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Abstract We present numerical simulations of two-dimensional viscous incompressible
flows past flat plates having different kind of wedges: one tip of the plate is rectangular,
while the other tip is either a wedge with an angle of 30◦ or a round shape. We study
the shear layer instability of the flow considering different scenarios, either an impulsively
started plate or an uniformly accelerated plate, for Reynolds number Re = 9500. The volume
penalization method, with either a Fourier spectral or a wavelet discretization, is used to model
the plate geometry with no-slip boundary conditions, where the geometry of the plate is simply
described by a mask function. On both tips, we observe the formation of thin shear layers
which are rolling up into spirals and form two primary vortices. The self-similar scaling of
the spirals corresponds to the theoretical predictions of Saffman for the inviscid case. At later
times, these vortices are advected downstream and the free shear layers undergo a secondary
instability. We show that their formation and subsequent dynamics is highly sensitive to the
shape of the tips. Finally, we also check the influence of a small riblet, added on the back of
the plate on the flow evolution.
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1 Introduction

Flow past a thin flat plate moving normal to the free stream has been subject to many experi-
mental, theoretical and numerical investigations (Pierce 1961; Saffman 1995; Koumoutsakos
and Shiels 1996). When the plate is impulsively started from rest (relatively to the flow), a
primary spiral vortex forms and develops at the edges of the plate. At later times, when these
start-up vortices are advected downstream, the formation of secondary vortices along the
primary vortex sheet are observed, for sufficiently large Reynolds numbers.

The study of the start-up vortex can be traced back to the work on ‘Fluid motion at very
small viscosity’ of Prandtl (1905) who analyzed its initial evolution and showed that it can
be described by a class of self-similar solutions of the Euler equations.

The stability of the start-up vortex was questioned by several authors. Moore (1976)
proved the stability of certain stretching spiral vortices. Pullin (1978) performed numerical
simulations of self-similar spiral start up vortices and noted that Moore’s demonstration
did not fully apply to them. Luchini and Tognaccini (1999, 2002) computed inviscid vortex
shedding from a flat plate and observed that the spiral vortex exhibits oscillations due to a
secondary instability. Their results were in qualitative agreement with predictions made for
inviscid flows.

Different laboratory experiments have also been performed (Pierce 1961; Pullin and Perry
1980). Pullin and Perry (1980) studied the spiral vortices at an earlier stage, in which viscous
effects are comparable with convective ones, whereas Pierce’s (1961) results explored later
stage, in which a mainly inviscid flow has become unstable. Higuchi et al. (1996) computed
the time history of circulation and studied the onset of three-dimensional vortex shedding
in the wake behind a disk. The experimental part of their study showed that the secondary
instability developed for both uniformly accelerated and for impulsively started flat plate.
Koumoutsakos and Shiels (1996) computed with a vortex method the flow normal to a plate,
which is either uniformly accelerated or impulsively started. They observed the secondary
instability only for the accelerated case. Nitsche (1996) applied a vortex sheet model to the
formation of a vortex ring at the edge of a circular tube. Wang et al. (1999) computed, using
compact finite differences of fourth order, the flow normal to a thin ellipse. They found the
formation of secondary vortices for the impulsively started case at high enough Reynolds
number (Re = 10000). Their observation is in agreement with the experiment of Pierce
(1961). They also proposed to relate the presence of small corner vortices, adjacent to the
tips of the plate and induced by the primary vortices, to the formation of secondary vortices.
Pullin and Perry (1980) explained the secondary vortices by a shear layer instability. The
stability of the vortex sheet roll-up and its secondary instability has also been studied by Abid
and Verga (2002).

