
Toupin-Mindlin first strain gradient theory revisited
for cubic crystals of hexoctahedral class: analytical
expression of the material parameters in terms of the
atomic force constants and evaluation via ab initio

DFT

Hossein M. Shodjaa,b,∗, Hashem Moosaviana, Farzaneh Ojaghnezhadc

aDepartment of Civil Engineering, Sharif University of Technology, P.O. Box
11155-4313, Tehran, Iran

bInstitute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O.
Box 11155-9161, Tehran, Iran

cSchool of Engineering, Alzahra University, Vanak St., 1993891176, Tehran, Iran

Abstract

Capture of the discrete nature of crystalline solids for the purpose of the

determination of their mechanical behavior with high precision is of inter-

est. To achieve this objective, two fundamental contributing factors are on

top of the list: (1) formulation in the mathematical framework of an appro-

priate higher order continuum theory rather than using classical treatment,

and (2) incorporation of the true anisotropy of the media. The present work

revisits Toupin-Mindlin first strain gradient theory for media with general

anisotropy, and then specialize it to cubic crystals of hexoctahedral class.

This formulation in addition to 3 classical material constants encountered in

classical theory of elasticity, gives rise to 11 additional material parameters
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peculiar to first strain gradient theory. To date, there is no experimen-

tal method in the literature for the measurement of these parameters. A

methodology incorporating lattice dynamics is proposed, by which all the

material parameters including the classic ones are analytically expressed in

terms of the atomic force constants. Subsequently, the analytical expressions

for the nonzero components of the 4th and 6th order elastic moduli tensors

as well as 6 characteristic lengths are derived. Finally, with the aid of ab

initio calculations all the material properties in Toupin-Mindlin first strain

gradient theory are numerically obtained with high precision. In this work

the transformation matrices of cubic crystals of diploidal class which also

falls under centrosymmetric point groups are discussed as well.

Keywords: first strain gradient theory, cubic crystals of hexoctahedral

class, lattice dynamics, atomic force constants, ab initio calculations

1. Introduction

Design and fabrication of miniature structures, micro- and nano-objects

with a desired precision require the incorporation of appropriate highly ac-

curate analysis. It is well-known that, the accuracy of classical continuum

theory of elasticity for describing the mechanical behavior of nano-sized struc-

tures is insufficient. Moreover, not only its accuracy in the vicinity of the

nanoscopic defects deteriorates, but also it is incapable of capturing the size

effect of such nono-sized embedded second phase as nano-inhomogeneities

and nano-voids. The desire to increase the accuracy of solution through ac-

counting for the discrete nature of matters, turned the attention of some

prominent investigators, primarily in the period of about 1960-1975, towards
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the development of various higher order continuum theories. Despite the fact

that such theories, due to their ability to remedy the aforementioned dilem-

mas, are nowadays in the spotlight, some serious challenges as how to obtain

the associated material properties are posed. Herein, we mainly focus on first

strain gradient theory for cubic crystals of hexoctahedral class and calculate,

in this mathematical framework, all the pertinent material parameters and

the components of the elastic moduli tensors.

The first generalization of the classical theory goes back to the nineteenth

century. Voigt (1887, 1894) was the first to note that on each face of a dif-

ferential volume element inside a body, in addition to the action of 3 stress

components, there are also 3 moment vectors. Although Voigt’s works being

the pioneer of this theory, the first comprehensive theory was later presented

by Cosserat and Cosserat (1909). In their proposed theory, they assumed

that each point, in addition to the 3 translational degrees of freedom consid-

ered in classical theory of elasticity, possesses 3 rotational degrees of freedom

as well. Appearance of couple stresses in the equations of motion within

Cosserat media is a manifestation of consideration of the additional degrees

of freedom. In contrast to classical theory of elasticity, it turns out that the

pertinent stress tensor for Cosserat media is not symmetric. From a different

point of view, each point of a Cosserat medium has the degrees of freedom

of a rigid body. The orientation of any such point is mathematically repre-

sentable by the values of a set of 3 orthogonal unit vectors, referred to as

“directors” of an “oriented medium” by Ericksen and Truesdell (1957). More

generally, if the directors are stretchable and are not restricted to remain mu-

tually orthogonal, then the theory leads to the mechanics of elastic oriented
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media with “microstructure”, considered by Mindlin (1964) for linear elastic-

ity. Toupin (1964) noted that in Cosserat continuum theory, if the rotation

of a point is set equal to the local rotation of the medium, then the theory

collapses to the couple stress theory of Toupin (1962), Mindlin and Tiersten

(1962), and Grioli (1960). This theory is also known as “Cosserat theory

with constrained rotation”, which is a subclass of a more general theory for

non-simple materials of grade 2. A material is referred to as “grade N ” if the

order of the highest position gradient in its energy density function expres-

sion is equal to N . For such materials, Toupin (1964) expressed the strain

energy density function in terms of 6 components of the strain tensor and

18 components of the first gradient of strain tensor. Toupin’s formulation

was developed for nonlinear elasticity. The linear version of the theory was

presented by Mindlin (1964) in three forms and later elaborately by Mindlin

and Eshel (1968) but limited to isotropic media. In the latter work which is

developed for isotropic materials, in addition to the usual Lamé constants,

λ and µ, gives rise to 5 additional constants and 2 characteristic lengths.

Theory of grade 2 materials in Toupin (1964) is referred to as the first strain

gradient theory in Mindlin and Eshel (1968). With due attention to the con-

tributions of Toupin (1964) and Mindlin (1964), hereafter, theory of grade

2 materials is referred to as “Toupin-Mindlin first strain gradient theory”.

As it was alluded to, such higher order continuum theories as first strain

gradient theory are necessary for a highly accurate analysis near defects and

capture of size effect. However, in utilizing these theories, some difficulties

arise due to the lack of knowledge about the material properties as well as

the challenges for obtaining them. The complication in obtaining all the ma-
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terial parameters worsens if the actual crystal symmetries are appropriately

accounted for.

Although, the simplistic assumption of isotropy for the behavior of the

existing elements is merely for the convenience of carrying out an analytical

solution, for certain problems but not always has led to useful estimates

of the actual model. If the principle feature of interest is to capture the

effect of the discrete nature of matter with high precision, such a simplistic

assumption is not reliable and, hence, accounting for the complete symmetry

group of the element of interest is inevitable. The matrix representation

of first strain gradient theory for different elastic symmetries was given by

Auffray et al. (2013). The main objective of this work is to develop a remedy

for the computation of all the material parameters of the cubic crystals of

hexoctahedral class that are realized in the mathematical framework of first

strain gradient theory. In contrast to the work in Mindlin and Eshel (1968)

which has formulated first strain gradient theory for isotropic media, the

present work first extends it to general anisotropy, and then simplify the

formulation for the case of cubic crystals of hexoctahedral class. It will be

shown that, the current formulation falling in this symmetry group results

in 3 classical constants and 11 additional material parameters, as oppose to

the treatment of Mindlin and Eshel (1968) in which 2 Lamé constants and 5

additional material parameters are involved. The current work gives rise to

6 characteristic lengths in terms of the classical and additional parameters,

whereas the latter work involves only 2 characteristic lengths. Furthermore,

all the nonzero components of the 4th and 6th order elastic moduli tensors

are also represented in terms of the classical and additional parameters. It
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should be noted that hexoctahedral and diploidal classes are the only two

centrosymmetric classes of cubic crystals. Some discussions on the symmetry

groups of diploidal class will also be given.

