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Background-error variances estimated from a small-size ensemble of data
assimilations need to be filtered because of the associated sampling noise. Previous
studies showed that objective spectral filtering is efficient in reducing this noise,
while preserving relevant features to a large extent. However, since such filters are
homogeneous, they tend to smooth small-scale structures of interest.

In many applications, nonlinear thresholding of wavelet coefficients has proved
to be an efficient technique for denoising signals. This algorithm proceeds by
thresholding the wavelet coefficients of the noisy signal using an estimated threshold.
This is equivalent to applying an adaptive local spatial filtering. A quasi-optimal
value for the threshold can be computed from the noise variance. We show that
the statistical properties of the sampling noise associated with the estimation
of background-error variances can be used to calculate the noise level and the
appropriate threshold value.

This method is first applied to 1D academic examples, with emphasis on correlated
and heterogeneous noises. This approach is shown to outperform the commonly used
homogeneous filters, since it automatically adapts to the local structure of the signal.
We also show that this technique compares favourably to a heterogeneous diffusion-
based filter, with the advantage of requiring less trial-and-error tuning. These
results are next confirmed in a more realistic 2D problem, using the Arome-France
convective-scale model.
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1. Introduction

The background-error covariance matrix B plays a central
role in data assimilation schemes by weighting the
information from the observations and the background
state in the analysis.

Recently there has been growing interest in estimating
background-error covariances from ensemble data assimi-
lation systems, either in the Kalman filter context (Evensen,
2003) or in the variational framework (Kucukkaraca and
Fisher, 2006; Raynaud et al., 2009; Bonavita et al., 2011).

However, the high computational cost of such ensembles
in operational applications limits the ensemble size (namely
O(100) members), leading to a significant sampling noise
which has to be filtered out. The goal of the filtering step is
to remove the noise while retaining as much as possible the
important signal features. Traditionally, this is achieved by
linear processing such as Wiener filtering (Wiener, 1949).

Previous studies on the filtering of ensemble-based
variances (Raynaud et al., 2008, 2009) provided useful
information with regard to the associated sampling noise,
such as its statistical properties. Moreover, Wiener filtering
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of ensemble variances has been successfully implemented
in large-scale applications at Météo-France (Raynaud et al.,
2009) and the European Centre for Medium-range Weather
Forecasts (ECMWF) (Bonavita et al., 2011).

The Wiener filter, however, optimizes the trade-off
between an averaging of the signal discontinuities and
the removal of the noise in the smooth regions in order
to minimize the mean-square error. As a result, some
noise is left in the smooth regions while the discontinuities
are averaged a little. Discontinuities in background-error
variance fields typically correspond to high forecast errors
associated with severe weather events, e.g. midlatitude
storms and tropical cyclones. The averaging of such error
structures, which has for instance been observed by Bonavita
et al. (2011), can then result in a smaller impact of relevant
observations in these regions during the assimilation step.

In order to preserve such coherent features in variance
fields, the filter has to adapt to the local structure of the signal.
This could be achieved by performing the filtering either
in grid-point space or wavelet space. A first contribution
to heterogeneous variance filtering in grid-point space has
been proposed by Raynaud and Pannekoucke (2012) based
on the integration of the heterogeneous diffusion equation.
In the present paper, the application of nonlinear filtering
in wavelet space is examined.

The wavelet transform, thanks to its excellent localization
property, has rapidly become an essential signal- and image-
processing tool for a variety of applications, including
denoising. Denoising by wavelet coefficient thresholding
is a commonly used method and was first proposed by
Donoho and Johnstone (1994). The algorithm compares
each wavelet coefficient of the noisy signal to a given
threshold: if the coefficient is smaller than the threshold then
it is set to zero; otherwise it is kept or modified (depending
on the thresholding rule). The idea behind thresholding is
to distinguish between the insignificant coefficients likely
due to noise, and the significant coefficients consisting of
important signal structures. The denoised signal is then
reconstructed from the selected coefficients.

The paper is organized as follows. Section 2 introduces
the technique of wavelet coefficients thresholding. Section
3 reviews some properties of the sampling noise associated
with the estimation of background-error variances from an
ensemble of forecasts. Wavelet thresholding is then applied
in section 4 to 1D analytical signals corrupted by a Gaussian
white noise. The case of a correlated and heterogeneous
noise, as often encountered in real applications, is examined
in section 5. Section 6 considers the extension to a more
realistic 2D framework, using background-error statistics of
the Arome convective-scale model. Finally, conclusions and
perspectives are given in section 7.

2. Denoising by wavelet thresholding

In this section, we introduce the mathematical formalism
associated with the denoising by wavelet thresholding, as
initially proposed by Donoho and Johnstone (1994) to
denoise signals affected by a Gaussian white noise.

2.1. Theoretical aspects

We consider a discrete signal S of size n = 2J , affected by
a Gaussian white noise W of mean zero and variance σ 2

W ,

resulting in a noisy signal X:

X = S + W.

