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Abstract9

Flood changes may be attributed to drivers of change that belong to three10

main classes: atmospheric, catchment and river system drivers. In this work,11

we propose a data-based attribution approach for selecting which driver best12

relates to variations in time of the flood frequency curve. The flood peaks are13

assumed to follow a Gumbel distribution, whose location parameter changes14

in time as a function of the decadal variations of one of the following alterna-15

tive covariates: annual and extreme precipitation for different durations, an16

agricultural land-use intensification index, and reservoir construction in the17

catchment, quantified by an index. The parameters of this attribution model18

are estimated by Bayesian inference. Prior information on one of these pa-19

rameters, the elasticity of flood peaks to the respective driver, is taken from20

the existing literature to increase the robustness of the method to spurious21

correlations between flood and covariate time series. Therefore, the attribu-22

tion model is informed in two ways: by the use of covariates, representing23

the drivers of change, and by the priors, representing the hydrological un-24
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derstanding of how these covariates influence floods. The Watanabe-Akaike25

information criterion is used to compare models involving alternative covari-26

ates. We apply the approach to 96 catchments in Upper Austria, where posi-27

tive flood peak trends have been observed in the past 50 years. Results show28

that, in Upper Austria, one or seven day extreme precipitation is usually a29

better covariate for variations of the flood frequency curve than precipitation30

at longer time scales. Agricultural land-use intensification rarely is the best31

covariate, and the reservoir index never is, suggesting that catchment and32

river drivers are less important than atmospheric ones. Not all the positive33

flood trends correspond to a significant correlation between floods and the34

covariates, suggesting that other drivers or other flood-driver relations should35

be considered to attribute flood trends in Upper Austria.36

Keywords: flood change attribution, driver informed frequency analysis,37

Bayesian inference, prior information38

1. Introduction39

In recent years, a large number of major floods occurred, triggering many40

studies to focus on flood trend detection at local and regional scale (see e.g.41

Mudelsee et al., 2003; Petrow and Merz, 2009; Blöschl et al., 2017; Mangini42

et al., 2018, for an European overview). Despite trends in flood regime are de-43

tected in numerous studies, the identification of their driving processes and44

causal mechanisms is still far from being properly addressed (Merz et al.,45

2012). Understanding the reasons why the detected flood changes occurred46

(i.e. flood change attribution) is a complex task, since different processes,47

influencing flood magnitude, frequency and timing, can act in parallel and48
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interact in different ways across spatial and temporal scales (Blöschl et al.,49

2007). According to Pinter et al. (2006), Merz et al. (2012) and Hall et al.50

(2014), potential drivers of flood regime change belong to three groups: at-51

mospheric, catchment and river system drivers.52

The Atmospheric driver includes the meteorological forcing of the system53

(e.g. total precipitation, precipitation intensity/duration, temperature, snow54

cover/melt and radiation) whose changes can be related to both natural55

climate variability and anthropogenic climate change. They usually occur56

at large spatial scales, affecting flood regime consistently within a region,57

with gradual changes in time of the mean or the variance of peak discharges58

(Mudelsee et al., 2003; Blöschl et al., 2007; Petrow and Merz, 2009; Renard59

and Lall, 2014).60

The Catchment driver includes runoff generation and concentration pro-61

cesses, which are quantified, for instance, by the infiltration capacity or the62

runoff coefficient. They are susceptible to land-cover and land-use changes63

(e.g. urbanization, deforestation, change in agricultural practices) and are64

likely to occur gradually in time, usually with diminishing effects with in-65

creasing catchment area (Blöschl et al., 2007; O’Connell et al., 2007; Rogger66

et al., 2017; Alaoui et al., 2018).67

The River System driver includes flood wave propagation processes into68

the river network. River training and hydraulic structures produce modifica-69

tions of river morphology, roughness, water levels, discharge and inundated70

area, resulting typically in step changes in the time series of flood discharge71

peaks. Usually, these changes occur in proximity (e.g. flood flow acceleration72

and channel incision) or downstream (e.g. loss of floodplain storage) of the73
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river modification, e.g. downstream of reservoirs or downstream urban areas,74

where structural flood protection measures are developed (Graf, 2006; Pinter75

et al., 2006; Volpi et al., 2018).76

In the past, as pointed out by Merz et al. (2012), the attribution of flood77

changes has been mainly done through qualitative reasoning, suggesting rela-78

tionships with changes in climate variables (e.g. precipitation or circulation79

patterns) or anthropogenic impacts (e.g. river training, dam construction or80

land-use change), and citing literature to support these hypotheses. Recently,81

however, in several studies the detected flood changes are quantitatively re-82

lated to one or, more rarely, to more than one of the potential drivers. This83

has been done essentially in two different ways: the data-based and the84

simulation-based approach.85

The data-based approach consists in identifying the relationship between86

drivers and floods from data only, in a statistical way. For example, stud-87

ies exist that analyze the correlation and geographic cohesion between flood88

characteristics and large-scale climate indices (Archfield et al., 2016) or the89

long-range dependencies of precipitation and discharge (Szolgayova et al.,90

2014) and their spatial and temporal co-evolution (Perdigão and Blöschl,91

2014). Many studies use the so called ”non-stationary flood frequency anal-92

ysis” to improve the reliability of flood quantile estimation by relating the93

parameters of flood frequency distributions to covariates, such as large-scale94

climate indices or large-scale atmospheric or oceanic fields (i.e. climate-95

informed frequency analysis, see e.g. Renard and Lall, 2014; Steirou et al.,96

2018), extreme precipitation (Villarini et al., 2009; Prosdocimi et al., 2014),97

annual precipitation (Šraj et al., 2016), reservoir indices (López and Francés,98
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2013; Silva et al., 2017), population measures (Villarini et al., 2009), etc. The99

advantage of the data-based approach, when compared to other methods, is100

that, due to its relative simplicity, it is easily applicable to many sites, at the101

regional or even continental scale. Its drawback is that it identifies correla-102