Although, the current work is concerned with the extension of Toupin-

Mindlin first strain gradient theory to cubic crystals of hexoctahedral class

and the determination of the pertinent material constants, we briefly make

note of some contributions on gradient theories for elastic solids. Plasticity

is out of the scope of the current study and, hence, to avoid distracting the

reader from the main theme we have refrained ourselves from discussing gra-

dient theories on plasticity. A scrutiny of the literature reveals that there

are an abundant amount of literature on various forms of gradient elasticity.

Much efforts have been given towards the development of simpler versions,

so that the corresponding governing equations are more convenient to work

with, (Altan and Aifantis, 1997; Askes et al., 2002; Lazar and Maugin, 2005;

Metrikine and Askes, 2006). Lazar and Po (2015) give a simplified version

of first strain gradient theory, but for anisotropic media. For a more com-

prehensive literature on various simplified versions of gradient theories, one

should consult the works of Askes and Aifantis (2011), Cordero et al. (2016),

and Polizzotto (2017). Establishment of some type of relationships between

certain simplified strain gradient continuum and discrete models have also

been proposed in the literature, (Askes et al., 2002; Metrikine and Askes,

2006). Polyzos and Fotiadis (2012) have related both first and second strain

gradient theories in their original forms to an atomistic model except for

one-dimensional case. Lam et al. (2003), associated with simplified gradient

theory measured the pertinent gradient constants experimentally; the exper-
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iments were carried out on the epoxy cantilever beam. Danescu and Grenet

(2012), combining continuum and discrete models have obtained the gradient

constants of certain gradient theory.

In general, the determination of the material characteristic lengths and

additional elastic constants corresponding to any type of higher order math-

ematical framework via laboratory experimentation is quite tedious. On the

other hand, some theoretical approaches which are based on a combination

of the higher order continuum theory of interest and the atomistic features

of the pertinent crystal have been promising, (Shodja and Tehranchi, 2010;

Shodja et al., 2012, 2013; Ojaghnezhad and Shodja, 2012, 2013; Admal et al.,

2017). This paper aims to present an atomic model of cubic crystals in the

context of Toupin-Mindlin strain gradient elasticity and subsequently com-

bined with ab initio density functional theory (DFT) calculations, extract

the elastic constants and the characteristic lengths for some crystals falling

in the hexoctahedral class.

Previously, some theoretical approaches for the calculation of various ma-

terial parameters pertinent to different continuum theories in their original

forms and without any simplifying assumption have been given. For exam-

ple, Shodja and Tehranchi (2010, 2012) presented an analytical procedure

to estimate the characteristic lengths for face-centered cubic (fcc) crystals in

first strain gradient theory by utilizing many-body long range Finnis-Sinclair

potentials (Finnis and Sinclair, 1984). Shodja et al. (2012) applied this pro-

cedure to calculate the additional constants for second strain gradient theory

which is suitable for capturing the surface effect. Later, by using ab initio

DFT calculations Shodja et al. (2013) determined the elastic constants in
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first strain gradient theory for isotropic media. In their work the additional

constants were related to the elements of Hessian matrix obtained from ab

initio DFT. Ojaghnezhad and Shodja (2013) employed ab initio calculations

based on DFT and calculated the additional constants pertinent to the sec-

ond strain gradient theory for isotropic media. They also calculated the

modulus of cohesion and surface energy. Recently, Admal et al. (2017) ex-

tended the work of Shodja and Tehranchi (2010) to the case of anisotropic

media. Utilizing empirical potentials and first strain gradient theory, they

presented some analytical expressions for the corresponding components of

the elastic moduli tensors associated with anisotropic media.

The present paper is organized as follows. Section 2 consists of 3 sub-

sections. In Section 2.1, the equations of motion, constitutive relations, and

boundary conditions are presented for materials with general anisotropy. Sec-

tion 2.2 discusses the transformation matrices associated with two centrosym-

metric classes of cubic crystals. Then the constitutive relations and equations

of motion are specialized for cubic crystals of hexoctahedral class. In Section

2.3, for the cubic crystals of hexoctahedral class, the conditions of positive

definiteness of strain energy density function are discussed and some inequal-

ities pertinent to the constraints associated with the classical and additional

constants are obtained. In Section 3, the equation of motion as well as the

strain energy density function in first strain gradient theory are conformed to

the theoretical framework of lattice dynamics. Section 4 consists of subsec-

tions 4.1 and 4.2. Section 4.1 is devoted to the analytical derivations of the

elastic constants, characteristic lengths, and additional constants in terms of

atomic force constants. In Section 4.2 with the aid of ab initio DFT calcula-
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tions the elements of the Hessian matrix are obtained for 7 cubic crystals of

hexoctahedral class. Subsequently, all the material parameters pertinent to

Toupin-Mindlin first strain gradient theory are numerically computed.

2. Toupin-Mindlin first strain gradient theory for the cubic crys-

talline solids: discussion on the associated elastic moduli tensors

and the characteristic lengths

The specialization of the well-known first strain gradient theory of Toupin

(1964) to linearly elastic isotropic materials leads to a formulation which is

also discussed in the general microstructure theory of Mindlin (1964). In

this simplified case, besides the usual Lamé constants, there appear 5 addi-

tional constants. These constants give rise to 2 characteristic lengths which

enter into the equations of motion. Even under the assumption of isotropy,

the experimental measurements of the mentioned additional parameters and

characteristic lengths poses serious difficulties. For this reason attention

has been given to the theoretical evaluation of these constants, (Shodja and

Tehranchi, 2010; Shodja et al., 2013).

In reality no elements are known to exhibit a truly isotropic behavior.

In this section, first strain gradient theory is developed for centrosymmetric

cubic crystals of hexoctahedral class which is of importance in a wide range

of practical engineering applications. For self-containment, a brief review

of first strain gradient for materials with general anisotropy is given in the

following section. This will include the introduction of notations and basic

equations needed for the subsequent developments given in this work.
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2.1. First strain gradient theory for anisotropic materials

The most general form of the strain energy density associated with first

strain gradient theory is given by:

W = bijεij + dijkεijk +
1

2
cijklεijεkl + fijklmεijεklm +

1

2
aijklmnεijkεlmn, (1)

in which εij and εijk are the second and third order strain tensors, respectively,

and are defined as

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) =
1

2
(ui,j + uj,i), (2a)

εijk =
∂2uk
∂xi∂xj

= uk,ij, (2b)

where u is the displacement field. The expression for εijk has been repre-

sented in 3 different forms by Mindlin and Eshel (1968). Eq. (2b) is the

so-called form (I) of first strain gradient theory. Comma “,” in the index

denotes differentiation as noted above. Assume that when the strain field

is identically zero within the body implies that the stress field is zero, and

consequently bij = 0 and dijk = 0.