We decompose the noisy signal into an orthogonal wavelet

series X = ∑J−1
j=0

∑2j−1
i=0 X̃i,jψi,j, where ψi,j is the wavelet

function at position index i for scale j and X̃i,j = 〈ψi,j|X〉 is
the associated wavelet coefficient, 〈·|·〉 denoting the inner
product (Mallat, 1999). The wavelet coefficients {X̃i,j}i=0,2j−1
at scale j thus define an approximation of X on a grid whose
resolution depends on j: the finer the scale the higher the
resolution.

Denoising by thresholding wavelet coefficients consists
of keeping only the coefficients whose modulus is above a
given threshold value T:

ρT(X̃i,j) =
{

X̃i,j if |X̃i,j| > T
0 if |X̃i,j| ≤ T.

The denoised signal X̂ is finally reconstructed using an
inverse wavelet transform X̂ = ∑

i,j ρT(X̃i,j)ψi,j.
Wavelet thresholding is first motivated by the fact that

the decorrelating property of the wavelet transform reveals
sparsity of the signal if any, i.e. most wavelet coefficients
are close to zero (Mallat, 1999). Moreover, since the noise
is spread out equally over all coefficients, if the noise level
is not too high it is then possible to discriminate between
signal and noise coefficients.

The idea behind wavelet thresholding is to test each
wavelet coefficient in order to check if it is compatible
with a Gaussian white noise with standard deviation σW .
This can be achieved by performing a statistical test,
allowing us to verify that particular properties of the noise
are consistent with this Gaussian distribution. A possible
statistical property is the maximum magnitude that can be
encountered when sampling a Gaussian random variable of
standard deviation σW and size n. As detailed in Appendix
A, this maximum magnitude should be lower than

TD = σW

√
2 ln n. (1)

The sampling size n can be understood as the return time
of the extreme event consisting of exceeding a magnitude
strictly smaller than TD (see Appendix A for details). Since
a Gaussian white noise in grid-point space is transformed
into an equivalent Gaussian white noise in an orthogonal
wavelet representation, the test can be performed on the
wavelet coefficients. The noise variance is then calculated
as σ 2

W = 1
n

∑n
l=1(W(l))2 = 1

n

∑
i,j |W̃i,j|2, where W(l) is the

noise at grid-point l and W̃i,j is a wavelet coefficient of noise.
Therefore, a wavelet coefficient whose modulus is larger
than TD is not compatible with the Gaussian assumption.
In that case, the coefficient carries more signal information
than noise and contributes to X̂.

It is worth noting that TD is equal to the universal threshold
proposed by Donoho and Johnstone (1994), which results
in an estimate asymptotically optimal (when n → ∞) in
the minimax sense (i.e. minimizing the maximum quadratic
error (Mallat, 1999)). This threshold is called universal since
it depends on the sampling size n and on the variance of the
noise σ 2

W , but not on the signal itself.
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2.2. Noise variance estimation

When the statistical properties of the noise are known or can
be calculated with an appropriate model, the determination
of the optimal threshold is straightforward (Donoho and
Johnstone, 1994). However, the noise variance is unknown
in many situations and has to be estimated.

Different methods have been proposed, such as the
median absolute deviation (MAD), which estimates the
level of noise by taking the median of the modulus of
the smallest-scale wavelet coefficients (Mallat, 1999). An
alternative approach was introduced by Farge et al. (1999)
and Azzalini et al. (2004), based on a recursive estimation of
the noise variance and the threshold.

The recursive approach of Azzalini et al. (2004) proceeds
as follows. The wavelet signal X̃ is split into a coherent (i.e.
noise-free) part X̃c and an incoherent (i.e. purely noisy)
part X̃inc. The signal is first considered as incoherent (i.e.
only due to noise): X̃inc = X̃; thus σ 2

W ,0 = 1
n

∑
i,j |X̃inc

i,j |2 =
1
n

∑
i,j |X̃i,j|2 and T0 = σW ,0

√
2 ln(n). Wavelet coefficients

above T0 are then added to the coherent part

X̃c
i,j = ρT0 (X̃inc

i,j ),

while wavelet coefficients below T0 remain in the incoherent
part

X̃inc
i,j = (1 − ρT0 )(X̃inc

i,j ).

The coherent and incoherent parts of the signal are thus
recursively constructed, at loop k + 1, based on the estimates
σ 2

W ,k+1 = 1
n

∑
i,j |X̃inc

i,j |2 and Tk+1 = σW ,k+1
√

2 ln(n). This
algorithm is repeated until the number NW of non-
zero coefficients in the incoherent part converges, i.e.
NW ,k+1 = NW ,k. At the end of this recursive algorithm,
σW = σW ,k, TD = Tk, and the denoised signal is given by
X̂ = ∑

i,j X̃c
i,jψi,j. This algorithm is stable and converges with

a finite number of iterations bounded from above by the
number of samples n, although in practice very few iterations
are needed (Azzalini et al., 2004).