By means of direct numerical simulation (DNS) we study the flow normal to a flat plate,
either impulsively started or accelerated. A suitable approach for this task is the penalization
method which has been introduced by Arquis and Caltagirone (1984). Therewith, walls
or solid obstacles are modeled as a porous medium whose porosity η tends to zero. The
Navier–Stokes equations are modified accordingly by adding a Darcy term. Fluid regions are
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Numerical simulation of flows past flat plates

considered as completely permeable, while regions where walls or obstacles are present as
perfectly impermeable. The geometry of the flow is simply taken into account by a spatially
varying permeability coefficient, which enables an easy practical implementation of the
method and allows to consider more complex obstacles and situations, e.g., moving obstacles
and fluid-structure interaction. A mathematical theory proving convergence of this physically
based approach has been given by Angot et al. (1999). The penalization method has been
applied in the context of low order methods (finite difference/volume schemes, e.g., Khadra et
al. 2000; Angot et al. 1999), using pseudospectral methods, e.g., Farge and Schneider (2001),
Kevlahan and Ghidaglia (2001), Schneider (2005), Schneider and Farge (2005), Keetels et al.
(2007) and also adaptive wavelet methods (Schneider and Farge 2002; Keetels et al. 2007).
The latter scheme automatically adapts the spatial grid, not only to the flow evolution, but also
to the geometry of walls or bluff bodies (Schneider and Farge 2002). For a recent review on
wavelet methods in computational fluid dynamics, we refer to Schneider and Vasilyev (2010).

In the present paper, we apply the penalization method using, as numerical scheme, a
Fourier pseudo-spectral method and in one case an adaptive wavelet method, to study the flow
past a flat plate moving normal to the free stream. First, we investigate the self-similar roll-up
of the starting vortex and check the scaling of the spiral’s radius with Kaden’s theoretical
prediction (Saffman 1995), which depends on the geometry of the plate and on the shape of the
tip. Then, we revisit the formation of secondary instabilities for both uniformly accelerated
and impulsively started plate, together with the dependence of the secondary vortex formation
on the shape of the tip, i.e., for wedge, rectangular and round shape. Finally, we investigate
the influence of the corner vortex on the secondary instability by modifying the geometry of
the plate. For this we add a very small riblet on the lee-side of the plate.

At later times, when the primary vortices are advected downstream, we observe the for-
mation of secondary vortices along the primary vortex sheets, for sufficiently large Reynolds
numbers. These results agree with observations in laboratory experiments (Pierce 1961) and
with other numerical simulations using a vortex method (Koumoutsakos and Shiels 1996).

The paper is organised as follows: first, we present the penalization method together with
the numerical schemes used to solve the penalized Navier–Stokes equations numerically. As
application, we present numerical simulations of two-dimensional viscous incompressible
flow past a flat plate, which is either impulsively started normal to the free stream at Re =
9500, or uniformly accelerated. We also modify the plate’s geometry by adding a small
riblet to study its influence on the formation of the secondary vortices. Finally, we give some
conclusions and perspectives for turbulence modeling of bluff body flows.

2 The penalization method and the numerical discretisation

2.1 Governing equations

The penalization technique is based on the physical idea which consists in modeling solid
walls or obstacles as porous media whose porosity η tends to zero (Arquis and Caltagirone
1984). The geometry is described by a mask functionχ(−→x ), which is 1 inside the solid regions
and 0 elsewhere. Note that the penalization method can also take into account obstacles with
time-varying shape by simply introducing a time-dependent mask function (Kolomenskiy
and Schneider 2009). The Navier–Stokes equations are modified by adding a supplementary
term containing the mask function. For the ‘penalized’ velocity −→u η, we obtain

∂t
−→u η + −→u η · ∇−→u η + ∇ pη − ν∇2−→u η + 1

η
χ�s (

−→u η − −→u p(t)) = 0 (2.1)
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∇ · −→u η = 0 (2.2)

where −→u η(
−→x , t) is the flow velocity, pη(

−→x , t) the pressure, −→u p(t) the obstacle’s velocity,
and ν the kinematic viscosity. The mask function is given by