In Eq. (1), cijkl is the traditional 4th order elastic moduli tensor and

f ijklm and aijklmn are the higher order elastic moduli tensors. For hyper-

elastic materials, the corresponding second and third order stress tensors, τpq

and µpqr known as Cauchy and double stresses, respectively, are obtained as

below:

τ pq =
∂W

∂εpq
= cpqijεij + fpqijkεijk, (3a)

µpqr =
∂W

∂εpqr
= f ijpqrεij + apqrijkεijk. (3b)
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In view of the symmetry of the strain tensors, εij = εji and εijk = εjik it can

readily be concluded that:

cijkl = cklij = cjikl = cijlk, (4a)

fijklm = fjiklm = fijlkm, (4b)

aijklmn = almnijk = ajiklmn = aijkmln. (4c)

Thus, for hyper-elastic solids the number of the independent components

of the elastic moduli tensors, c, f , and a reduces to 21, 108, and 171, re-

spectively. It should be noted that for the centrosymmetric materials the

5th order elastic moduli tensor, f vanishes. According to Mindlin and Eshel

(1968), in the absence of any body forces the stress equations of motion in

the first strain gradient theory has the following form:

τjk,j − µijk,ij = ρük, (5)

Pk = njτjk − 2njDi(µijk)− ninjD(µijk) + µijk(Dl(nl)ninj −Dj(ni)), (6)

Rk = ninjµijk, (7)

where ρ is the mass density and ni is the ith-component of the unit nor-

mal outward to the surface. ük = ∂2uk
∂t2

is the second derivative of the kth-

component of the displacement field with respect to time. Pk and Rk are the

kth-component of the traction and double traction vectors, respectively. D

is the normal derivative defined as:

Dψ = niψ,i, (8)

and Di is the ith-component of the surface gradient:

Diψ = ψ,i − niDψ. (9)
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By combining Eqs. (2), (3), and (5), the displacement form of the equations

of motion for hyper-elastic centrosymmetric material is obtained:

cjipqup,jq − akjipqrur,jkpq = ρüi. (10)

Mindlin (1968) has obtained the closed-form expansions for the elastic moduli

tensors c and a associated with the cubic crystals of hexoctahedral class.

Unfortunately, his representation of the tensor a does not have the required

symmetry aijkpqr = ajikpqr. Its correct form will be derived in the Section 2.2.

Mindlin (1968) by comparison of the equations of motion associated with the

simple cubic element obtained based on lattice model of Gazis et al. (1960)

and those based on first strain gradient theory derives some expressions for

the corresponding additional constants in terms of the atomic force constants.

2.2. 4th and 6th order elastic moduli tensors for cubic structures of hexocta-

hedral class

Mindlin and Eshel (1968) presented the first strain gradient theory for the

simplified isotropic materials and introduced 2 characteristic lengths. How-

ever, no natural crystals with isotropic structures are known to exist. In

this section, first strain gradient theory is developed for the large class of

centrosymmetric crystals of cubic structure. It should be noted that cen-

trosymmetric cubic crystals exist in two point groups, hexoctahedral and

diploidal indicated by Hermann-Mauguin symbols, 4/m 3̄ 2/m and 2/m 3̄,

respectively. Let the Cartesian coordinate axes x, y, and z to coincide with

the cubic crystal directions, [100], [010], and [001], respectively. Based on the

order of the Hermann-Mauguin symbols in point groups presented by Tilley

(2006), the transformation matrices corresponding to the symmetry elements
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of the point groups are QI , QII , and QIII for diploidal and QI , QII , QIII ,

QIV , and QV for hexoctahedral class:

QI =


−1 0 0

0 −1 0

0 0 1

 , QII =


1 0 0

0 1 0

0 0 −1

 , QIII =


0 −1 0

0 0 −1

−1 0 0

 ,

QIV =


0 1 0

1 0 0

0 0 −1

 , QV =


cos(

nπ

2
) − sin(

nπ

2
) 0

sin(
nπ

2
) cos(

nπ

2
) 0

0 0 1

 , (11)

where n is an arbitrary integer. According to the Neumann’s principle, the

symmetry elements associated with the 4th and 6th order elastic moduli ten-

sors of the crystalline solids include the symmetry elements of the point group

of the crystal. The symmetries of the 4th and 6th order elastic moduli tensors

associated with the centrosymmetric cubic crystals are such that:

cijkl = QipQjqQkrQlscpqrs, (12a)

aijklmn = QipQjqQkrQlsQmtQnzapqrstz. (12b)

This work is, in particular, concerned with the centrosymmetric cubic crystals

of hexoctahedral class and, thus, in Eqs.(12a) and (12b), Qij is an element of

the corresponding Qα, α = I, II, . . . , IV. By accounting for the symmetries

of cijkl as indicated in Eq. (4a) and the condition (12a), it can be shown that:

cijkl = (α1 − α2 − 2α3)δijkl + α2δijδkl + α3(δikδjl + δilδjk). (13)

That is, cijkl has 3 independent constants, αi, i = 1, 2, 3. In the above

expression δijkl is unity if all indices are equal and zero otherwise. For the
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special case where α1 = λ + 2µ, α2 = λ, and α3 = µ the coefficient of δijkl

vanishes and the resulting expression for cijkl corresponds to the isotropic

4th order tensor. By the same token, consideration of the symmetries noted

in Eq. (4c) and condition (12b) leads to the following expression for the 6th

order elastic moduli tensor associated with the hexoctahedral class:

aijkpqr = a1(δipδjrδkq + δirδjpδkq + δiqδjrδkp + δirδjqδkp)

+ a2(δipδjqδkr + δiqδjpδkr)

+ a3(δikδjpδqr + δikδjqδpr + δqrδjkδip + δiqδjkδpr)

+ a4(δijδkpδqr + δijδkqδpr + δjrδikδpq + δirδjkδpq)

+ a5(δijδpqδkr)

+ a6(δjqδikpr + δjpδikqr + δipδjkqr + δiqδjkpr)

+ a7(δkqδijpr + δkpδijqr + δjrδikqp + δirδjkpq)

+ a8(δkrδijpq)

+ a9(δpqδijkr + δijδkpqr)

+ a10(δqrδijkp + δprδijkq + δikδjpqr + δjkδipqr)

+ a11δijkpqr, (14)

where δijkpqr is unity if all indices are the same and zero otherwise. For

materials with general anisotropy, formulation in classical theory involves

only the 4th order elastic moduli tensor. In contrast, from Eq. (10) it is clear

that, formulation in first strain gradient theory, in addition to cijkl, gives rise

to the 6th order elastic moduli tensor, aijkpqr as well. This tensor provides

further refinement and details about the atomistic structures of the crystal.

Now, as seen from Eq. (13) for any cubic crystals the determination of the
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components of cijkl rests on the calculation of 3 constants, α1, α2, and α3.

But the number of constants on which the components of aijkpqr depends

upon, varies with the class of the cubic crystals. For example, from Eq. (14)

it is seen that for cubic crystals of hexoctahedral class the components of

aijkpqr are related to 11 independent constants, a1, a2, . . . , a11. Whereas

cubic crystals of diploidal class have 17 independent constants; the current

work, however, is not concern with this class of crystals. Such constants as

a1, a2, . . . , a11 which enter the formulation in addition to the constants like

α1, α2, and α3 in classical context, are often referred to as “the additional

constants” in the literature. In the present paper, classical and the additional

constants will be related to the atomic force constants in lattice dynamics.