This iterative process is illustrated in Figure 1. Since a
white noise is isotropic it is spherical on an orthogonal
basis, and the spheres correspond to the maximum noise
magnitude (i.e. the threshold) at iterations 0 and 1. Because
the initial noise variance σW ,0 is large, most of the wavelet
coefficients are smaller than the calculated threshold T0.
Thus only a few coefficients are larger than the threshold
(they correspond to the bold arrows) and are added to
the coherent part of the signal. After the first iteration, the
estimated noise variance σW ,1 is then smaller than σW ,0; thus
T1 < T0 and the wavelet coefficients such that |X̃inc

i,j | > T1

(dashed arrows) are added to the coherent signal.

2.3. Adaptive local spatial filtering

It is interesting to note that the wavelet thresholding is
equivalent to estimating the signal with a filtering that is
locally adapted to the signal regularity. This property follows
from the fact that the wavelet transform of a function f at
scale j and position xj(i) locally measures the variation of
f in a neighbourhood of xj(i) whose size is proportional to
j (Mallat, 1999, p. 165). Rapid transitions in a signal thus
create large wavelet coefficients at fine scales.

Figure 1. Conceptual illustration of the recursive algorithm in R
n for

estimating the noise variance and the threshold. The estimated thresholds
T0 and T1 are represented by the bold and dashed spheres respectively. The
arrows represent a selection of wavelet coefficients X̃i,j.

Given that the wavelet-thresholding selectively sets to
zero all coefficients below a threshold T, it thus performs
an adaptive filtering that depends on the amplitude of the
wavelet coefficients. If |X̃i,j| > T then the coefficients are
relatively large and thus are in the neighbourhood of sharp
transitions of f at fine scales. Keeping them avoids smoothing
sharp signal variations. In the regions where |X̃i,j| ≤ T, the
coefficients are likely to be small, which means that f is
smooth. The noise is then filtered out by setting the wavelet
coefficients to zero.

While this section introduced the reasoning behind
wavelet thresholding for some noisy signal, in the remainder
of the paper this technique is applied to remove noise in a
statistic. Here the statistic considered is the sample variance
estimated from an ensemble of forecasts.

3. Estimating variances from ensemble forecasts

This section reviews major results regarding the estimation of
background-error variances from an ensemble of forecasts.
It is also shown how the noise variance required for the
wavelet thresholding (Eq. (1)) can be analytically calculated.

3.1. Ensemble variances and their sampling statistics

Background-error variances ṽ estimated from an ensemble
of N background errors of size n are affected by a sampling
noise, denoted ve, which directly arises from the finite size
of the ensemble:

ve = ṽ − E[ṽ], (2)

where E stands for the expectation operator and ṽ� = E[ṽ]
is the expectation of the ensemble-based variances, which
will be referred to as the noise-free estimated variances.
It may be mentioned that this sampling error is non-
Gaussian; however, the central limit theorem ensures that the
sampling distribution of

∑N
k=1 ve approaches the Gaussian

distribution as the ensemble size N → ∞.
The statistical properties of this sampling noise have been

derived by Raynaud et al. (2009), under the assumption of
Gaussian background errors. The spatial covariance of the
sampling noise is given by

E[veveT
] = 2

N − 1
B̃� ◦ B̃�, (3)
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where B̃ is the n × n ensemble-estimated B matrix,
B̃� = E[B̃] and ◦ stands for the Hadamard product (i.e.
an element-wise product). It follows that the noise variance
is given by

E[(ve)2] = 2

N − 1
ṽ� ◦ ṽ�.

However, this formula cannot be used in practice to
calculate local noise variances since we need to know in
advance the noise-free signal ṽ�.

In the case of a white noise, the noise energy is equally
distributed among all scales and the noise variance is then
equal to the average noise variance:

σ 2
W = Tr(E[veveT

])/n.

It thus comes from Eq. (3) that

σ 2
W = 2

N − 1
Tr(B̃� ◦ B̃�)/n. (4)

3.2. Estimation of the noise variance

It has been mentioned in section 2.2 that the noise variance
σ 2

W may be obtained through a recursive method. On the
other hand, Eq. (4) provides a direct estimate of the noise
variance. The application of this analytical relation is now
detailed.

Since B̃� is unknown in practice, a possible solution
to estimate the white noise variance according to Eq. (4)
is to replace Tr(B̃� ◦ B̃�) by Tr(B̃ ◦ B̃). In order to better
understand the influence of the finite ensemble size on the
estimation of Tr(B̃ ◦ B̃), it is interesting to examine the
sampling properties of this random variable, in particular
its statistical expectation and its standard deviation.

It is shown in Appendix B that

E[Tr(B̃ ◦ B̃)] = (1 + 2

N − 1
)Tr(B̃� ◦ B̃�). (5)

This equation indicates the existence of a positive bias
when Tr(B̃ ◦ B̃) is estimated from a finite-size ensemble.
This bias decreases with the ensemble size at a rate
O(1/N). Therefore, the relative error associated with the

bias E[Tr(B̃◦B̃)]−Tr(B̃�◦B̃�)
Tr(B̃�◦B̃�)

is around 20% with a 10-member

ensemble and decreases to 4% with a 50-member ensemble
(Figure 2).