χ�s (
−→x ) =

{
1 for −→x ∈ �̄s

0 elsewhere
(2.3)

where�s denotes the solid obstacle. The equations (2.1) and (2.2) are solved in the domain�,
which consists of both the fluid and the solid domain imposing periodic boundary conditions
at the boundary of �. For η −→ 0, the flow evolution is governed by the Navier–Stokes
equations in the fluid regions, and by Darcy’s law, i.e., the velocity is proportional to the
pressure gradient, in the solid regions where obstacles or walls are present. In Carbou and
Fabrie (2003), a mathematical proof has been given that the above equations converge towards
the Navier–Stokes equations with no-slip boundary conditions, with order η1/2, in the limit
η tending to zero, which improves the previous estimate (Angot et al. 1999). In numerical
simulations, an improved convergence of order η has been reported.

The resulting forces
−→
F on the obstacle, i.e., drag and lift, can be computed by integrating

the penalized velocity over the obstacle’s volume (Angot et al. 1999):

−→
F = lim

η→0

∫
�s

∇ pη dx = − lim
η→0

1

η

∫
�s

−→u η dx

=
∫
∂�s

σ(
−→u , p) · −→n dγ (2.4)

where �s is the obstacle’s volume, ∂�s its boundary, −→n its outer normal and σ(−→u , p) =
ν
2 (∇−→u + (∇−→u )t )− pI the stress tensor. Hence, the lift and drag forces on the obstacle, i.e.,
forces parallel and perpendicular to the free-stream velocity of the flow, are easy to compute
as volume integrals instead of contour integrals.

For two-dimensional flows the vorticity–velocity formulation is prefered, and therefore
we take the curl of Eq. (2.1), and we get

∂tωη + (
−→u η + −→

U ∞) · ∇ωη − ν ∇2 ωη

+∇ ×
(

1

η
χ�s

(−→u η

) − −→u p(t)

)
= 0 (2.5)

where ω = ∇ ×−→u is the vorticity and
−→
U ∞ is the free-stream velocity, a constant mean flow

which is the only potential flow for periodic boundary conditions.

2.2 Numerical methods

For the numerical solution of the penalized equations we employ, a classical Fourier
pseudospectral method (Canuto et al. 1988; Kevlahan and Ghidaglia 2001; Schneider 2005),
and in one case also a wavelet scheme to illustrate the possibility of adaptive grid refinement
(Fröhlich and Schneider 1997; Schneider and Farge 2002). A benchmark and a thorough
validation of both methods applied to a dipole-wall collision can be found in Keetels et al.
(2007).
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2.2.1 Fourier pseudospectral method

Fourier pseudospectral discretizations are classical schemes in CFD, which are highly accu-
rate for flows with periodic boundary conditions. For a more complete discussion, we refer
the reader to Canuto et al. (1988). Equation (2.5) is transformed into Fourier space to compute
the spatial derivatives and to evolve the vorticity field in time. Terms containing products,
i.e., the convection and penalization terms, are calculated by collocation in physical space.
Hence, the vorticity field and the other variables are represented as truncated Fourier series

ω
(−→x , t

) =
∑

−→
k ∈ZZ2

ω̂(
−→
k , t) exp

(
i
−→
k · −→x

)
(2.6)

where the Fourier transform of ω is defined as

ω̂
(−→

k , t
)

= 1

4π2

∫
ω(

−→x , t) exp
(
−i

−→
k · −→x

)
d−→x (2.7)

with the wavevector
−→
k = (kx , ky). The Fourier discretization is uniform in space and is

truncated at kx = −Nx/2 and kx = Nx/2 − 1, ky = −Ny/2 and ky = Ny/2 − 1, where Nx

and Ny are the number of grid points in x and y direction, respectively. The gradient of ω is

computed by multiplying ω̂ with i
−→
k , the Laplacian by multiplying with |−→k |2. The velocity−→u induced by the vorticity ω is reconstructed in Fourier space using Biot–Savart’s law

−→u (−→x , t) =
∑

−→
k ∈ZZ2,

−→
k �=0

i
−→
k ⊥

|−→k |2
ω̂(

−→
k , t) exp(i

−→
k · −→x ), (2.8)

where
−→
k ⊥ = (−ky, kx ).