By Substitution of Eqs. (13) and (14) into Eq. (10), the equations of

motion for the hexoctahedral cubic crystals in the mathematical framework

of first strain gradient theory are obtained:

(α2 + 2α3)(1− l21∇2)uj,ij − α3(1− l22∇2)(uj,ij − ui,jj)

− α3

(
l23un,jklmδnjklmi + l24(uj,klmiδjklm + uj,jlmnδlmni) + l25ui,jklmδjklm

)
+ (α1 − α2 − 2α3)(1− l26∇2)uj,lkδijlk = ρüi, (15)

where

l21 =
4(a1 + a3 + a4) + 2a2 + a5

α2 + 2α3

, (16a)

l22 =
2a2 + a5
α3

, (16b)

l23 =
a11
α3

, (16c)

l24 =
2(a10 + a7)

α3

, (16d)
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l25 =
a8
α3

, (16e)

l26 =
2(2a6 + a9)

α1 − α2 − 2α3

. (16f)

In the above relations, li’s, i = 1, . . . , 6 have the dimension of length and

are the so-called “characteristic lengths”. It is noteworthy to mention that,

for isotropic materials ai = 0, i = 6, . . . , 11, and consequently the number

of nonzero characteristic lengths reduces to just two, l1 and l2.

The elastic constants, ai, i = 1, 2, . . . , 11 and α1, α2, and α3 are not

completely arbitrary. The plausible constants are such that the physical

condition of thermodynamically stable material subjected to any arbitrary

strain field is met.

2.3. Positive definiteness of the strain energy density function

With due attention to the discussion in Sections 2.1 ans 2.2, for a cubic

crystal of hexoctahedral class the strain energy density function (1) reduces

to:

W =
1

2
cijklεijεkl +

1

2
aijklmnεijkεlmn. (17)

Using Voigt notation to represent c and a, the above expression may be

rewritten as

W =
1

2
cαβxαxβ +

1

2
aγλyγyλ, α, β = 1, · · · , 6 and γ, λ = 1, · · · , 18.

(18)

in which the strain tensor and its first gradient are represented in the vector

forms x and y, respectively. After some manipulation, Eq. (18) may be
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rewritten as:

W =
1

2

(
1

A1

ξ21 +
1

A1A2

ξ22 + · · ·+ 1

A5A6

ξ26

)
+

1

2

(
1

B1

ζ21 +
1

B1B2

ζ22 + · · ·+ 1

B17B18

ζ218

)
(19)

where ξi, i = 1, 2, . . . , 6 and ζi, i = 1, 2, . . . , 18 are given in the Appendix.

The matrix representations of cαβ and aγλ, and their relations, respectively,

to Ai, i = 1, 2, . . . , 6 and Bi, i = 1, 2, . . . , 18 are also given in the Appendix.

The strain energy density function W given by the expression (19) is

positive semidefinite if and only if Ai, i = 1, 2, . . . , 6 and Bi, i = 1, 2, . . . , 18

are nonnegative. It is positive definite if

α1 > 0, α1 − α2 > 0, α1 + 2α2 > 0, α3 > 0, (20)

for 4th order elastic constants and:

a2 > 0, a2 − a1 > 0, a2 + 2a1 > 0, (21a)

d1 > 0, d4 − a5 > 0, d1 (a5 + d4) > 2d22 > 0, (21b)

(d4 − a5) (d6 − a3) > (d5 − a4)2 > 0, (21c)

(a3 + d6)
(
d1 (a5 + d4)− 2d22

)
+ (a4 + d5)

(
4d2d3 − d1 (a4 + d5)

)
> 2d23 (a5 + d4) . (21d)

for 6th order elastic constants. The constants d1, . . . , d6 are linear combi-

nations of the additional elastic constants and are given by Eq. (70) in the

Appendix.
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Thus far, we have revisited the first strain gradient theory for the cubic

crystals of hexoctahedral class and, in this framework, developed the equa-

tions of motion, gave the expressions for the 4th and 6th order elastic moduli

tensors, and examined the positive definiteness of the strain energy density

function.

The next two sections (Sections 3 and 4) provide two approaches for the

determination of the characteristic lengths of the crystals of interest by: 1)

comparison of the equations of motion within first strain gradient theory

and those of lattice dynamics, and 2) comparison of the strain energy den-

sity function within the two frameworks. Moreover, the analytical expression

for the additional constants of the crystal which appear in first strain gradi-

ent theory, are also obtained by the comparison of the strain energy density

function within the two frameworks. An important consequence of this ap-

proach is that the obtained expressions show the explicit dependence of the

additional constants on the nanoscopic features of the pertinent crystals. To

this end, in next section, the equation of motion in first strain gradient the-

ory with general anisotropy is cast into the theoretical framework of lattice

dynamics.

3. Lattice dynamics representation of first strain gradient theory

with general anisotropy

At first, by using the theory of lattice dynamics, the governing equations

of motion of discrete atomic masses located in a perfect crystal of infinite

extent are derived. In this framework, the equilibrium position vector of the
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κth atom in lth unit cell is expressed as:

r(lκ) = r(l) + r(κ), (22)

where r(l) is the position of the lth unit cell and is written in terms of the

lattice vectors, a1, a2, and a3, and integers n1, n2, and n3 as below:

r(l) = n1a1 + n2a2 + n3a3, (23)

with r(0) ≡ 0 taken as the origin. The position of the center of the κth atom

within the 0th unit cell is denoted by r(κ) and is the same for all the unit

cells. Suppose that the κth atom within the lth unit cell is displaced by an

amount u(lκ), then its new position denoted by R(lκ) is given as:

R(lκ) = r(lκ) + u(lκ). (24)

Assuming that the total potential energy of the crystal is a function of the

instantaneous position of the atoms, then by employing Taylor’s expansion

of energy about the equilibrium, it can be obtained that:

Φ = Φ0 +
∑
l, κ

Φi(lκ)ui(lκ) +
1

2

∑
l, κ
l′, κ′

Φij(lκ; l′κ′)ui(lκ)uj(l
′κ′) + . . . . (25)

As in the earlier parts of this work, Einstein’s summation convention on

repeated indices holds. In the above equation, Φ0 is the equilibrium potential

energy, and

Φij(lκ; l′κ′) =

(
∂2Φ

∂ui(l, κ)∂uj(l′, κ′)

)
u=0

, (26)

is the so-called “atomic force constant”. The force acting on the atom (lκ)

in the i-direction is Fi(lκ) = −∂Φ/∂ui(lκ). By requiring Fi(lκ) = 0 when
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u(lκ) = 0 for all l and κ, it implies that Φi(lκ) =
(
∂Φ/∂ui(lκ)

)
u=0

= 0.

Moreover, by neglecting the higher order terms in the expression (25), it

corresponds to the harmonic approximation. Thus, the force acting on the

atom (lκ) in the i-direction may be given as:

Fi(lκ) = −
∑
l′, κ′

Φij(lκ; l′κ′)uj(l
′κ′), (27)

in which Φij(lκ; l′κ′) is interpreted as the negative force exerted on the atom

(lκ) in the i-direction when the atom (l′κ′) is given a unit displacement in

the j-direction.