tions between covariates and flood dynamics, usually without investigating103

whether the magnitude of these correlations are consistent with what process104

understanding would suggest.105

Cause-effect mechanisms are instead included in the simulation-based ap-106

proach, which consists in reproducing the observed flood changes by introduc-107

ing, in hydrological models, changes in the potential driver(s) and observing108

the effects on the simulated hydrograph characteristics (Merz et al., 2012).109

Several simulation-based studies analyze the effects of extensive river train-110

ing on flood regime (Lammersen et al., 2002; Vorogushyn and Merz, 2013;111

Skublics et al., 2016, see e.g.). The effect of land-use changes (e.g. forestry112

management, agricultural practices and urbanization) on discharge is often113

investigated, in simulation-based studies, for specific catchments and flood114

events, under different land-management scenarios (see e.g. Niehoff et al.,115

2002; Bronstert et al., 2007; O’Connell et al., 2007; Salazar et al., 2012). The116

advantage of the simulation-based approach is that process understanding is117

explicitly taken into account. However, due to the complexity of the models,118

simulation-based methods are usually applied to single (or few) catchments119

at a time.120

Clearly, it would be of interest to make use of the advantages of both121

approaches, when performing attribution studies. Viglione et al. (2016),122

propose a framework for attribution of flood changes, based on a regional123
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analysis, that make use of process understanding in a data-based analysis.124

They exploit information, obtained through rainfall-runoff modelling, on how125

different drivers should affect floods for catchments of different size. The126

estimation of the relative contribution of the drivers is framed in Bayesian127

terms and the process-based information is quantified by prior knowledge128

about the scaling parameters of the regional model.129

In this paper we also make use of knowledge accumulated in previous stud-130

ies relating floods to dominant drivers, when performing attribution. We use131

the same study region of Viglione et al. (2016), where positive trends in flood132

peak series are observed, but differently from them, who focus on attribution133

at the regional level, we are interested in the attribution at the local (site-134

specific) scale. We apply the non-stationary flood frequency method, here135

called ”driver-informed” flood frequency method (consistently with Steirou136

et al., 2018), to 96 sites in Upper Austria, using local (rather than regional)137

covariates on atmospheric, catchment and river system drivers. Differently138

from Viglione et al. (2016), we allow the drivers to act in opposite directions139

when contributing to positive flood peak changes. We use Bayesian inference140

for parameter estimation, with prior information on the connection between141

covariates and flood peaks taken from previous studies, both data-based and142

simulation-based ones. The attribution is performed by comparing alterna-143

tive models (with alternative covariates) using an information criterion that144

quantifies how well the flood frequency model fits the flood data (accounting145

for prior information) and penalize models that are too complex given the146

information available. The attribution model is therefore informed in two147

ways: by the use of covariates, representing the drivers of change, and by the148
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priors, representing the hydrological understanding of how these covariates149

influence floods.150

Section 2 describes the driver-informed flood frequency model and the151

way attribution is performed. Section 3 describes the data used, including152

how information from the literature is translated into prior knowledge on the153

model parameters. Section 4 reports the results of the analysis, investigating154

the sensitivity of the attribution results to different time-scales of the atmo-155

spheric driver and the dependency of the driver effects on the catchment area156

(as hypothesized by Hall et al., 2014; Viglione et al., 2016).157

2. Methods158

2.1. Flood Frequency analysis and alternative driver-informed models159

For simplicity, we assume the maximum annual peak discharges to follow a160

two-parameter Gumbel distribution. Visual inspection of the data in Gumbel161

probability diagrams shows consistency with this assumption for most of the162

sites (note that the following procedure can be applied using more flexible163

distributions, i.e. with more parameters, without loss of generality). The164

Gumbel cumulative distribution function is defined as:165

G(z) = exp

{
− exp

{
z − µ

σ

}}
(1)166

where µ and σ are respectively the location and scale parameter of the dis-167

tribution. These parameters are usually assumed invariant in time.168

In recent studies, climate variables have been used as covariates for the169

extreme value distribution parameters, which are therefore not constant in170

time. This approach is usually called ”non-stationary” even if the resulting171
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distribution can be considered non-stationary only if the covariates exhibit a172

deterministic change in time (Montanari and Koutsoyiannis, 2014; Serinaldi173

and Kilsby, 2015).174

We use local covariates of the extreme value distribution parameters,175

representative for the three drivers of flood change (i.e. the atmospheric,176

catchment and river system processes) in the study region, and, similarly to177

the climate-informed statistics of Steirou et al. (2018), we refer to this as178

driver-informed distribution/parameters.179

The following models are considered:180

G0) µ = µ0, σ = σ0 (2)181

G1) log(µ) = a+ b log(X), σ = σ0 (3)182

G2) log(µ) = a+ bX, σ = σ0 (4)183
184

where X is a general covariate (e.g. one of the drivers) and a and b are185

regression parameters to be estimated locally. The location parameter µ186

only is conditioned on the external covariate, with two different dependence187

structures in model G1 and G2. Practically speaking, they introduce one188

additional parameter to be estimated, compared to the time-invariant Gum-189

bel distribution G0. The parameters are estimated by fitting the alternative190

models to flood data with Bayesian inference through a Markov Chain Monte191

Carlo approach. The R package rStan (Carpenter et al., 2017) is used to192

perform the MCMC inference. rStan makes use of Hamiltonian Monte Carlo193

sampling, which speeds up convergence and parameter exploration by using194

the gradient of the log posterior (Stan Development Team, 2018). For each195

inference, we generate 4 chains of length Nsim = 10000, each starting from196
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different parameter values, and check for their convergence.197

One advantage of the Bayesian framework is the possibility to take into198

account additional prior belief (e.g. expert knowledge) or external a priori199

information about the parameters in their estimation. Herein, we set infor-200

mative priors on the parameter b, based on the results of published studies201

(see Section 3.4), in order to limit the possibility for spurious correlations to202

bias the attribution. In model G1 the parameter b is defined as:203

b =
X

µ
· dµ
dX

(5)204

and represents the percentage change of the location parameter of the distri-205

bution of annual maxima, following a 1% change in the covariate X. In other206

words, the parameter b represents the elasticity of (the location parameter207

of) flood peaks with respect to the covariate, similarly to the temporal sen-208

sitivity coefficient of flood to precipitation defined in Perdigão and Blöschl209

