloads | 1,782 |