In the framework of lattice dynamics, a perfect crystal is modeled as

atomic mass points connected together with springs. Assuming that the mass

points interact merely through central forces, the potential energy density of

the unit cell can be given as:

U(l) = U0(l)−
1

4v

∑
l′, κ′, κ

Φij(lκ; l′κ′)(uj(l
′κ′)− uj(lκ))(ui(l

′κ′)− ui(lκ)),

(28)

where v is the volume of the unit cell. U0(l) is the potential energy density

of the unit cell at a reference equilibrium state and without loss of generality

can be dropped out. As it will be shown, the series expression of the poten-

tial energy density or equivalent strain energy density of the lattice can be

truncated in such a way that it is a function of strain and the first gradient

of strain.

As it was alluded to, the aim of this section is to derive the equation

of motion within first strain gradient theory with general anisotropy in the

framework of lattice dynamics. By assuming that the gradients of displace-

ment field are constant inside the cell, consider Taylor’s expansion of the
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displacement component uj(l′κ′) for the atom (l′κ′) about the atom (lκ),

keeping terms through second order:

uj(l
′κ′) = uj(lκ) +

∂uj
∂xm

∣∣∣∣∣
x=r(l)

rm(l′κ′; lκ)

+
1

2

∂2uj
∂xm∂xn

∣∣∣∣∣
x=r(l)

rm(l′κ′; lκ)rn(l′κ′; lκ), (29)

where rm(l′κ′; lκ) = rm(l′κ′)− rm(lκ) is the relative position vector of atoms

(l′κ′) and (lκ). Substitution of Eq. (29) into Eq. (28) yields:

U(l) =
1

2
c̃ijmp

∂uj
∂xm

∣∣∣∣
x=r(l)

∂ui
∂xp

∣∣∣∣
x=r(l)

+
1

2
c̃ijmnpq

∂2ui
∂xp∂xq

∣∣∣∣
x=r(l)

∂2uj
∂xm∂xn

∣∣∣∣
x=r(l)

+
1

2
c̃ijmnp

∂2uj
∂xm∂xn

∣∣∣∣
x=r(l)

∂ui
∂xp

∣∣∣∣
x=r(l)

+
1

2
c̃ijmpq

∂2ui
∂xp∂xq

∣∣∣∣
x=r(l)

∂uj
∂xm

∣∣∣∣
x=r(l)

,

(30)

in which

c̃ijmn = − 1

2va

∑
l′, κ′, κ

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ), (31a)

c̃ijmnp = − 1

4va

∑
l′, κ′, κ

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ)rp(l
′κ′; lκ), (31b)

c̃ijmnpq = − 1

8va

∑
l′, κ′, κ

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ)rp(l
′κ′; lκ)rq(l

′κ′; lκ).

(31c)

In the above relations, c̃’s may be interpreted as the elastic moduli tensors

in lattice dynamics framework. For crystals possessing special symmetries,

it can be shown that (Maradudin et al., 1971)

Φij(lκ; l′κ′) = QipQjqΦpq(LK;L′K ′), (32)
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where (lκ) and (l′κ′) is transformed to new lattice sites (LK) and (L′K ′),

respectively. Qij is the transformation matrix associated with the crystal

point group. Also the position vector rm(lκ) and rm(l′κ′) are transformed as

rm(lκ) = Qmtrt(LK),

rn(l′κ′) = Qnsrs(L
′K ′). (33)

Now we have:

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ)

= QipQjqQmtQnsΦpq(LK;L′K ′)rt(L
′K ′;LK)rs(L

′K ′;LK). (34)

On the other hand, the translational invariant property of crystals implies

that:

Φpq(LK;L′K ′) = Φpq(lK;L′ + l − L K ′),

rt(L
′K ′;LK) = rt(L

′ + l − L K ′; lK). (35)

By using L′ instead of L′ + l − L just as a change in the notation, we have:

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ)

= QipQjqQmtQnsΦpq(lK;L′K ′)rt(L
′K ′; lK)rs(L

′K ′; lK). (36)

Summing both sides over all atoms and then divide by −2va yield:

c̃ijmn = − 1

2va

∑
l′, κ′, κ

Φij(lκ; l′κ′)rm(l′κ′; lκ)rn(l′κ′; lκ)

= − 1

2va
QipQjqQmtQns

∑
L′,K′,K

Φpq(lK;L′K ′)rt(L
′K ′; lK)rs(L

′K ′; lK)

= c̃pqtsQipQjqQmtQns, (37)
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which implies that c̃ijmn have the same symmetry point group as cijmn, dis-

cussed in Section 2.2. Likewise, the same conclusion can be reached for c̃ijmnp

and c̃ijmnpq. For centrosymmetric crystals, the components of the odd-ranked

tensors are equal to zero. Hence, c̃ijmnp = 0 and Eq. (30) becomes:

U(l) =
1

2
c̃ijmpuj,mui,p +

1

2
c̃ijmnpqui,pquj,mn. (38)

In fact, by keeping the terms through second order in Eq. (29) has resulted

in the appearance of the first as well as second gradients of the displacement

components in the strain energy density of lattice given by Eq. (38). The

associated medium is referred to as grade 2 material (Toupin, 1964) which

in the context of continuum gradient theory is characterized via the strain

energy density function given by Eq. (17). As noted earlier, Eq. (17) gives rise

to the well-known first strain gradient theory. From Eq. (31a) and according

to the symmetry considerations discussed by Huang (1950):

c̃ijmn = c̃jimn = c̃ijnm = c̃mnij. (39)

Clearly, from Eq. (31c), it can readily be seen that:

c̃ijmnpq = c̃jimnpq = c̃ijnmpq = c̃ijpnmq = c̃ijqnpm = c̃ijmpnq = c̃ijmqpn = c̃ijmnqp.

(40)

Consequently c̃ijmn and c̃ijmnpq have 21 and 90 independent components,

respectively.

For variation of δui between fixed limits of ui associated with times t0

and t1, Hamilton’s principle implies that:

δ

∫ t1

t0

(T −W )dt+

∫ t1

t0

δW1dt = 0, (41)
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where T =

∫
V

1

2
ρu̇ju̇jdV is the total kinetic energy, W =

∫
V

UdV is the

total potential energy, and W1 is the work done by the external forces. To

merge in the result of lattice dynamics theory, the expression for the potential

energy density of the unit cell given by Eq. (38) is utilized in W =

∫
V

UdV .

Moreover, note that in discrete atomistic arrangements, the mass density of

material, ρ may be represented as:

ρ =
1

v

∑
κ

mκ. (42)

The variation of the total potential energy is then obtained as:

δW =

∫
V

δUdV = −
∫
V

(c̃ijmquj,m − (c̃ijmnpquj,mn),p),qδuidV

+

∫
V

((c̃ijmquj,m − (c̃ijmnpquj,mn),p)δui),qdV +

∫
V

(c̃ijmnpquj,mnδui,p),qdV,

(43)

assuming that the medium is homogeneous and, moreover, bounded by a

smooth surface, then by employing the divergence theorem, Eq. (43) becomes:∫
V

δUdV = −
∫
V

(c̃ijmquj,mq − c̃ijmnpquj,mnpq)δuidV

+

∫
S

c̃ijmnpq[Dl(nl)npuj,mnnq − 2nqDpuj,mn − uj,mnDpnq]δuidS

+

∫
S

[c̃ijmquj,mnq − c̃ijmnpqnqnpDuj,mn]δuidS

+

∫
S

c̃ijmnpquj,mnnqnpDδuidS, (44)

where D and Di have been defined in Eqs. (8) and (9), respectively. The

variations of the kinetic energy and the total external work are, respectively,

given by:

δ

∫ t1

t0

T dt = −
∫ t1

t0

dt
∫
V

ρükδukdV, (45)
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δW1 =

∫
S

PkδukdS +

∫
S

RkD(δuk)dS, (46)

where Pk and Rk have been introduced, respectively, in Eqs. (6) and (7) in

the context of first strain gradient theory. Substitution of Eqs. (44), (45),

and (46) into Eq. (41), leads to the following equations of motion and the

pertinent boundary conditions as below:

c̃ijmquj,mq − c̃ijmnpquj,mnpq = ρüi, (47a)

Pi = c̃ijmnpq[Dlnlnpnquj,mn − 2nqDpuj,mn − uj,mnDpnq − nqnpDuj,mn]

+ c̃ijmquj,mnq, (47b)

Ri = c̃ijmnpquj,mnnqnp. (47c)

These equations correspond to the lattice dynamics representation of first

strain gradient theory with general anisotropy.