(2014). In model G2 instead, the parameter b is defined as:210

b =
1

µ
· dµ
dX

(6)211

It represents the relative change occurring in the location parameter of the212

distribution of annual maxima, following a unit change in the covariate.213

2.2. Model selection and flood change attribution214

The Widely Applicable or Watanabe-Akaike Information Criterion (WAIC)215

is used in this study for model comparison and selection. Its measure repre-216

sents a trade-off between goodness of fit and model complexity. The WAIC,217

originally proposed by Watanabe (2010), is one of the Bayesian alternatives218

of the Akaike Information Criterion (AIC) (Akaike, 1973). It estimates the219
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out-of-sample predictive accuracy (elppd) by subtracting, to the computed220

log pointwise posterior predictive density (lppd), a penalty for the complexity221

of the model expressed in terms of effective number of parameters (pWAIC)222

(Gelman et al., 2014). We evaluate the WAIC as defined in Gelman et al.223

(2014) and in Vehtari et al. (2017):224

WAIC = −2 · êllpdWAIC = −2 · (lppd− pWAIC) (7)225

Where the multiplication factor -2 scales the expression, making it compa-226

rable with AIC and other measures of deviance. The R package loo is used227

for the calculations.228

3. Study area and drivers of flood change229

As in Viglione et al. (2016), the study area considered is Upper Austria,230

where annual maximum daily discharges (AM) for 96 river gauges (catch-231

ment areas ranging from 10 to 79500 km2) are available with record lengths232

of at least 40 years after 1961. Figure 1 shows the extension and the eleva-233

tion of the considered catchments and Table 1 contains percentiles of some234

catchment attributes.235

In the considered region, clear evidences of positive trends in flood peaks236

have been detected in previous studies (Blöschl et al., 2011, 2012; Viglione237

et al., 2016). Figure 2 (panel a) shows the trends in the logarithm of the238

flood peaks (this is equivalent to the percentage change in time), together239

with their 95% confidence intervals, resulting from a simple least square linear240

regression, taking 1961 as a common starting year of the AM series. Mostly241

positive trends are detected, with magnitude between -1 and 3.5 % change242
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Figure 1: Study region. Location and elevation of the 96 catchments, with outlets in

Upper Austria.

Percentile: 0% 25% 50% 75% 100%

Catchment area (km2): 10.5 68.6 159.4 428.2 79490.1

Elevation of the outlet (m a.s.l.): 246.7 357.0 442.1 504.1 763.5

Mean annual flow (m3/s): 0.2 1.6 3.9 10.9 1583.0

Mean annual flood (m3/s): 6.2 24.5 46.7 138.1 4415.3

Length of the flood series (years): 40 54 64 96 182

Table 1: Percentiles of catchment attributes (catchment area, outlet elevation, mean an-

nual flow, mean annual flood and length of records) over the 96 considered catchments

11



  

Figure 2: Detected trends (in % year−1) in the annual maximum discharge with 95%

confidence intervals, as a function of catchment area (as in Viglione et al., 2016) (panel

a). Significant upward trends (based on Mann-Kendall test at 5% significance level) are

represented in orange. Panel b shows the occurrence of significant upward vs not significant

trends in the region.

per year. A common Mann-Kendall test with 5% significance is performed to243

identify significant trends (shown in orange in the figure). Panel b shows that244

more than one third of the catchments in the region has a positive significant245

trend over time.246

In this study, instead, we search for relationships between flood temporal247

variations and the long term evolution of precipitation (atmospheric driver),248

land-use and agricultural intensification (catchment driver) and the construc-249

tion of reservoirs (river system driver). Table 2 contains some statistics of the250

covariates (and related quantities) that we use, as possible drivers of flood251

change, in the driver-informed models G1 and G2.252

12



  

Percentile: 0% 25% 50% 75% 100%

Mean annual precipitation (mm): 762.4 1081.2 1353.5 1641.6 2153.2

30-day annual max. precipitation (mm): 164.7 218.4 257.4 308.5 413.7

7-day annual max. precipitation (mm): 81.6 103.3 126.8 155.5 214.8

1-day annual max. precipitation (mm): 35.0 44.1 51.6 61.9 82.2

Crop area fraction (%): 0.0 1.5 4.7 14.2 91.6

Mean maize yield in year 2000 (t/ha): 0.00 2.10 6.09 9.23 9.68

Mean Land-use intensity Index (-): 0.00 0.01 0.03 0.13 0.83

Reservoir capacity sums (106 m3): 0.0 0.0 0.0 0.0 1376.1

Mean Reservoir Index (-): 0.00 0.00 0.00 0.00 0.05

Table 2: Percentiles of the covariates and some covariate-related quantities, calculated

over the 96 catchments

3.1. Long-term evolution of precipitation253

Daily precipitation records from 1961, averaged over each catchment, are254

obtained from the Spartacus gridded dataset of daily precipitation sum (spa-255

tial resolution 1x1 km) (Hiebl and Frei, 2018). We extract extreme precip-256

itation series (i.e. 30-day, 7-day and 1-day annual maximum precipitation),257

commonly used as covariates in the literature (e.g. Prosdocimi et al., 2014;258

Villarini et al., 2009), and annual total precipitation (see Table 2). This lat-259

ter is the preferred predictor of flood frequency changes in some studies (e.g.260

Perdigão and Blöschl, 2014; Sivapalan and Blöschl, 2015; Šraj et al., 2016)261

and is here considered as a proxy of the antecedent soil moisture condition262

before a flood event (Mediero et al., 2014) as well as of the event precipitation.263