The convection term −→u · ∇ω and the penalization term ∇ ×
(

1
η
χ�s (

−→u − −→u p(t)
)

are

evaluated by the pseudospectral technique using collocation in physical space. To avoid
aliasing errors, i.e., the production of small scales due to the nonlinear terms which are not
resolved on the grid, we de-aliase at each time step, by truncating the Fourier coefficients
using the 2/3 rule,

ω̂(
−→
k ) =

⎧⎪⎨
⎪⎩
ω̂(

−→
k ) for

(
3kx
2Nx

)2 +
(

3ky
2Ny

)2
< 1,

0 for
(

3kx
2Nx

)2 +
(

3ky
2Ny

)2 ≥ 1
(2.9)

For the transformation between physical and Fourier space we use Temperton’s Fast Fourier
Transform, which has a complexity of order N log2 N, with (N = Nx Ny) (Canuto et al. 1988).

For the time discretization, we use a semi-implicit scheme with adaptive time-stepping
(Schneider 2005). The linear diffusion term is discretized implicitly using exact time inte-
gration which is cheap for spectral methods, as the Laplace operator is diagonal in Fourier
space, and hence no linear system has to be solved. This improves the stability limit of purely
explicit schemes. The remaining terms are discretized explicitly using second-order Adams–
Bashforth extrapolation. This avoids the solution of nonlinear equations, however it implies
a CFL condition on the maximum size of the time step.

The step size control of the time step is based on the CFL stability limit of the explicit
discretization of the nonlinear term. Therefore in each time step tn , pointwise the maximal
rms velocity is computed,
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umax = max−→x
√

| −→u (−→x ) |2 (2.10)

and the new time step is given by

�tn+1 = C�x/umax

with the minimal spatial grid size �x = min
(

Lx
Nx
,

L y
Ny

)
, where Lx and L y denote the length

of the domain in x and y direction, respectively, and C < 1 is the CFL constant.
In addition�t has to be smaller than η, which is the stability limit imposed by the explicit

discretization of the penalization term.

2.2.2 Adaptive wavelet method

As adaptive schemes dynamically adapt the spatial grid at each time step, we first discretize
the equation (2.5) in time using semi-implicit finite differences, i.e., Euler-backwards for the
viscous term and Adams–Bashforth extrapolation for the nonlinear term, which are both of
second order (Peyret 2002).

The resulting elliptic problem to be solved at each time step is:

(γ I − ν∇2)ωn+1 = 4

3
γωn − 1

3
γωn−1 − ∇ · (ω� (−→u � + −→

U ∞)) (2.11)

−∇ ×
(

1

η
χ (

−→u � − −→u p)

)

where

ω� = 2ωn − ωn−1 −→u � = 2 −→u n − −→u n−1 (2.12)

with time step �t, γ = 3/(2�t) and I representing the identity.
For the space discretization we use a Petrov–Galerkin scheme. Therefore, the vorticity

is developed into a set of trial functions, and the minimization of the weighted residual of
(2.11) requires that the projection onto a space of test functions vanishes. As space of trial
functions, we employ a two-dimensional multiresolution analysis (MRA) (Farge 1992) and
develop ωn at time step n into an orthonormal wavelet series

ωn(x, y) =
∑
λ

〈ωn, ψλ〉ψλ(x, y) (2.13)

with the multi-index λ = ( j, ix , iy, μ), where j = 0, Jmax − 1 denotes the scale
2− j+1, (ix , iy) = 0, . . . , 2 j − 1 the position and μ = 1, 2, 3 the three different directions of
the wavelets. The inner product is defined by 〈 f, g〉 = ∫

f (x, y)g(x, y)dxdy.
The test functions θλ are defined as solutions of the linear part of Eq. (2.11)