4. Determination of the characteristic lengths, 4th and 6th order

elastic moduli tensors of cubic crystals of hexoctahedral class in

first strain gradient theory

In Section 4.1, we establish a relation between elastic moduli tensors and

the atomic force constants defined in the previous section for crystals with

general anisotropy. Subsequently, the results will be specialized for cubic

crystals of hexoctahedral class in first strain gradient theory. In Section 4.2,

by employing ab initio DFT the characteristic lengths, 4th and 6th order

elastic moduli tensors for several cubic crystals of hexoctahedral class are

calculated.
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4.1. Analytical formulation

Comparing the equations of motion (47a) and (10), respectively, corre-

sponding to first strain gradient theory within lattice dynamics and contin-

uum frameworks, and using Eqs. (39) and (4a) yields:

cijmn = c̃imjn + c̃jmin − c̃jimn. (48)

Likewise, utilizing Eqs. (40) and (4c) leads to:

c̃ijmnpq =
1

6
(apqimnj + amqipnj + amnipqj + apniqmj + anqipmj + apmiqnj). (49)

In general, for hyper-elastic materials cijmn has 21 independent constants

which can be determined from Eq. (48) since the elements of c̃ijmn are given

by Eq. (31a) in terms of the atomic force constants. On the other hand,

c̃ijmnpq has 90 independent components which can be obtained from Eq. (31c),

while the 6th order elastic moduli tensor, aijmnpq has 171 components and,

thus, Eq. (49) alone is not sufficient to compute all the elements of aijmnpq.

Nevertheless, for the case of general anisotropy there are 90 characteristic

lengths which are expressible in terms of the components of c̃ijmn and c̃ijmnpq.

The number of characteristic lengths in the case of cubic symmetry of hexoc-

tahedral class reduces to only 6, expressible in terms of c̃ijmn and c̃ijmnpq. As

discussed in Section 3, c̃ijmn, c̃ijmnpq, cijmn, and aijmnpq belong to the same

symmetry point group. Thus, considering Eqs. (48) and (13), it is inferred

that:

α1 = c̃3333, α2 = 2c̃2323 − c̃2233, α3 = c̃2233. (50)

Furthermore, using Eqs. (49), (14), and (16) the following characteristic

lengths associated with the crystals having cubic symmetry of hexoctahe-
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dral class are obtained:

l21 =
12c̃323211 + 3c̃332211

α2 + 2α3

, (51a)

l22 =
3c̃332211
α3

, (51b)

l23 =
c̃333333 − 8c̃323332 − c̃332222 − 6(c̃333322 − 4c̃323211 − c̃332211)

α3

, (51c)

l24 =
4(c̃323332 − 3c̃323211)

α3

, (51d)

l25 =
c̃332222 − 3c̃332211

α3

, (51e)

l26 =
6(c̃333322 − 2c̃323211 − c̃332211)

α1 − α2 − 2α3

. (51f)

Alternatively, by comparing the energy density function pertaining to first

strain gradient theory with that of lattice dynamics, one can calculate not

only the characteristic lengths associated with first strain gradient theory

but also can compute all the additional constants, 171 constants in the case

of general anisotropy and 11 constants in the case of cubic symmetry of

hexoctahedral class.

According to the symmetry class discussed in Section 2.2, aijmnpq has

11 independent constants for the cubic crystals of hexoctahedral class. The

equivalency of the higher order terms in the strain energy density functions

pertinent to the two frameworks of lattice dynamics and first strain gradient

theory results in:

c̃ikjnpqui,pquk,jn = anjkpqiui,pquk,jn, (52)

which subsequently leads to:

a1 = a3 = a4 = c̃323211, (53a)
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a2 = a5 = c̃332211, (53b)

a6 = a9 = c̃333322 − 2c̃323211 − c̃332211, (53c)

a7 = a10 = c̃323332 − 3c̃323211, (53d)

a8 = c̃332222 − 3c̃332211, (53e)

a11 = c̃333333 − 6c̃333322 − c̃332222 + 6c̃332211 − 8c̃323332 + 24c̃323211. (53f)

Remark. The equivalency of the energy density functions, Eq. (17) for the

first strain gradient theory and Eq. (38) for lattice dynamics leads to some

consistency conditions between the 4th order tensors cijkl and c̃ijkl and 6th

order tensors aijklmn and c̃ijklmn. From this point of view, it can be shown

that in addition to the conditions (50), a new constraint reveals as:

α2 = α3. (54)

This relation is in accord with the central force hypothesis due to the bi-

nary interactions between atoms; in fact, this assumption was incorporated

in Eq. (28) followed by Eq. (38). The above equality, Eq. (54) is known as

Cauchy relation for cubic crystals.

4.2. Ab initio calculations

In this section, exploiting the ab initio calculations based on DFT (Ho-

henberg and Kohn, 1964; Kohn and Sham, 1965), the numerical values of

the elements of the 4th order elastic moduli tensor, α1, α2, α3, and 6th or-

der tensor, a1, a2 . . . , a11, as well as the characteristic lengths l1, . . . , l6 which

appear in the equilibrium equation, (15), are determined for some cubic crys-

tals of hexoctahedral class. Due to the expressions given by Eqs. (50), (51),

and (53), all the elastic constants and characteristic lengths are related to the
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components of the tensors, c̃ijmn and c̃ijmnpq which, according to Eqs. (31a)

and (31c), are expressed in terms of the atomic force constants and the posi-

tion of atoms in the relaxed crystal. It can readily be shown that the atomic

force constants are equal to the components of the Hessian matrix defined

as the second derivatives of the total energy of the crystal with respect to

the positions of atoms (Shodja et al., 2013; Ojaghnezhad and Shodja, 2013).

Therefore, by calculation of the components of the Hessian matrix of a re-

laxed crystal, one can evaluate all the 4th and 6th order elastic moduli tensors

of the crystal.