On the other hand, the quality of Tr(B̃ ◦ B̃) as an
approximation of Tr(B̃� ◦ B̃�) also depends on the impact
of the standard deviation

σTr =
√

E[Tr(B̃ ◦ B̃) − E[Tr(B̃ ◦ B̃)]]2

on the estimation error. The ratio σTr

Tr(B̃�◦B̃�)
, presented in

Figure 2, decreases in O(1/
√

N). Moreover, it can be seen
that the standard deviation has a minor impact, compared to
the bias, for small ensembles. With a 10-member ensemble,
for instance, this ratio is around 7%. This thus shows that
with current operational ensemble sizes (namely between
10 and O(100) members), Tr(B̃ ◦ B̃) is a quite accurate
estimation of Tr(B̃� ◦ B̃�). The white noise variance can
then be estimated by

σ 2
W ≈ 2

N − 1
Tr(B̃ ◦ B̃)/n. (6)
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Figure 2. Convergence of estimation error with the ensemble size: the
bias (solid) and the standard deviation (dashed) are both normalized by
Tr(B̃� ◦ B̃�).

In the context of the ensemble estimation of background-
error variances, the statistical properties of the associated
sampling noise thus allow us to directly calculate a relatively
accurate estimation of the average noise level.

4. Denoising of 1D variance fields corrupted by a
Gaussian white noise

The application of wavelet thresholding to ensemble-based
variances is illustrated in this section by estimating variances
in an idealized experimental one-dimensional set-up.

An ensemble of N random error realizations of
size n is generated by randomizing a prescribed ‘true’
background-error covariance matrix (Fisher and Courtier,
1995). Variances estimated from this ensemble are then
decomposed into an orthogonal wavelet series, and the
wavelet coefficients are thresholded using the threshold
value calculated from Eq. (1). The filtered variances are
finally obtained from an inverse wavelet transform of the
selected wavelet coefficients. For the experiments presented
in this paper, we use the Coiflet-5 wavelets (i.e. with five
vanishing moments; Mallat, 1999).

The domain is a circle of radius a = 6370 km, which
corresponds to the Earth’s great circle. This circle is divided
into n = 512 = 29 equally spaced grid points.

4.1. The prescribed covariance matrix

Homogeneous and isotropic correlations are obtained from
the Gaussian function

CH(x, r) = exp(− r2

2L2
εb

), (7)

where x is a point on the circle, r is a separation value and Lεb

is the correlation length-scale (Daley, 1991; Pannekoucke
et al., 2008).

Following Pannekoucke et al. (2007), heterogeneous
correlations are then computed using a c-stretching Schmidt
transformation (Courtier and Geleyn, 1988), adapted to the
circle and defined by

h(x) = a[π − 2A tan{1

c
tan(

π

2
− x

2a
)}],
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Figure 3. (a) Prescribed variances (solid line) and raw ensemble-estimated variances (dashed line). (b) Prescribed variances (solid line) and their
estimation with a wavelet thresholding (dashed line), in the case of a 50-member ensemble.
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represented in green. The threshold TD ≈ 0.92 is indicated by black squares. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

with c = 2.4. The resulting correlation function is

C(x, r) = CH{h−1(x), h−1(x + r) − h−1(x)}.
The associated correlation length-scales are sharper in the
centre of the domain.

On the other hand, the prescribed variances v� are
relatively smooth over a large part of the domain with a
value of 1, and there is a sharp transition in the centre of
the domain with an increase of the variances by a factor 3
(Figure 3). This rapid increase of variances may simulate
what is observed in the vicinity of low-predictability events
(e.g. midlatitude storms, tropical cyclones).

4.2. Filtering results

In this section, the efficiency of a wavelet thresholding of
estimated variances is examined in the context of a white
noise. This is achieved by setting a very low value for the
background-error length-scale (i.e. Lεb 
 1) in constructing
the true covariance matrix (Eq. (7)). Moreover, the noise
variance required for the calculation of the threshold value

is calculated using both the recursive algorithm (section 2.2)
and the theoretical formula (Eq. (6)).

Figure 3(a) shows the prescribed variances along with
the raw variances estimated from a 50-member ensemble.
The denoised variance field after a thresholding of wavelet
coefficients is shown in Figure 3(b). The sampling noise is
removed to a large extent, while the spatial variations of the
prescribed variances are preserved. The relative error of the
estimated variances is reduced from 20% to 7% on average.
It may be mentioned that threshold values calculated using
the recursive algorithm and the theoretical formula lead to
identical denoised variances.

The efficiency of the wavelet-thresholding method is
related to the separation between signal and noise wavelet
coefficients. Figure 4 presents the histograms of the wavelet
coefficients for the raw variances X̃i,j and for the noise W̃i,j.
It turns out that the noise coefficients are concentrated
within the range [−TD, TD] with TD ≈ 0.92. Moreover, the
noise dominates the signal (i.e. X̃i,j ≈ W̃i,j) within the range
[−TD, TD]. As a result, the useful signal corresponds to
the coefficients whose modulus is larger than TD, and thus
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it can be efficiently retrieved through wavelet coefficient
thresholding.