(γ I − ν∇2)θλ = ψλ (2.14)

and can be computed in a preprocessing step. This avoids assembling the stiffness matrix and
solving a linear equation at each time step. The functions θ , called vaguelettes, are explicitly
calculated in Fourier space and have similar localization properties as wavelets (Fröhlich
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and Schneider 1997). The solution of (2.11) in wavelet space therewith reduces to a change
of basis:

ω̃λ = 〈ωn+1, ψλ〉
=

〈(
4

3
γωn − 1

3
γωn−1 − ∇ · (ω�(−→u � + −→

U ∞))

−∇ ×
(

1

η
χ(

−→u � − −→u p)

))
, θλ

〉
. (2.15)

Nonlinear wavelet thresholding is applied in each time step to obtain an adaptive dis-
cretization by retaining only those wavelet coefficients ω̃λ with absolute value above a given
threshold ε = ε0

√
Z , where ε0 is a constant and Z = 1

2

∫ |ω(−→x )|2 d−→x is the enstrophy.
For the next time step, the index coefficient set (which addresses each coefficient in wavelet
space) is determined by adding neighbours to the retained wavelet coefficients. Consequently,
only those coefficients ω̃ in (2.15) belonging to this extrapolated index set are computed using
the adaptive vaguelette decomposition (Fröhlich and Schneider 1997). The nonlinear term

−∇·(ω�(−→u �+−→
U ∞))−∇×

(
1
η
χ (

−→u � − −→u p)
)

is evaluated by partial collocation on a locally

refined grid (Schneider and Farge 2002). The vorticity ω� is reconstructed in physical space
on an adaptive grid from its wavelet coefficients ω̃�, using the adaptive wavelet reconstruc-
tion algorithm (Fröhlich and Schneider 1997). From the adaptive vaguelette decomposition
replacing θ in Eq. (2.14) by θ = (∇2)−1 ψ , we solve ∇2�� = ω� to get the stream function
�̃� and reconstruct �� on a locally refined grid. By means of centered finite differences of

fourth order, we compute ∇ω�, −→u � = (−∂y�
�, ∂x�

�) and ∇ ×
(

1
η
χ (

−→u � − −→u p)
)

on the

adaptive grid. Subsequently, the nonlinear term is summed up pointwise, and finally (2.15)
is solved using the adaptive vaguelette decomposition.

3 Numerical results

3.1 Flow configuration

We study the early evolution of incompressible viscous flows past a flat plate which is
displaced in its normal direction (Fig. 1), either impulsively started, or uniformly accelerated.
We have chosen one tip of the plate to be rectangular, while the other is a wedge with an
angle of 30◦ (cf. Fig. 1). The two-dimensional approximation, we use here, remains valid,
since we focus on the non-stationary flow behavior at early times. At t = 0, the plate is either
impulsively started

−→u p(t) =
{

u0 t ≥ 0
0 t < 0

(3.1)

with velocity u0 = 1, or uniformly accelerated with velocity

−→u p(t) =
{

at t ≥ 0
0 t < 0

(3.2)

and with the acceleration a = 1. We define a Reynolds number Re = u p L
ν

based on the
length of the plate L , which evolves in time for the uniformly accelerated case.
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3.2 Spiral formation at early times

The flow past a flat plate has been studied theoretically as potential flow in the complex plane
(Saffman 1995). Following Saffman (1995), a Kutta condition is imposed at the tip of the
plate by adding a spiral vortex to the potential flow (see Fig. 2). Saffman (1995) predicted
a self-similar scaling of the spiral, which depends on the angle of the wedge α and the
acceleration law of the plate.

We perform several numerical simulations with resolution Nx = Ny = 2048 and η =
10−4 using the Fourier pseudo-spectral method, except in Fig. (3) where the adaptive wavelet
method has been used (with ε0 = 10−3) to illustrate the grid adaptation shown in Fig. 4.
Figure 3 shows the vorticity field at t = 1.4 for the impulsively started plate at Re = 9500.
The flow is characterized by the roll-up of the two free shear layers produced at the tips into

Fig. 1 Geometry of the flat plate and direction of its motion

Fig. 2 Sketch of the flow configuration
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Fig. 3 Vorticity field (zoom) at t = 1.4 for the impulsively started plate at Re = 9500

Fig. 4 Corresponding adaptive grid (computational domain) at t = 1.4 for the impulsively started plate at
Re = 9500. The dashed square indicates the domain of the vorticity field shown in Fig. 3

two counter-rotating primary vortices developing behind the plate. The two resulting large
scale recirculation zones create two boundary layers on the back of the plate, separated by a
stagnation point located in the middle.