The components of the Hessian matrix of a crystal are numerically de-

termined by using the total-energy and molecular-dynamics Vienna Ab ini-

tio Simulation Program (VASP) (Kresse and Hafner, 1993, 1994b; Kresse

and Furthmüller, 1996). This program is based on DFT and incorporates

plane-wave basis set with ultra-soft pseudopotentials (Kresse and Hafner,

1994a). The kinetic energy cutoff for the plane-wave expansion is considered

to be 320 eV. The grid in the first Brillouin zone is selected according to

the Monkhorst-Pack (Monkhorst and Pack, 1976) scheme and the exchange-

correlation energy is evaluated within the generalized gradient approximation

using the Perdew-Burke-Ernzerhof potential revised for solids (Perdew et al.,

2008). The components of the Hessian matrix of the crystal energy due to

any two atoms (lκ) and (l′κ′) are calculated through the central difference

method applied to the effective force on the ions. To induce the effective

force on the ions, each ion is displaced along each of its degrees of freedom

separately, and the effective force on the atom is determined numerically.

By numerical values of the Hessian components at hand, the components
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of the 4th order elastic moduli tensor are evaluated from Eqs. (31a) and (50).

The values of α1, α2, and α3 are calculated for 7 crystalline materials of cubic

structures and summarized in Table 1. The available experimental results are

given for comparison. It is observed that the results obtained by the present

analysis are in agreeable accordance with the experimental counterparts.

Table 1: Fourth order elastic constants of cubic crystals in eV/Å3 compared with some

experimental results available in the literature.

Crystal α1 α2 α3 Crystal α1 α2 α3

Cu present work 1.01 0.64 0.39 C present work 6.81 0.93 3.74

exp. 1 1.01 0.76 0.47 exp. 1 5.92 0.94 3.25

exp. 2 1.10∗ 0.78∗ 0.51∗ exp. 2 6.72 0.78 3.60

Ni present work 1.67 0.75 0.63 Si present work 0.95 0.44 0.63

exp. 1 1.54 0.92 0.78 exp. 1 1.04 0.40 0.50

exp. 2 1.63∗ 0.94∗ 0.82∗ exp. 2 1.04 0.40 0.50

Al present work 0.66 0.38 0.23 Ge present work 0.81 0.36 0.58

exp. 1 0.67 0.38 0.18 exp. 1 0.80 0.30 0.42

exp. 2 0.71∗ 0.39∗ 0.20∗ exp. 2 0.80 0.30 0.42

Ca present work 0.08 0.05 0.09

Note 1: The experimental data labeled by 1 and 2 is collected from Freund and Suresh (2004) and Kittel

(2004), respectively.

Note 2: The superscript * refers to computations at 0 K.

On the other hand, by applying Eqs. (51) and (53) the characteristic lengths

and the elements of the 6th order elastic moduli tensor are presented in Ta-

bles 2 and 3, respectively.
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Table 2: Characteristic lengths for different elements in Å2.

Crystal l21 l22 l23 l24 l25 l26

Al 2.18 1.70 -31.87 9.56 3.65 -20.67

Ca 3.08 1.73 -16.54 0.09 0.82 -5.04

Cu 0.34 2.15 -17.15 5.23 -0.10 -9.80

Ni 0.09 0.48 -11.25 3.43 0.41 -14.29

C 0.30 0.95 -8.60 2.64 0.09 -9.23

Ge 3.16 5.38 -2.35 1.31 -2.22 3.89

Si 2.38 3.57 -5.41 1.59 -1.18 1.20

Table 3: Sixth order elastic constants for different elements in eV/Å.

Crystal a1 = a3 = a4 a2 = a5 a6 = a9 a7 = a10 a8 a11

Al 0.12 0.13 0.62 0.55 0.84 -7.33

Ca 0.05 0.05 0.13 0.00 0.07 -1.49

Cu -0.03 0.28 0.67 0.51 -0.04 -6.69

Ni -0.01 0.10 0.81 0.54 0.26 -7.09

C -0.09 1.19 2.46 2.47 0.33 -32.14

Ge 0.14 1.04 -0.46 0.19 -1.29 -1.36

Si 0.15 0.75 -0.15 0.25 -0.74 -3.41
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4.3. Recent developments

As it was alluded to, recently the theoretical determination of the addi-

tional constants of crystalline solids within the mathematical framework of

first and second strain gradient theories has been the focus of several studies,

Shodja and Tehranchi (2010, 2012); Shodja et al. (2012, 2013); Ojaghnezhad

and Shodja (2013); Admal et al. (2017). These works were briefly discussed

in the introduction section. In this section, we draw attention to the com-

parison between the approaches presented in the current work and Admal

et al. (2017) paper. For simple cubic lattices having a one-atom basis, on

the ground of the analysis given by Auffray et al. (2013) the nonzero com-

ponents of the additional elastic constants D1,1, D1,2, D1,3, D2,2, D2,3, D2,4,

D2,5, D3,3, D3,5, D16,16, D16,17 were expressed in terms of the potential energy

of each atom by Admal et al. (2017). They utilized form (II) of first strain

gradient formulation given by Mindlin and Eshel (1968), while the current

work incorporates form (I) of the theory. It can be shown that the additional

constants encountered in the work of Admal et al. (2017) are related to those

of the current study:

D1,1 = 4(a1 + a3 + a4 + a6 + a7 + a10) + 2(a2 + a9) + a5 + a8 + a11,

D1,2 = 4a3 + 2a10 − a5 − a9,

D1,3 = 2a4 + a5 + a9,

D2,2 = 6a2 + 4(a3 + a6 − a1 − a4 − a7) + a5 + a8,

D2,3 = 4a1 + 2(a4 + a7 − a2)− a5 − a8,

D2,4 = a5 + 4(a3 − a4),

D2,5 = 2a4 − a5,
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D3,3 = 2a2 + a5 + a8,

D3,5 = a5,

D16,16 = 3a2 − 2a1,

D16,17 = 2a1 − a2, (55)

exactly, where a1, a2, . . . , a11 were introduced in Eq. (14). Admal et al.

(2017), in the context of their approach examined the effect of several dif-

ferent empirical potentials on the numerical values of the additional elastic

constants, D1,1, D1,2, . . . , D16,17 and represented them in a few plots. By

the examination of these plots, they realized that, under the assumption of

central potential the following conditions hold:

D2,4 −D3,5 = 0, (56)

D2,5 −D16,17 = 0. (57)

In the context of the analytical formulation given in the present work, it is

shown that in addition to the above conditions three other constraints exist

under the assumption of central force interaction:

D16,16 +D16,17 − 2D3,5 = 0, (58)

D1,2 +D1,3 −D2,3 −D3,3 = 0, (59)

D2,2 +D3,3 + 2D2,3 − 4D1,3 = 0. (60)

All five conditions, Eqs. (56)–(60) are derivable analytically by utilizing

Eqs. (53a)–(53d) and (55).

In Figs. 1 and 2, the values of the nonzero components of the additional

elastic constants obtained for Al and Cu via empirical potentials based cal-

culations by Admal et al. (2017) are compared with the corresponding data
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obtained in the present work, based on relations (55) in conjunction with

ab initio DFT calculations. It should be emphasized that the data reported

by Admal et al. (2017) uses central potential assumption, whereas that of

the current study is arrived at by assuming central force interaction. As it

is seen from Figs. 1 and 2, Admal et al. (2017) have studied the effect of

several embedded-atom methods (EAM) on the values of the constants for

Al and Cu. In addition, they also considered the effective medium theory

(EMT) for Al. A discussion on the effect of these empirical potentials and

the corresponding references are given by Admal et al. (2017).