In this study, we consider the decadal variation of the mean annual max-264

imum precipitation for different durations and the annual total precipitation265

as potential drivers of the decadal variation of the annual flood peak dis-266

13



  

charges. Therefore, as we are interested in this long term evolution rather267

than in the year-to-year variability, we smooth the precipitation series with268

the locally weighted polynomial regression LOESS (Cleveland, 1979) using269

the R function loess. The subset of data over which the local polynomial270

regression is performed is 10 years (i.e. 10 data-points of the series) and271

the degree of the local polynomials is set equal to 0. This is equivalent to272

a constant local fitting and turns LOESS into a weighted 10-years moving273

average. The weight function used for the local regression is the tri-cubic274

weight function. The locally weighted polynomial regression is used, rather275

than a common moving average, in order to preserve the original length of276

the series.277

3.2. Land-use change and intensification of field crop production278

We investigate the impact (at the catchment scale) on floods of modern279

agricultural management practices and heavy machineries, producing soil280

compaction and degradation (Van Der Ploeg et al., 1999; Van der Ploeg and281

Schweigert, 2001; van der Ploeg et al., 2002; Niehoff et al., 2002; Pinter et al.,282

2006). With the exception of the mountainous catchments located mainly in283

the southern part of the region, agricultural areas cover significant portions284

of the catchments, with 290000 ha (i.e. ∼ 25% of the region area) of cropland285

in total over the region (Krumphuber, 2016).286

A catchment-related land-use intensity index LI, with a structure similar287

to the Reservoir Index, proposed by López and Francés (2013), is built here.288

It is defined as:289

LI =
N∑

i=1

Ac,i

AT

· Yi

Yref

(8)290
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where N refers to the number of sub-areas (i.e. the grid cells) contained291

into the catchment boundaries, Ac,i is the cropland area, Yi is the yield in292

tons/ha, AT is the total catchment area and Yref is the Reference yield.293

This land-use intensity index takes into account both the intensification294

of agricultural production (represented by the ratio Yi/Yref , similar to the295

τ -factor in Dietrich et al., 2012, as a proxy agricultural land use-intensity),296

and the land-use of the catchment (represented by the ratio Ac,i/AT ) with297

its potential change in time.298

Cropland area Ac,i is derived for each catchment from the globally avail-299

able dataset of cropland and pasture areas for the year 2000, provided by300

Ramankutty et al. (2008) on a 5 min by 5 min latitude/longitude (∼ 10 km301

by 10 km) grid. It combines agricultural inventory data with satellite-derived302

land cover data. We considered the ratio Ac,i/AT constant over time, since303

there are no substantial evidences of land-use changes over the period of in-304

terest in the region. In other words, the changes of LI are, in this case, due305

to the intensification of the agricultural production only.306

For what concerns yield data, we focus on the production of maize, which307

is the most important crop in Upper Austria (Krumphuber, 2016). Further-308

more, Beven et al. (2008) list maize among the cropping systems associated309

with compaction and soil structural damage, due to the required practices310

(e.g. they keep bare soil surface) and type of operations, their timing (i.e.311

late harvested crops, requiring access to the soil during the wettest soil pe-312

riod, causing compaction, and leaving bare soil exposed to winter storms)313

and depth of cultivation (Chamen et al., 2003). Maize yield data for the314

year 2000 (provided by Monfreda et al., 2008) and its linear trend in time315
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(provided by Ray et al., 2012) are globally available, in form of 5 min by 5316

min latitude/longitude gridded data-sets. Time series of maize yield for each317

catchment are derived from spatial aggregation of the gridded information318

and by extrapolation of the linear trends over the period 1961-2014.319

The reference yield Yref , differently from Dietrich et al. (2012) where it320

represents the obtainable yield under standard and static agricultural man-321

agement practices and varies with space, is here assumed to be a single value322

for the entire region, representative for its average maize production. It is323

calculated by averaging over time the field crop production data for maze in324

Upper Austria provided by Statistik Austria (2017) (in tons and hectares)325

and available for the period 1971-2017. The resulting Yref is 8.72 ton/ha.326

See Table 2 for statistics about the LI in the region.327

3.3. Potential impact of reservoirs328

Within the 96 considered catchments, 21 reservoirs and the corresponding329

dams, are identified using the Global Reservoir and Dam GRanD database330

(Lehner et al., 2011). Dam location, year of construction, capacity and331

drainage area of the reservoir are extracted from the GRanD database and332

used in this framework (see Table S1 in the Supplementary material for de-333

tails). The potential impact of reservoirs on flood regime is here quantified334

using the Reservoir Index (RI) proposed by López and Francés (2013) and335

defined as follows:336

RI =
N∑

i=1

Ai

AT

· Ci

CT

(9)337

Where N is the number of reservoirs upstream of the gauge station, Ai and338

Ci are the catchment area and the capacity of each reservoir and AT and339
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CT are the catchment area and the mean annual flow volume at the gauge340

station. The construction of a dam represents a step change in the RI. López341

and Francés (2013) find 0.25 to be RI threshold value between low and high342

flow alteration. See Table 2 for statistics about the RI in the region.343

3.4. Driver-informed models and prior knowledge344

We use the drivers of change, described in section 3.1, 3.2 and 3.3, as co-345

variates X of the driver-informed models of section 2.2. We adopt the model346

G1 when investigating the effects on floods of the long-term evolution of pre-347

cipitation (i.e. where X is one of the smoothed precipitation series described348

in section 3.1, here generally indicated as P ), otherwise we adopt model G2,349

when investigating the effects of the agricultural soil degradation or reservoir350

(i.e. where X is the LI or RI). The alternative Gumbel distributions, with351

location parameter conditioned on the covariates are:352

GA) log(µ) = aA + bA log(P ), σ = σ0,A (10)353

GC) log(µ) = aC + bC · LI, σ = σ0,C (11)354

GR) log(µ) = aR + bR ·RI, σ = σ0,R (12)355
356

This choice comes from the hypothesis that, when investigating the effects357

of the agricultural soil degradation or reservoir on floods, the actual mag-358

nitude of the covariate and its absolute variation is important, and not the359

relative change (e.g. an increase of 10% of the cropland area may be not360

influential for floods if the initial cropland area is very small). This corre-361

sponds to the model structure G2 and the related regression parameter b as362

defined in Eq.6. On the contrary, when considering the atmospheric driver,363

we want the regression parameter b to represent the elasticity of floods to364
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precipitation. This is consistent with the temporal sensitivity coefficient of365