With smaller ensemble sizes (namely O(50)), the larger
amplitude of the noise makes the discrimination between
signal and noise more difficult. Therefore, there is some
residual noise after the wavelet thresholding that could
be avoided by slightly increasing the threshold value, for
instance (not shown).

Under the assumption of a Gaussian white noise, wavelet
thresholding is thus a straightforward and efficient method
to extract the signal of interest. Moreover, one advantage of
wavelet thresholding is that it does not require any trial and
error tuning.

5. Denoising of 1D variance fields corrupted by a
correlated and heterogeneous noise

In this section, the efficiency of wavelet thresholding is
examined in the presence of a correlated and heterogeneous
noise.

5.1. Spatial structure of the noise in real applications

The theoretical basis of the wavelet thresholding described
in section 2 relies on the assumption of a Gaussian white
noise. However, in practical applications the sampling
noise associated with the estimation of background-error
variances is often correlated. This can be seen from Eq.
(3), which implies the following relationship (Raynaud
et al., 2009) between the spatial correlation length scales
of sampling noise (denoted Lve ) and of background error
(denoted Lεb ):

Lve = Lεb√
2
. (8)

The assumption of a white noise is thus verified when
background errors are not or only slightly correlated, which
may be the case in dynamical regions, for instance (e.g. in
the vicinity of lows and troughs). On the other hand, when
background errors are correlated, the associated sampling
noise is correlated as well.

In addition, according to several studies (Thépaut et al.,
1996; Ingleby, 2001; Pannekoucke et al., 2007) background-
error correlations in realistic numerical weather prediction
(NWP) applications are heterogeneous (i.e. Lεb is not
constant in space), which implies that the associated noise
is also heterogeneous.

5.2. ‘Scale-dependent’ threshold

The method of wavelet thresholding has been generalized
to correlated noise (Johnstone and Silverman, 1997). In this
case, one can apply a different threshold for each scale j:

TD(j) = σ (j)
√

2 ln(nj), (9)

where σ (j) is the noise standard deviation associated with
scale j and nj = 2j is the number of wavelet coefficients at
scale j. σ (j) and TD(j) could be estimated with a scale-wise
extension of the recursive algorithm presented in section 2.2
(Nguyen et al., 2011).

The difficulty of this approach lies in the estimation of the
variance of the wavelet coefficients of the noise at each scale.

Two problems can limit the quality of this estimation. First
there is a statistical limitation, since the variance at scale j is
estimated from 2j realizations. Since the standard deviation
of the relative error in the estimated standard deviation σ (j)

is equal to
√

2
2j−1

, a relative error smaller than 10% can be

achieved only for scales j ≥ 8. Secondly, at each scale the
noise variance is estimated, it is necessary that only a few
coefficients are due to the signal. In general, this is only the
case at the smallest scales. It may then be expected that the
larger scale the noise, the less efficient the denoising.

Finally, the ‘scale-dependent’ generalization of wavelet
thresholding is particularly adapted to a homogeneous
noise. In that case, the noise variance is constant within
scales so that σ (j) can be accurately calculated from the
wavelet coefficients of the noise at scale j. If the noise
is heterogeneous then the calculated σ (j) corresponds to
the average noise level at scale j and the ‘scale-dependent’
thresholding may then be suboptimal. In the next section,
we propose an alternative method to deal with a correlated
and heterogeneous noise.

5.3. ‘Equivalent’ white noise threshold

Because of the limitations raised by the ‘scale-dependent’
formulation in the presence of a heterogeneous noise, an
alternative solution is detailed below. The threshold value is
calculated using the global universal threshold (Eq. (1)),
under the assumption of a white noise with standard
deviation α × σW :

T ′
D = α × σW

√
2 ln(n), α ≥ 1, (10)

where σW =
√

Tr(E[veveT ])/n is the average standard
deviation of the correlated noise. It may be mentioned
that, since the noise is correlated, the recursive algorithm
described in section 2.2 is no longer efficient to calculate σW .
In that case,σW is estimated from the theoretical formulation
(Eq. (6)), leading to

T ′
D ≈ α ×

√
4

(N − 1)n
Tr(B̃ ◦ B̃) ln(n).

A graphical interpretation of this choice is given in
Figure 5. White noises are represented by spheres, while
a correlated noise is represented by an ellipsoid (which
reflects the variation of the noise level with the direction).
The formulation of the threshold in Eq. (10) assumes that the
correlated noise is replaced by an ‘equivalent’ white noise
with standard deviation α × σW . Using a multiplicative
factor α ≥ 1 helps to reduce some residual noise arising from
the scales where the noise level is above the average level
(i.e. σ (j) ≥ σW ). A trivial upper bound for the parameter α

is equal to maxj σ (j)/σW (dashed-dotted sphere). However,
using this upper bound would result in setting too many
coefficients to zero. The choice of the parameter α is thus
based on the optimization of the trade-off between the
removal of the noise (where σ (j) > σW ) and the averaging
of the useful signal (where σ (j) < σW ). A possible choice

for α could be, for instance, α = median( σ (j)
σW

≥ 1).