D1,1 D1,2 D1,3 D2,2 D2,3 D2,4 D2,5 D3,3 D3,5 D16,16D16,17
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eV
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Ab initio DFT, present work
EAM, Ercolessi
EAM, Mendelev
EAM, Mishin
EAM, Sturgeon
EAM, Winey
EAM, Zhou
EMT, Jacobsen

Admal et al.
(2017)

Figure 1: Values of the additional elastic constants for Al obtained by Admal et al. (2017)

and the present theory.
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Figure 2: Values of the additional elastic constants for Cu obtained by Admal et al. (2017)

and the present theory.

5. Conclusion

In this article, first strain gradient theory for hexoctahedral class of cu-

bic crystals including the equations of motion, boundary conditions, and

constitutive relations are developed. Moreover, consideration of the posi-

tive definiteness of the corresponding strain energy density function led to

several inequality constraints on the elements of the 4th and 6th order elas-

tic moduli tensors. By assuming that the atoms within a crystal interact

merely through central forces, a potential energy density function for a unit

cell was presented as Eq. (28). Under this hypothesis, and the equivalency

of the energies pertinent to the continuum mechanical and lattice dynamics

based first strain gradient theories, Cauchy relation was recovered (Remark

35

Pre-print of "H.M. Shodja, H. Moosavian, F. Ojaghnezhad, Toupin–Mindlin first strain gradient theory revisited for cubic crystals of  
hexoctahedral class: Analytical expression of the material parameters in terms of the atomic force constants and evaluation via ab initio DFT, 

Mechanics of Materials, Vol. 123, 2018, pp. 19-29, https://doi.org/10.1016/j.mechmat.2018.04.012. 



of Section 4.1). In contrast to formulation in classical theory which involves

the 4th order elastic moduli tensor only, formulation in first strain gradient

theory gives rise to both, 4th and 6th order elastic moduli tensors. In fact, the

6th order elastic moduli tensor provides a further enhancement and detail on

the behavior of the crystal. Consequently, in order to capture the size effect

and certain nanoscopic phenomena in various solid mechanics problems of

interest, using first strain gradient theory is promising. The 4th order elastic

moduli tensor for all cubic crystals has 3 independent constants, but distinc-

tion in the number of additional constants arise in the components of the

6th order elastic moduli tensor. For example, cubic crystals of hexoctahedral

and diploidal classes which both are centrosymmetric have, respectively, 11

and 17 independent constants. Obviously, this distinction in the number

of nonzero elements which is a reflection on the differences in the atomistic

structures of the two crystals provides further details on the behavior of the

crystal in response to loadings on a fine scale, beyond those provided by the

4th order elastic moduli tensor on a coarse scale. By considering the equa-

tions of motion and strain energy density function associated to first strain

gradient theory with respect to two different frameworks of continuum and

lattice dynamics, followed by the consideration of the pertinent equivalency

relations the material parameters consisting of classical constants, character-

istic lengths, and additional constants were analytically expressed in terms

of the atomic force constants of the crystal. It should be noted that first

strain gradient theory of Mindlin and Eshel (1968) was originally developed

for isotropic materials, giving rise to only 2 characteristic lengths. In con-

trast, first strain gradient theory developed herein for the cubic crystals of
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hexoctahedral class gives rise to 6 characteristic lengths. By using ab initio

based on DFT, the atomic force constants which are equal to the elements of

the Hessian matrix are calculated. Subsequently, the numerical values of the

additional elastic constants, characteristic lengths, and the components of

the 4th and 6th order elastic moduli tensors of cubic crystals of hexoctahedral

class in first strain gradient theory were obtained. The numerical values of

these parameters have been calculated for 7 elements which are displayed in

Tables 1, 2, and 3. The experimental data for the elastic constants associated

to the 4th order elastic moduli tensor which are available in the literature are

found to be within reasonable agreement of the results obtained in this work.

Obtaining the additional constants pertinent to the 6th order elastic moduli

tensor experimentally, if not impossible would be quite cumbersome.
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Appendix

In the case of classical elasticity, for cubic crystals of hexoctahedral class,

energy density function can be written in Voigt notation as follows:

W =
1

2

6∑
β=1

6∑
α=1

cαβxαxβ, (61)

where the matrix x is defined as

[xα]1×6 = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23), (62)
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and with the aid of Eq. (13), the matrix, [cαβ]6×6 readily leads to

[cαβ]6×6 =



α1 α2 α2

α2 α1 α2 0
α2 α2 α1

α3 0 0

0 0 α3 0

0 0 α3


. (63)

Now the strain energy density function can be rewritten as:

W =
1

2
(

1

A1

ξ21 +
1

A1A2

ξ22 + · · ·+ 1

A5A6

ξ26), (64)

where

A1 = c11, A2 =

∣∣∣∣∣∣c11 c12

c21 c22

∣∣∣∣∣∣ , A3 =

∣∣∣∣∣∣∣∣∣
c11 c12 c13

c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣∣∣∣ , · · · , A6 = det([c]6×6).

(65)

and

ξ1 =
6∑
i=1

c1ixi,

ξ2 =
6∑
i=2

(c12c1i − c11c2i)xi,

ξ3 =
6∑
i=3

(
c11c23c2i + c212c3i + c22(c13c1i − c11c3i)− c12(c23c1i + c13c2i)

)
xi,

... (66)

It should be mentioned that in the above relations the matrix cαβ is a sym-

metric matrix.
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In the similar manner one can rewrite the expression for strain energy

density function as mentioned in Eq. (18). In this equation, the matrices

cαβ and x are the same as classical case (62) and (63), and the matrix y is

defined as

[yα]1×18 = (ε111, ε221, ε331, 2ε122, 2ε133, ε222, ε112, ε332, 2ε121, 2ε233, ε333, ε113,

ε223, 2ε311, 2ε322, 2ε123, 2ε132, 2ε321). (67)

Also by using Eq. (14), the matrix aγλ can be obtained as

[aγλ]18×18 =


[I]5×5 0

[I]5×5

[I]5×5

0 [II]3×3

 , (68)

where

[I]5×5 =



d1 d2 d2 d3 d3

d2 d4 a5 d5 a4

d2 a5 d4 a4 d5

d3 d5 a4 d6 a3

d3 a4 d5 a3 d6


, (69a)

[II]3×3 =


a2 a1 a1

a1 a2 a1

a1 a1 a2

 . (69b)

In above matrices, constants d1, · · · , d6 are:

d1 = 4(a1 + a3 + a4 + a6 + a7 + a10) + 2(a2 + a9) + a5 + a8 + a11, (70a)
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d2 = a5 + a9 + 2a4, (70b)

d3 = a4 + a10 + 2a3, (70c)

d4 = a5 + a8 + 2a2, (70d)

d5 = a4 + a7 + 2a1, (70e)

d6 = a1 + a2 + a3 + a6. (70f)

Parameters ξi, i = 1, 2, . . . , 6 and Ai, i = 1, 2, . . . , 6 in Eq. (19) are the same

as classical one introduced in relations (65) and (66), respectively. If we

substitute the matrix aγλ by cαβ in (65) and (66) and replace the upper limit

of sum in (66), 6 by 18, ζi, i = 1, 2, . . . , 18 and Bi, i = 1, 2, . . . , 18 can be

obtained too. Therefore, all parameters appeared in Eq. (19) are determined.
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