flood to precipitation of Perdigão and Blöschl (2014) and corresponds to366

model G1 and Eq.5. Note that the structure of the driver-informed mod-367

els and the drivers/covariates considered are both assumptions that may be368

varied. With the proposed framework, we compare alternative models, that369

reflect/contain these assumptions for the considered region. Other models370

can be easily formulated to reflect other hypotheses.371

Informative a priori on the parameters bA, bC and bR are retrieved from372

a selection of published studies, listed in Table 3 (as for the model structure373

and the drivers, they are also part of the assumptions made). They evaluate374

the effects of the change in one of the drivers on the magnitude of flood375

peaks (i.e. they provide information on the value of the parameters b, as376

defined in Eq. 10, 11 and 12). The following paragraphs describe in detail377

the procedure followed to retrieve an estimate of the mean and the variance378

of their prior distribution, for each of the three drivers of change.379

Atmospheric driver. Perdigão and Blöschl (2014) provide, in their Table 2,380

spatiotemporal sensitivity coefficients α and β of floods to annual precipi-381

tation, together with 95% confidence intervals, for Austria and its five hy-382

droclimatic regions, obtained analyzing AM series of 804 catchments. The383

mean and standard deviation of the prior distribution of the parameter bA,384

defined consistently with the sensitivity coefficient β in the time domain, are385

taken respectively equal to 0.61 (value provided in the study for β) and 0.06386

(obtained from its 95% confidence bounds with the assumption of normal-387

ity). We adopt these values as moments of the prior normal distribution of388

bA when the covariate is annual precipitation (as in Perdigão and Blöschl,389
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2014), but also when the covariate is one of the extreme precipitation series.390

In these latter cases, in order to reflect the additional uncertainty related to391

this choice, we arbitrarily increase the standard deviation to three times the392

one in Perdigão and Blöschl (2014) (i.e. 0.18).393

Catchment driver. The impact of agricultural soil compaction on flood peaks394

at the catchment scale is still underdeveloped in the scientific literature (Rog-395

ger et al., 2017) and it is not possible to directly retrieve a priori on the396

regression parameter bC , as defined in this framework. For this reason, we397

assume that the available prior information related to land-use change can398

be transferred and used when analyzing the effect of land-use intensifica-399

tion on floods. Fraser et al. (2013) present an application of metamodeling400

that upscales physics-based model predictions to make catchment scale pre-401

dictions of land-management change impacts on peak flows. They consider402

four land-management scenarios, involving changes of land-use between 3403

and 30% of catchment area in one catchment (river Hodder at Footholme in404

north-west England, 25.3 km2), whose size and agricultural nature is con-405

sistent with most of the catchments in this study. For each scenario they406

provide, in their Table 4, the minimum, median and maximum reduction of407

the mean catchment peak flow predicted with two different modelling ap-408

proaches. The mean of the prior distribution of bC is obtained dividing the409

predicted mean catchment peak flow reductions (we consider the values in410

the column ”median”) by the imposed fraction of area under land-use change411

of the corresponding scenario, and finally averaging over the scenarios. The412

resulting mean of the distribution of bC is 0.13. The predicted minimum413

and maximum reductions of the mean peak flow are also divided by the414
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corresponding land-use change and averaged over the scenarios, obtaining415

a minimum and maximum predicted value for bC . We treat these latter as416

95% confidence bounds of reduction of the mean catchment peak flow, from417

which the standard deviation is easily calculated (with the assumption of418

normality and by averaging the left and right distance to the mean). The419

resulting standard deviation of the distribution of bC is 0.13.420

River system driver. Graf (2006) analyzes the downstream hydrologic effects421

of 36 large dams in American rivers. In his Table 8 he provides regional422

values of the dam-capacity/yield ratio and of the percentage reduction in423

maximum annual discharge. Given that it is a large-scale study, we assume424

that the results are general enough to be reasonably transferred to our study425

region. We assume that this reduction is registered right downstream of426

the dam (i.e. the ratio Ai/AT in Eq.9 is equal to 1), therefore it equals427

∆RI (before and after the dam construction). We divide the reduction in428

maximum annual discharge by the capacity/yield ratio, to obtain regional429

estimates of the parameter bR, and we consider the value corresponding to430

”all regions” (resulting equal to -0.30) as the mean of the prior distribution431

of bR. We calculate the standard deviation of the bR values over the six432

regions in Graf (2006) in order to obtain the standard deviation of the prior433

distribution of bR (resulting equal to 0.18).434

The mean and standard deviation of the prior distribution of the parame-435

ters bA, bC and bR are summarized in the third column of Table 3, with prior436

distribution assumed to be normal. Additional prior information is included437

about the shape of the prior distribution, based on the authors’ understand-438

ing of the way the drivers may affect the magnitude of flood peaks.439
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Increased (decreased) magnitude of flood peaks may result from an in-440

crease (a decrease) in the magnitude of precipitation. This is associated with441

a positive value of the regression parameter bA (i.e. the changes in the mag-442

nitude of flood peaks and in the covariate occur in the same direction/with443

the same sign). For this reason the lower tail of the prior normal distribution444

(contained in the third column of Table 3) of the parameter bA is truncated445

for negative values, in order to constrain the sign of the parameter. Similarly,446

we truncate the prior distribution of bC for negative values since soil degrada-447

tion processes occurring in the catchment, associated with the intensification448

of agricultural practices, are expected to produce increased flooding. The449

construction of reservoirs (reflected in a positive step change in the reservoir450

index) may instead mitigate flood peaks in the downstream catchment. In451

this case the value of the parameter is negative and the upper tail of its prior452

normal distribution is truncated for positive values. The final types (lower-453

or upper- truncated normal) of the prior distribution of the regression pa-454

rameters bA, bC and bR are summarized in the fourth column of Table 3 and455

represented in Figure 3.456

4. Results457

In order to illustrate the methodology, we apply it first to one site (Section458

4.1). The results for all other sites in Upper Austria are then presented in459

Section 4.2.460

4.1. Attribution of flood changes in a single catchment461

We analyze the river Traun catchment (gauge station in Wels-Lichtenegg,462

shown in panel a of Figure 4), where the AM series of flood peaks (panel463
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Model and

parameter

Study Normal prior

moments

Prior type

GA, bA Perdigão and

Blöschl (2014)

N(0.61, 0.06) with

annual precipitation.