These boundary layers produce vorticity, of opposite sign to the primary vortices, and form
a corner vortex at each tip of the plate. Figure 3 also exhibits secondary vortices resulting
from an instability of the two shear layers. We observe that the shape of the tips (square
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Fig. 5 Isocontours of pressure (p = −6 : 0@0.75) at t = 1.4 for the impulsively started plate at Re = 9500

shape on the top, and wedge on the bottom) strongly influences this secondary instability,
since the spatial distribution of the secondary vortices differs significantly. For the wedge
(bottom) the distance between two subsequent vortices is continuously increasing, from the
edge to the center of the primary vortex, where they disappear under the straining of the latter.
In contrast, we observe for the square edge (top) an irregular distribution of the secondary
vortices, whose strength remains sufficient to resist the straining of the primary vortex, and
hence they penetrate further towards its center. The corresponding adaptive grid (Fig. 4) of the
wavelet computation shows that grid points are locally refined in regions of strong gradients
of vorticity.

The pressure can be computed from the velocity by solving a Poisson equation with
periodic boundary conditions,

∇2 p = −∇(−→u · ∇−→u )− 1

η
∇ · (χ�s (

−→u η − −→u p(t))) (3.3)

The isocontours of pressure, shown in Fig. 5, nicely illustrate the centers of the vortices
by circular well-pronounced low pressure contours.

In the following, we focus on the lower half of the plate with a wedge of α = 30◦ and
study the formation of the primary vortex.

At early times, we observe the formation of a thin vortex sheet which is rolling up into
a spiral and forms the primary vortex (Fig. 8, top). Figure 6 shows a zoom of the spiral
(case α = 30◦) at early time for the impulsively started plate (t = 0.4) and the uniformly
accelerated plate (t = 0.8), i.e., we plot vorticity isolines to study the scaling law of the
spiral vortex and to check Saffman’s predictions Saffman (1995). The coordinates of the
spiral r(θ) with respect to its center are obtained by analyzing the isolines of the vorticity
fields in Fig. 6. In Fig. 7, we plot the scaling of the spiral’s radius for both, the impulsively
started and the uniformly accelerated case in double logarithmic representation. For both,
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Fig. 6 Zoom of the primary
vortex spiral at t = 0.4 for an
impulsively started plate at
Re = 9500 (left) and at t = 0.8
for an uniformly accelerated plate
(right). Isolines of vorticity
(−100,−10 by step of 2)

101

10
2

-11/16 

-11/8 

1 2 3

θ/(2 π)

r(
θ)

Fig. 7 Scaling of the spiral’s radius versus the angle θ for both the impulsively started (line with slope
−11/16) and for the uniformly accelerated case (line with slope −11/8)

we observe a self-similar behavior with a scaling of r(θ) ∝ θ−11/16 for the former, and of
r(θ) ∝ θ−11/8 for the latter. Applying linear regression to the log–log representation of r(θ),
excluding the points of the first turn, we find indeed a slope of −0.6875 for the impulsively
started case and of −1.3574 for the uniformly accelerated case. Both values agree reasonably
well with the theoretical predictions of −11/16 and −11/8, respectively. Saffman (1995)
predicted these values for the inviscid case, i.e., for infinite Reynolds numbers, concerning
the roll up of vortex sheets for an accelerated flow past a wedge with the same angle. The
impulsively started flow corresponds to the limit case of an infinite acceleration and is also
well predicted.