5.4. Filtering results

The experimental set-up is as described in section 4, except
that a non-zero correlation length-scale is now used. Lεb is
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Figure 5. Graphical representation of white and correlated noises in R
n.

This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 6. Geographical variations of the background-error length scale in
the analytical framework.

set to 250 km in Eq. (7), which results in local length scales
that vary between 100 km in the centre of the domain and
600 km at the edges of the domain (Figure 6). It may be
mentioned that such length-scale values are close to those
encountered in real applications (e.g. Figures 11 and 12 of
Pannekoucke et al., 2008). This experimental setting then
ensures a realistic level of correlation and heterogeneity
for the noise. In accordance with the prescribed local
background-error length scales, the noise presents relatively
short variations in the centre of the domain while it is
larger scale elsewhere (Figure 7(a)). This is also supported
by the scalogram of the noise (Figure 7(b)). As expected, the
amplitude of small-scale coefficients tends to be larger in the
centre of the domain.

The root mean square error of estimated vari-
ances as a function of the parameter α, defined by√

1
n

∑n
i=1(v̂(α) − v�)2, where v̂ is the filtered variance esti-

mate, is shown in Figure 8 for a 50-member ensemble. The
curve indicates that there is an optimal value that min-
imizes the error. In the present case αopt = 2.3 and the
associated wavelet thresholding leads to estimated variances
(Figure 9(c)) whose relative error is around 10% on average
(compared to 20% for raw estimated variances, Figure 9(a)).

The impact of the choice of α is illustrated in Figure 9(b)
and (d). With α = 1 (Figure 9(b)), although the variances
are much less noisy than the raw estimates, there remains
some significant small-scale sampling noise in the vicinity
of the variance peak. With α = 2 × αopt (Figure 9(d)), the
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filtering is too strong and does not provide an accurate
representation of the variance peak. With an appropriate
choice of α, it thus turns out that the accuracy of the
estimated variances is improved and is close to that obtained
in the case of a Gaussian white noise.

Histograms of wavelet coefficients for signal and noise
(Figure 10) indicate the presence of noise coefficients
larger than the threshold TD = σW

√
2 ln(n) ≈ 0.92. This is

consistent with the discussion in section 5.3 and justifies the
use of a factor α > 1. With the optimal α = 2.3, T ′

D ≈ 2.12
and one can see that the noise coefficients are concentrated
within the range [−T ′

D, T ′
D]. The use of this threshold

thus enables all the noise coefficients to be removed, while
the useful signal coefficients are preserved. It may also be
mentioned that the noise is less Gaussian than in the white
noise case.

For comparison purposes, Figure 11(a) presents the
estimated variances after applying an optimized homoge-
neous filter. The signal is quite well represented by this
homogeneous filter; however, as detailed in Raynaud and
Pannekoucke (2012), the amplitude of the variance peak is
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Figure 12. (a) Prescribed T850 variances. Ensemble-based variances (N = 50): (b) raw estimates; (c, d) estimates after wavelet thresholding using α = 1
and α = αopt respectively. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

underestimated by around 10% on average. Raynaud and
Pannekoucke (2012) also proposed a heterogeneous filter in
grid-point space, based on the integration of the diffusion
equation. Comparison of Figures 9(c) and 11(b) indicates
that the performance of the wavelet thresholding is compa-
rable to that of an optimized heterogeneous diffusion-based
filter. This similar performance is encouraging since the
wavelet thresholding is easier to implement than the
diffusion-based heterogeneous filter. The main advantage is
that it does not require knowledge of local background-error

length scales, as is the case for the parametrization of
diffusion in Raynaud and Pannekoucke (2012).

6. Denoising of variance fields in a convective-scale
model

The extension of previous studies conducted in an idealized
1D framework is examined here in a more realistic 2D
framework, using the convective-scale Arome-France model
(Seity et al., 2011).
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6.1. The dataset

The Arome-France model is a spectral, non-hydrostatic
convective-scale model which has been running opera-
tionally at Météo-France since December 2008 over French
territory with a 2.5 km horizontal resolution up to 1.35 hPa.
The assimilation is based on a 3-hourly 3D-Var scheme.

Ensemble variational assimilation, as used routinely
at Météo-France for the global Arpège model (Berre
et al., 2007) and at ECMWF (Bonavita et al., 2011), is
now a common technique to estimate flow-dependent
background-error covariances. Based on the same principles,
an Arome ensemble assimilation can be generated, as
detailed in Brousseau et al. (2011). In this set-up, the Arome
EDA is based on perturbed Arome 3D-Var analysis/forecast
steps, and takes its lateral boundary conditions from the
Arpège ensemble assimilation.

The Arome ensemble used in this study has been run with
six members over an autumn period in October/November
2011. Background-error variances and horizontal length
scales have been estimated from this six-member ensemble
for one particular day, and filtered with a simple
spatial average to remove sampling noise. These filtered
estimates then provide realistic features for background-
error covariance modelling as detailed in section 6.2.