N(0.61, 0.18)

otherwise

Truncated normal

with lower tail

truncated in 0

GC , bC Fraser et al.

(2013)

N(0.13, 0.13) Truncated normal

with lower tail

truncated in 0

GR, bR Graf (2006) N(-0.30, 0.18) Truncated normal

with upper tail

truncated in 0

Table 3: Sources, moments and type of the prior distribution of the model parameters bA,

bC and bR.

22



  

Figure 3: Prior distribution of the model parameters bA, bC and bR, linking the changes

of the drivers (i.e. the covariates of the alternative driver-informed models) to the changes

of flood peaks. Each panel refers to a different driver (i.e. to a different driver-informed

model): atmospheric driver (panel a), catchment driver (panel b) and river system driver

(panel c). For the atmospheric driver we adopt different prior distributions for annual and

extreme precipitation.

b) presents a significant upward trend (1.0 ± 0.6% change per year). We464

apply the attribution framework in order to try to understand whether the465

magnitude of flood peaks is related to the temporal evolution of precipitation466

at the different time-scales (panels c, d, e and f), of the land-use intensity467

(panel g) or of the reservoir index (panel h) (i.e. if it can be attributed to468

one of the three drivers of change). In particular, we assume that, the use469

of a covariate is informative if the WAIC value associated with the driver-470

informed model is lower than the one associated with the time-invariant471

model and their absolute difference is larger than a threshold, that we set472

to 2 using the same interpretation done with the AIC by Burnham and473

Anderson (2002, pp. 700–71).474

Table 4 shows the values of the WAIC associated with the alternative475
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driver-informed models GA, GC , GR and the time-invariant G0 in two cases:476

(i) when no prior information on the parameter b is used (through a non-477

informative improper uniform distribution with infinite range), and (ii) with478

the priors of Figure 3. In the first case, by comparing the alternative models479

in terms of differences of WAIC (Table 4, first row), it emerges that the480

1-day extreme precipitation (model GA) and land-use intensity (model GR)481

are the best covariates and the correspondent models outperform all others,482

including the time invariant model G0. This is because, as for the flood peak483

series, both 1-day extreme precipitation and land-use intensity index have a484

positive trend over time (panels f and g). Also the model GR, that uses the485

reservoir index as covariate, provides a relatively good fit to the data (e.g.486

better than the time invariant model) since the Gmunden dam was built487

along the River Traun in 1969 (the location of the dam is shown in panel a488

of Figure 4), which is reflected in a step change in the reservoir index time489

series in the corresponding year (panel h).490

When prior information is used, the WAIC values (Table 4, second row)491

suggest that the model GA with the 1-day extreme precipitation is still the492

best one, but the models GC and GR, using the land-use intensity and reser-493

voir indexes, do not rank as well as they did before. This is because, in494

one case, crops cover less than 20% of the total catchment area and, there-495

fore, the land-use intensity varies in a low-value range. Crop areas are, in496

fact, concentrated in the northern part of the catchment, while the south-497

ern and middle part are mountainous areas (panel a of Figure 4). In the498

other case, the reservoir index value after the dam construction (∼0.05) is499

still significantly lower than the threshold value (0.25) between low and high500
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flow alteration set by López and Francés (2013). This is due to a small501

dam-capacity/mean-annual-flow-volume ratio. In fact, the reservoir storage502

capacity (514×106 m3) is significantly smaller than the mean annual flow503

volume of the catchment (4137×106 m3), as well as the dam drainage area504

(1395 km2) compared to the catchment area (3426 km2). Furthermore both505

flood peaks and the RI increase in time, suggesting a positive value of the506

parameter bR, which is in contrast with its informative prior distribution.507

When using prior information on the parameter b (see Figure 3), it be-508

comes improbable that small values of the two indexes can produce significant509

flood changes, even though they vary in time in the same direction as the510

floods do (as in the case of the land-use intensity). In this case, therefore,511

we attribute the temporal variability of floods to the long-term variation of512

the 1-day maximum precipitation.513

4.2. Attribution of flood changes in Upper Austria514

In each of the 96 sites in Upper Austria the model GA is locally compared515

to the time-invariant model in terms of WAIC, which represents a trade-off516

between goodness of fit and model complexity. We alternatively consider dif-517

ferent time scales of precipitation as covariate of the driver-informed model.518

In particular, we are interested in determining the most suitable time-scale519

for the atmospheric driver to be employed in the attribution study over the520

entire region, i.e. whether the long-term changes in annual precipitation or521

in the extreme precipitation drive flood changes in the region.522

The results of this analysis are shown in Figure 5 where, in each panel,523

a different time scale of the atmospheric driver is taken as covariate of the524

modelGA. We mark the catchments in blue if the goodness of fit of the driver-525
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Figure 4: River Traun catchment, gauge station in Wels-Lichtenegg (panel a) and related flood series

(panel b) and covariates representative for the three drivers of change: annual total precipitation (c), 30-

day (d), 7-day (e) and 1-day maximum precipitation averaged over the catchment (f), land-use intensity

index (g) and reservoir index (h).
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G0 GA GC GR

Time-

invariant

Annual

Total P

30-day

maxi-

mum

P

7-day

maxi-

mum

P

1-day

maxi-

mum

P

LI RI

Non-

informative

priors

-126.9 -125.0 -125.2 -127.7 -133.4 -133.0 -130.0

Informative

priors

-126.6 -127.1 -129.1 -133.7 -127.6 -126.2

Table 4: Comparison of the alternative time-invariant and driver-informed models for

the river Traun catchment, gauge station in Wels-Lichtenegg. The values of the Widely-

applicable information criterion, associated with each alternative model, are shown. The

first row refers to the use of non-informative priors, while the second one refers to the

priors of Table 3

informed model significantly improves with the inclusion of the covariate526

(accounting for the increased model complexity), with respect to the time-527

invariant case (i.e. if WAICGA
is lower than WAICG0 and their absolute528

difference is larger than a threshold, arbitrarily set to 2). Otherwise, we mark529

them in grey (meaning that the time-invariant model is still preferable).530

The analysis shows that annual total precipitation as covariate improves531

the model performance only for a small number of catchments in the region532

(panel a). On the contrary, extreme precipitation series with short durations533

(i.e. 7-day and 1-day maximum precipitation) seem to be regionally more534

suitable covariates for the distribution of AM (panels c and d).535

Based on this analysis, we select 1-day maximum precipitation as covari-536

ate representative for the atmospheric processes driving flood change for the537
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Figure 5: Comparison between the driver-informed model (in blue), with precipitation as

covariate, and the time-invariant model (in grey). The panels show the detected trends

in flood series as a function of catchment area, with colors referring to the resulting best

alternative model (i.e. time-invariant or driver-informed). The selection of the best fitting

model is carried out, in each site, through the Widely-Applicable information criterion.

