
A Case Study on Automated Fuzz Target
Generation for Large Codebases – Appendix

To illustrate the methodology of our case study, we present
the following example of a Fuzz Target created with each of
the three methods for the same target function.

/ / @ f u z z t e s t Array (pBuf , Len)
/ / Ou tpu t (ppMsg)
/ / Cleanup (ppMsg != NULL,
/ / J2735 Free , ppMsg)
vo id J2735 MsgPERDecode (

s t r u c t J2735Msg **ppMsg ,
c h a r *pBuf ,
i n t Len) {

. . .
}

Listing 1: Example stack function

The function shown in Listing 1 takes a buffer containing
a PER encoded J2735 message and decodes that buffer into a
J2735Msg structure. The buffer pBuf is an array of type
char with length Len; this is handled with the addition
of an Array parameter to the @fuzztest directive. The
decoded message is stored in the ppMsg parameter, which
is marked as output using the Output parameter. Memory
is also allocated within this function for the structure, which
must be freed by the Fuzz Target in order to prevent a memory
leak. There also exists a function specifically for freeing a
struct J2735Msg, thus the allocated memory can be
freed by calling this function. This call to free is achieved with
the addition of a Cleanup parameter to the @fuzztest
directive using the condition ppMsg != NULL to ensure that
the J2735_Free function does not attempt to free a null
pointer.

A. Fully Automated

i n t LLVMFuzzerTestOneInput (
u i n t 8 t * f u z z i n p u t d a t a ,
s i z e t f u z z d a t a s i z e) {

s i z e t f u z z e r i n p u t m i n s i z e =
s i z e o f (s t r u c t J2735Msg *) +
s i z e o f (c h a r) +
s i z e o f (i n t) ;

i f (f u z z d a t a s i z e <
f u z z e r i n p u t m i n s i z e) {

r e t u r n 0 ;
}

u i n t 8 t * f u z z p t r = f u z z i n p u t d a t a ;

s t r u c t J2735Msg *ppMsg ;
c h a r pBuf ;
i n t Len ;

memcpy(&ppMsg , f u z z p t r ,
s i z e o f (s t r u c t J2735Msg *)) ;

f u z z p t r += s i z e o f (s t r u c t J2735Msg *) ;

memcpy(&pBuf , f u z z p t r , s i z e o f (c h a r)) ;
f u z z p t r += s i z e o f (c h a r) ;

memcpy(&Len , f u z z p t r , s i z e o f (i n t)) ;
f u z z p t r += s i z e o f (i n t) ;

(vo id) J2735 MsgPERDecode(&ppMsg ,
pBuf ,
Len) ;

r e t u r n 0 ;
}

Listing 2: Automated Fuzz Target for J2735 MsgPERDecode

Fig. 1: Automated serialisation of J2735 MsgPERDecode

The fully automated method produces the Fuzz Target
shown in Listing 2 and is unable to determine that there is an
array in the function parameters, that one of the parameters
is used as output, resulting in it serialising the function as
shown in Figure 1. It is also unable to determine that a
cleanup function needs to be called to prevent memory leaks.
Because of this not only is it unable to properly Fuzz Test
the target, as the length parameter passed for the buffer is
determined by the libFuzzer input, and the actual length
of the buffer will always have a size of 1, but there is also a
high probability of a false positive access violation crash being
found. However, although the appropriate cleanup function is
never called, due to sanity checking within the function, the
call to J2735_PERDecode will never progress far enough
to actually allocate memory for J2735Msg structure and thus
a false positive leak will not be found in addition to the false
positive crash. In this case, the fully automated method has
not been able to produce a functional Fuzz Target.

B. Anotated

i n t LLVMFuzzerTestOneInput (
u i n t 8 t * f u z z i n p u t d a t a ,
s i z e t f u z z d a t a s i z e) {

s i z e t f u z z e r i n p u t m i n s i z e = 0 ;

s t r u c t J2735Msg *ppMsg ;
c h a r * pBuf = (c h a r *) f u z z p t r ;

i n t Len = (f u z z d a t a s i z e −
f u z z e r i n p u t m i n s i z e)
/ s i z e o f (c h a r) ;

(vo id) J2735 MsgPERDecode(&ppMsg ,
pBuf ,
Len) ;

i f (ppMsg != NULL) {
J2735 Free (ppMsg) ;

}

r e t u r n 0 ;
}

Listing 3: Annotated Fuzz Target for J2735 MsgPERDecode

Fig. 2: Annotated serialisation of J2735 MsgPERDecode

As Listing 3 shows, with the addition of annotations, the
problems with the fully automated method can be solved,
resulting in the function being serialised as shown in Figure
2. The addition of the Output parameter allows ppMsg to
be removed from the input as it is used as output by the target
function. The Array parameter then allows pBuf to utilise
all of the libFuzzer input data and assigns Len to the actual
length of the buffer. Thus, the annotated method is able to
create a Fuzz Target for this target function.

C. Handmade

i n t LLVMFuzzerTestOneInput (
u i n t 8 t * f u z z i n p u t d a t a ,
s i z e t f u z z d a t a s i z e) {

s t r u c t J2735Msg *pMsg ;

(vo id) J2735 MsgPERDecode (
&pMsg ,
(c h a r *) f u z z i n p u t d a t a ,
f u z z d a t a s i z e) ;

i f (pMsg != NULL) {
J2735 Free (pMsg) ;

}

r e t u r n 0 ;
}

Listing 4: Handmade Fuzz Target for J2735 MsgPERDecode

This handmade Fuzz Target, shown in Listing 4 and created
by a developer working at our industry partner, is functionally
very similar to that generated through the annotated method,
considering input in the same format described in Figure
2. However, it is written in a less generic way making it
neater and slightly more efficient by removing some of the
setup that occurs before the call to the target function in
the Fuzz Target generated with the annotated method. The
efficiency improvement between the handmade Fuzz Target in
comparison to that generated through the annotated method is

minor, with most of the effectiveness gained being from the
accompanying seed corpus.

	Fully Automated
	Anotated
	Handmade