6.2. Background-error covariance modelling

A common way of modelling inhomogeneous and
anisotropic correlations is the use of the diffusion equation,
as introduced by Weaver and Courtier (2001). Within
this formulation, the shape of the modelled correlations
is controlled by the local diffusion tensor, which is shown
to be directly related to the local correlation length scales
(Pannekoucke and Massart, 2008). More precisely, if Lx and
Ly denote the zonal and meridional length scales respectively,
Pannekoucke and Massart (2008) introduce the tensor

�−1 =
( 1

L2
x

1
Lxy

1
Lxy

1
L2

y

)
.

When the pseudo-time integration range of the diffusion
equation is fixed to [0, 1], the local diffusion tensor ν(x) at
a position x = (x, y) is then related to � by ν(x) = �(x)/2.

Denoting by L the propagator associated with the time
integration of the heterogeneous diffusion equation, the
operator associated with the integration over [0, 1/2] is then
L1/2. A correlation matrix C = C1/2CT/2 can be built from
the product of the linear operator

C1/2 = �L1/2W−1/2, (11)

where W−1 is a metric tensor used to convert a canonical
vector into a Dirac distribution (Pannekoucke and Massart,
2008), and � is a diagonal matrix used as a normalization
to force matrix C to have diagonal elements equal to
one in accordance with a correlation matrix. A covariance
matrix B = B1/2BT/2 with specified variance field can then
be obtained from the diagonal matrix � of the standard
deviation field with

B1/2 = �C1/2. (12)

The resulting background covariance field can be
described by its variance field and its length-scale field. By
construction, the variance field is exactly the one prescribed,
i.e. the diagonal of �2. On the other hand, the resulting
length-scale field is a smooth version of the prescribed one.

An ensemble data assimilation can provide flow-
dependent estimates of background-error variances and
correlations. In particular, Belo Pereira and Berre (2006)
and Pannekoucke and Massart (2008) described economical
formulae to estimate correlation length-scales from an
ensemble. In this section, univariate horizontal background-
error covariances of temperature at 850 hPa (hereafter T850)
are modelled with the diffusion approach, using ensemble-
based variances and horizontal length scales estimated from
the six-member Arome ensemble after a simple spatial
average.

In order to test the efficiency of a wavelet denoising, an
ensemble of random error realizations is then generated
using this modelled ‘true’ covariance matrix. Variances
estimated from this ensemble are filtered by applying a 2D
wavelet thresholding over a domain discretized in 256 × 256
grid points.

6.3. Filtering results

Figure 12(a) and (b) presents the prescribed T850 varian-
ces and their estimation from a 50-member ensemble
respectively. As expected, the large-scale signal of interest
is contaminated by a smaller-scale sampling noise.
Moreover, as indicated by Figure 13, this noise is strongly
heterogeneous, with spatial variations which are larger in
scale over oceans than over lands. Figure 12(c) presents
the variances obtained after a wavelet thresholding using
the universal threshold (Eq. (1)) and the noise variance
calculated according to Eq. (6). This thresholding is quite
efficient to remove most of the sampling noise, while
preserving the relevant features. The filtered variances are
relatively close to the prescribed ones, apart from some
residual sampling noise. This residual sampling noise is
consistent with results from the 1D framework (Figure 9(b)),
and it can be reduced by inflating the threshold, as described
in section 5.3 (Eq. (10)). As shown by Figure 12(d), using
a multiplicative factor α = 2 enables the residual sampling
noise to be removed to a large extent. This optimal α factor
has been determined so that it minimizes the rms error, as
detailed in section 5.4. Note that this value of α is different
from that found in the 1D case, since α is expected to
depend on the system configuration (i.e. the signal size and
the ensemble size) and on the correlation degree of the
noise.

7. Conclusions and perspectives

This paper introduces and tests a wavelet-based filter
of ensemble background-error variances. The filtering is
realized using a thresholding of the wavelet coefficients of
the estimated variances. It is shown that this approach is
equivalent to applying an adaptive local spatial filtering.

The most efficient application of wavelet thresholding
is under the assumption of a Gaussian white noise. In
that case, the threshold value is simply a function of
the signal size and the noise standard deviation. Farge
et al. (1999) proposed a recursive algorithm to estimate the
noise level. On the other hand, an alternative solution
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Figure 13. Sampling noise associated with the estimation of T850
background-error variances with a 50-member ensemble.

to calculate the noise variance is based on knowledge
of the statistical properties of the associated sampling
noise (Raynaud et al., 2009). We showed that the average
noise variance can be accurately derived from the raw
estimate of background-error variances, even with a small
ensemble.

The method has been illustrated for a simple 1D
framework. Under the assumption of a white noise, the
wavelet thresholding is shown to work well without any
trial-and-error tuning. Moreover, the filtering performance
is similar whether the noise variance is calculated with the
recursive algorithm or the theoretical formula.

In practical applications, however, the noise is correlated
and strongly heterogeneous. This makes the use of
the universal global threshold and its ‘scale-dependent’
generalization suboptimal. An alternative method has been
proposed, based on the assumption that the correlated noise
can be replaced by a white noise with an appropriate variance
to calculate a global threshold. The appropriate variance is
larger than the average variance of the correlated noise,
in order to remove some residual noise arising from the
scales where the noise level is above the average level. The
results indicate that this method provides variances whose
accuracy is close to the white noise case. Moreover, this
wavelet thresholding is shown to outperform the commonly
used homogeneous filtering and it compares favourably to
heterogeneous filtering in grid-point space.