Each panel refers to a different time scale of precipitation used as covariate (annual to-

tal precipitation in panel a, 30-day maximum precipitation in panel b, 7-day maximum

precipitation in panel c and 1-day maximum precipitation in panel d).
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study region. In each catchment we compare the WAIC values associated538

with four alternative models: G0 (i.e. the time-invariant model), GA with539

1-day maximum precipitation as covariate, GC and GR. Similarly to Figure540

5, in Figure 6 a catchment is marked in grey if the model G0 is associated541

with the lowest value of WAIC. Flood changes are instead attributed to one542

of the drivers (in Figure 6 with colors) if the WAIC value of the correspond-543

ing driver-informed model is significantly lower than the one of the model G0544

(we use the same arbitrary threshold of WAIC difference equal to 2) and if545

it is the lowest among the competing driver-informed models.546

In a significant fraction of the catchments, the time-invariant model (in547

grey) is still the preferred choice while the atmospheric driver (in blue, rep-548

resented by 1-day max precipitation as covariate) is the main driving process549

among the alternatives considered. The catchment driver (in green) instead550

plays a very marginal role, together with the river system driver, which never551

results as best fitting model. The long-term evolution of floods is attributed552

to the land-use intensification index only in three catchments with small553

catchment area (panel a).554

Panel b shows the occurrence of the attributed drivers with a distinction555

between the catchments where the trends in time of flood peaks resulted556

significant or not significant (see Figure 2). The flood series in around half of557

the sites, where trends in time of the floods are significant, are associated to558

the long-term evolution of extreme precipitation series. However, the other559

half of them does not correlate significantly with any of the covariates used560

here, even though the correlation with time is significant. All of these sites561

have relatively small catchments and one third of them are in the mountains562
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Figure 6: Attribution of flood changes in Upper Austria to the atmospheric (blue), catch-

ment (green) and river system driver (red). Panel a shows the detected trends in flood

series as a function of catchment area, with colors referring to the resulting best alternative

driver-informed model. Catchments where the time-invariant model is still preferred are

shown in grey. Panel b shows the occurrence of the selected alternative (driver-informed

and time-invariant) models with a distinction between the catchments where the trends

in flood peaks resulted significant (upward) or not significant. The atmospheric driver is

here represented by 1-day maximum precipitation.

(Figure 7a). Figure 7b shows that, in terms of seasonality of floods, the sites563

with trends but no correlated covariate are not significantly different from564

the others.565

Figure 8 compares the posterior distribution of the parameters bA, bC and566

bR, obtained with the MCMC approach, to their corresponding prior distri-567

bution. When the evolution of flood peaks in one catchment is attributed to568

one driver, the posterior distribution of the corresponding regression parame-569

ter is represented in black, otherwise (i.e. if the flood changes are attributed570
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Figure 7: Mean catchment elevation as a function of catchment area (panel a) and sea-

sonality of floods (panel b) in Upper Austria. The results of the attribution analysis (see

Figure 6) are represented with colors and filled (empty) dots represent catchments with

significant (not significant) flood trends. The size of the dots scales with the concentration

of the date of occurrence of floods in panel a and with catchment area in panel b. The

angular coordinate in panel b represents the average date of occurrence of floods and the

distance from the center is the concentration of the date of occurrence R (R = 0 when

floods are evenly distributed throughout the year and R = 1 when all floods occur on the

same day). Both are calculated as in Blöschl et al. (2017).

31



  

to other drivers or the time-invariant model is preferred) in grey. In the571

upper panels non-informative priors are used while, in the lower panels, the572

informative priors, shown in Figure 3, are used, consistently with Figure 5573

and 6. This figure shows the influence of the informative priors in the attri-574

bution process. By introducing additional external information about how575

the connection between these covariates and flood peaks should be, we obtain576

very different posterior estimates of the parameters b and, consequently, of577

the extreme value distribution parameters and of the attribution results.578

Similarly to panel b of Figure 6, Figure 9 shows the number of occurrence579

of attributed driver types for the other precipitation time-scales. Different580

covariates (annual precipitation, 30-day maximum precipitation and 7-day581

maximum precipitation) for the model GA are considered in the different582

panels. The changes in the decadal annual precipitation correspond to only583

around one fourth of the significant trends in time detected in flood series584

(even less for the 30-day maximum precipitation). The 7-day maximum585

precipitation series as covariate show instead a similar results as the 1-day586

maximum precipitation (see figure 6, panel b).587

5. Discussion and conclusions588

In this study we apply a simple data-based approach for the attribution589

of flood changes to potential drivers: atmospheric, catchment and river sys-590

tem drivers. The method is applied to a large number of catchments in a591

study region, Upper Austria, where significant positive trends are detected592

in maximum annual peak discharge series. We assume the maximum annual593

peak discharges to follow a two-parameter Gumbel distribution. We include594
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Figure 8: Prior distribution of the regression parameters bA (Atmospheric driver, panels

a and d), bC (Catchment driver, panel b and e) and bR (River system driver, panel c and

f) with the corresponding posterior distributions for each catchment. Upper panels refer

to the use of non-informative priors and lower panels of the informative priors of Figure

3. When the evolution of flood peaks in one catchment is attributed to one driver, the

posterior distribution of the corresponding parameter is shown in black, otherwise in grey.
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Figure 9: Same as panel b of Figure 6 but for different time scales of precipitation. Occur-

rence of the selected alternative (driver-informed and time-invariant) models is shown, with

a distinction between the catchments where the trends in flood peaks resulted significant