3.3 Formation of secondary vortices at later times

The two primary vortices formed on the upper and lower tip are advected downstream. For
sufficiently large Reynolds numbers (Re > 5000), we observe that the shear layers undergo
a secondary instability at later times. This instability leads to the formation of secondary
vortices along the primary vortex sheets (Figs. 3, 8), as observed in both laboratory and
numerical experiments at similar Reynolds numbers (Koumoutsakos and Shiels 1996; Pierce
1961; Wang et al. 1999).

We also observe that the formation of the secondary vortices and their dynamics is highly
sensitive to the shape of the tips. To study this, we consider two different shapes for the edges
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Fig. 8 Flow past an impulsively started plate with a sharp wedge of angle α = 30◦ at Re = 9500. Vorticity
fields at t = 0.39, 0.75, 1.11 and 1.47

Fig. 9 Flow past an impulsively started plate with a round edge at Re = 9500. Vorticity at t = 0.39, 0.75, 1.11
and 1.47
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of the plate: a wedge with angle α = 30◦ and a round edge. We compare the corresponding
flow evolution, and we find that the formation of the secondary instability is delayed in the
case of the wedge; i.e., at t = 0.75 no secondary vortices are observed (Fig. 8, top, right),
while they are already well formed in the case of the round edge (Fig. 9, top, right). For a
square edge (not shown here), we have observed that the secondary instability occurs even
slightly earlier than for the round edge. This suggests that the position of the separation point
seems to control the onset of this instability, since it is displaced depending on the shape of the
edge: from the left for the square, towards the middle for the round, to the right for the wedge.
Correspondingly, the position of the counter-rotating corner vortex is displaced likewise, from
the left to the right, which suggests that it may trigger the secondary instability. In Wang et
al. (1999) it has been conjectured that the periodicity of the secondary vortex formation
corresponds to the rotation frequency of the corner vortex. In order to control the intensity
of the corner vortex, and therefore its rotation frequency, we added a riblet on the back of
the plate. As the riblet is in the recirculation zone behind the plate (cf. Fig. 1), it produces
vorticity of the same sign as the corner vortex. We thus control its intensity, by varying the
position d and the size e of the riblet, and performed several numerical experiments to check
the riblet’s influence on the secondary instability. In Fig. 10, we show the vorticity field at

Fig. 10 Flow past an impulsively started plate with a sharp wedge, angle α = 30◦ at Re = 9500. Vorticity
fields at t = 2.01 for a plate without riblet (top, left), and for plates with riblets at different positions
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t = 2.01 without riblet (top, left) and for three different riblet positions. We observe that the
dynamics of the secondary vortices are strongly modified by the riblet.

For increasing ratio d/L , we find that:

• the formation of the first secondary vortex is getting closer to the tip of the plate,
• the distance between two secondary vortices becomes irregular,
• therefore vortex pairings occur.

An interesting direction for future studies is the influence of the thickness of the plate and
the role of the Reynolds number.

4 Conclusion and perspectives

We presented numerical simulations of two-dimensional incompressible viscous flows past
a flat plates at Re = 9500. A volume penalization approach is used to take into account the
geometry of the plate with no-slip boundary conditions. We used two different numerical
schemes, either a Fourier pseudospectral method, or an adaptive wavelet method, both at
resolution (N = 20482). Therewith, we have studied numerically the free shear layer insta-
bility of a flow past a flat plate for different shapes of the tips. We checked that the roll-up
of the shear layer into a spiral, which forms the starting vortex, exhibits the scaling laws
predicted by Saffman (1995) for both cases studied here, the impulsively started and the uni-
formly accelerated plate. At later times, we found that the shear layer becomes unstable and
produces secondary vortices, as observed in both laboratory and numerical experiments. We
also showed that the formation of the secondary vortices depends on the shape of the tips of
the plate, and is enhanced by adding a riblet on its back. By varying the position and the size
of the riblet, we tested that the dynamics of the secondary vortices can be strongly modified.
The next step will be to develop systematic control strategies of the wake to enhance, but
also to inhibit, the secondary vortices.
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