These results are then confirmed in a more complex
2D framework, considering the Arome background-error
statistics. The encouraging results of this study thus suggest
that wavelet thresholding is a feasible and efficient approach
for heterogeneous filtering of ensemble variances.

The formalism presented in this paper is well adapted
to the variance filtering in limited area models. Extension
to global models on the sphere could be considered using
biorthogonal wavelets and frames (especially tight frames)
as suggested by Pannekoucke (2009).
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Appendix A

Statistical interpretation of the universal threshold

While the mathematical proof of the optimality of the
threshold can be found in Mallat (1999), for example, we
propose here a statistical interpretation of it.

The wavelet shrinkage employed in the paper can be
considered as a statistical test on the magnitude of wavelet
coefficients. It discriminates coefficients whose magnitude is
compatible with a sampling of n Gaussian random variables
of standard deviation σ .

For a given magnitude T, the probability that the
magnitude of a centred Gaussian random variable X with
standard deviation σ exceeds T is given by P(|X| ≥ T) =
2
∫ +∞

T
1√

2πσ
e−x2/2σ 2

dx. The change of variable x = T + u

allows us to upper bound this probability as follows:

P(|X| ≥ T) = 2

∫ +∞

0

1√
2πσ

e−(T+u)2/2σ 2
du

= 2e−T2/2σ 2
∫ +∞

0

1√
2πσ

e−(2Tu+u2)/2σ 2
du.

Since e−2Tu ≤ 1 for all T, it results that

P(|X| ≥ T) < 2e−T2/2σ 2
∫ +∞

0

1√
2πσ

e−u2/2σ 2
du.

Moreover, 2
∫ +∞

0
1√

2πσ
e−u2/2σ 2

du = 1, then leading to

P(|X| ≥ T) < pT , where pT = e−T2/2σ 2
. As an upper bound,

pT is the probability of an event that is more likely to happen
than the event ‘|X| ≥ T’. In particular, pT can be considered
as the probability associated with the event ‘|X| ≥ T ′’ for a
certain T ′ such that 0 < T ′ < T.

Let (Bk)k∈N be a sequence of identically independent
Bernoulli variables associated with the event of probability
pT , so that P(Bk = 0) = 1 − pT and P(Bk = 1) = pT . Then,
the sum Bn = ∑

k Bk represents the number of occurrences
of the event over a sampling of size n. The expected number
of extreme events for a size n is thus E(Bn) = npT . It is equal
to one for a size

nT ∼ 1/pT = eT2/2σ 2
, (13)

which corresponds to the return period associated with the
extreme event ‘|X| ≥ T ′’ of probability pT (Wilks, 2006).
This implies that, on average, the event ‘|X| ≥ T’ should
not happen for a sampling size nT since its expectation of
occurrence nTP(|X| ≥ T) = P(|X| ≥ T)/pT is lower than 1.
Conversely, it follows that the extreme event ‘|X| ≥ T’ with
T = σ

√
2 ln n (resulting from Eq. (13)) should not occur

on average for a sampling size n. Therefore, considering
as components of noise wavelet coefficients of magnitude
lower than T, while the maximum magnitude of the
sampling of n Gaussian noises is T ′, ensures that the noise
is effectively removed with the risk of losing part of the
signal. T = σ

√
2 ln n corresponds to the optimal universal

threshold proposed by Donoho and Johnstone (1994).
Note that for a single sample of a normal law it is common

to assume that P(|X| < 3σ ) ≈ 1. Hence, that the threshold
T increases with n seems counter-intuitive. However, the
Gaussian function does not have a compact support; thus
one should find larger values of T as n increases, otherwise
the resulting distribution would not be Gaussian.
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Appendix B

Derivation of E[Tr(B̃ ◦ B̃)]

Using the decomposition of ṽ in Eq. (2),

Tr(B̃ ◦ B̃) =
∑

l

ṽ2 =
∑

l

(ṽ� + ve)2

=
∑

l

(ṽ�)2 +
∑

l

(ve)2 + 2
∑

l

ṽ�ve

= Tr(B̃� ◦ B̃�) +
∑

l

(ve)2 + 2
∑

l

ṽ�ve.

Using the linearity of the expectation operator, it then
results that

E[Tr(B̃ ◦ B̃)] = Tr(B̃� ◦ B̃�)

+
∑

l

E[(ve)2] + 2
∑

l

E[ṽ�ve].

Since signal and noise are not correlated, E[ṽ�ve] = 0.

Moreover,
∑

l E[(ve)2] = Tr(E[veveT
]) = 2

N−1 Tr(B̃� ◦ B̃�)
using Eq. (3). Thus

E[Tr(B̃ ◦ B̃)] = (1 + 2

N − 1
)Tr(B̃� ◦ B̃�).
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