(upward) or not significant. The considered precipitation time-scales for the atmospheric

driver are: annual precipitation (panel a), 30-day maximum precipitation (panel b) and

7-day maximum precipitation (panel c).
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information on the three drivers through covariates (smoothed/decadal an-595

nual precipitation, smoothed/decadal 30-day, 7-day, 1-day maximum annual596

precipitation, land-use index and reservoir index) that control the location597

parameter of the Gumbel distribution through simple log-linear and log-log598

models. The attribution is performed by comparing the different models,599

using different covariates, fitted using Bayesian inference. The comparison is600

based on the trade-off between goodness of fit and model complexity, using601

the Watanabe-Akaike information criterion (WAIC). Prior information on602

the slope parameters of these models (i.e. on the elasticity of the covariates603

to floods), based on results of published studies, is also provided in order to604

limit the possibility for spurious correlations to bias the attribution. With-605

out using information on the expected elasticity, the attribution procedure is606

ill posed in that it would prefer the covariate better correlated to the flood607

temporal fluctuations, no matter if the correlation is physically plausible.608

Our results suggest that precipitation change is the main driver of flood609

change in the study region (no matter which time-scale is used for precipita-610

tion), which is consistent with the results in Viglione et al. (2016). Differently611

from what suggested in Sivapalan and Blöschl (2015) and Šraj et al. (2016),612

annual precipitation is not as good as extreme precipitation in explaining the613

long-term evolution of floods in this context. This is due to the fact that,614

while Šraj et al. (2016) are interested in how floods correlate to precipita-615

tion at the annual scale, here we are looking at long-term (decadal) variation616

of precipitation. The smoothing of the annual precipitation time series re-617

sults in averaging wet years and dry years, thus destroying the correlation618

to floods. On the contrary, the extreme precipitation series, even after the619
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smoothing, do not contain the influence of droughts and are therefore more620

correlated to long-term fluctuations of the flood statistics. In Upper Austria,621

because of the relatively small size of the catchments, the 7-day and the 1-622

day maximum annual precipitation decadal fluctuations correlate best with623

the fluctuations of the flood statistics.624

Land-use intensity changes are significant in very few small catchments,625

which are mostly covered by agricultural land. Differently from what has626

been assumed in Viglione et al. (2016), these are not the smallest catchments,627

which are located in the mountains where there is almost no agriculture and628

there has not been a significant deforestation nor afforestation in the last629

50 years. For most of the catchments, land-use intensity changes (note that630

we investigated the changes related to late-harvested crops, see Section 3.2)631

do not correlate meaningfully with flood changes (we get a good correlation632

only if we use non-informative priors for the elasticity parameter, resulting633

in not credible posterior distributions). This is consistent with the fact that,634

in Upper Austria, big floods occur generally in summer, in correspondence635

of precipitation events with high magnitude, and smaller floods are in spring636

or winter. Few floods occur in autumn, when we would expect a greater soil637

susceptibility to erosion and compaction (potentially leading to increased638

flooding) as a consequence of the agricultural practices for late-harvested639

crops (Chamen et al., 2003; Beven et al., 2008).640

Reservoirs do not produce relevant effects on floods neither, because the641

capacity/yield ratio is generally small. Most of the dams are built for hy-642

droelectricity purposes, but even for those built for flood control we do not643

detect significant flood attenuation at the gauging stations because these ef-644
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fects are mainly local (Ayalew et al., 2017; Volpi et al., 2018). This result is645

not surprising given that we expect reservoirs to attenuate flood peaks and646

that we observe mostly upward trends in flood peak magnitude in the region.647

In half of the catchments where we detect significant trends in flood peaks,648

the driver-informed model, with extreme precipitation as covariate, outper-649

forms the time-invariant model. In the other cases we observe significant650

trends but not a significant correlation to the covariates, suggesting that the651

long-term temporal evolution of the selected drivers is overall not sufficient to652

explain the observed trends in the peak discharge series and that other covari-653

ates should be considered or covariates informative on other drivers of flood654

change. For example, we did not consider changes in snow related processes655

here (e.g. by taking air temperature as covariate), which may be important656

for mountainous catchments (see e.g. Blöschl et al., 2017), and changes in657

precipitation of shorter durations (e.g. hourly precipitation), which may be658

more appropriate covariate for the smaller catchments. Indeed, all of the659

sites where we do detect a trend in flood peaks but no correlation with the660

covariates are small (and some mountainous) catchments. The fact that in661

these catchments we have not identified a suitable driver may also suggest662

that other flood-driver relations should be explored in future analyses, repre-663

senting for example the combined effect of multiple drivers on flood change.664

In some of the catchments where we do not detect significant trends in665

flood peaks, the driver-informed model, with extreme precipitation as co-666

variate, outperforms the time-invariant model. Through the driver informed667

models used here, long term flood fluctuations are related to the covariates,668

even in cases where no monotonic trend in time is detected. This is in line669
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with our objective to research the relationships between flood temporal vari-670

ations and the long-term evolution of the drivers.671

This study considers many sites in one region, but the analysis is essen-672

tially local, i.e. every site is analysed independently using locally defined673

covariates. There is potential for extending the method to something in line674

with Viglione et al. (2016), in which a regional model is fitted to all the sites675

jointly explicitly using covariates for the drivers.676

The framework used here is easily generalizable and applicable in other677

contexts (i.e. by changing the covariates or the model structure). Different678

drivers could be considered, that may have positive or negative effects on679

floods. The key issue, as shown in this paper, is to gather prior information680

on how sensitive are floods to changes in the drivers, which could be achieved681

through derived-distribution (see e.g. Eagleson, 1972; Sivapalan et al., 2005;682

Volpi et al., 2018) and comparative process studies (see e.g. Falkenmark and683

Chapman, 1989; Viglione et al., 2013b; Blschl et al., 2013). This is in line684

with the concept of Flood Frequency Hydrology (Merz and Blöschl, 2008a,b;685

Viglione et al., 2013a), which highlights the importance of combining flood686

data with additional types of information, including causal mechanisms, to687

improve flood frequency estimation and, as in this case, to support change688

analyses.689
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