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Abstract. FPGAs are rapidly gaining traction in the domain of HPC
thanks to the advent of FPGA-friendly data-flow workloads, as well as
their flexibility and energy efficiency. However, these devices pose a new
challenge in terms of how to better support their communications, since
standard protocols are known to hinder their performance greatly ei-
ther by requiring CPU intervention or consuming too much FPGA logic.
Hence, the community is moving towards custom-made solutions. This
paper analyses an optimization to our custom, reliable, interconnect with
connectionless transport—a mechanism to register and track inbound
RDMA communication at the receive-side. This way, it provides comple-
tion notifications directly to the remote node which saves a round-trip
latency. The entire mechanism is designed to sit within the fabric of the
FPGA, requiring no software intervention. Our solution is able to reduce
the latency of a receive operation by around 20% for small message sizes
(4KB) over a single hop (longer distances would experience even higher
improvement). Results from synthesis over a wide parameter range con-
firm that this optimization is scalable both in terms of the number of
concurrent outstanding RDMA operations, and the maximum message
size.

Keywords: FPGA - Transport Layer - Micro-Architecture - Reliability.

1 Introduction

The use of FPGAs as the main compute element within HPC systems is becom-
ing very attractive, as we are seeing burgeoning demands from communication-
intensive workloads such as AI. These workloads are much better suited to FPGA
based architectures as they rely on data-flow style processing [10]. One of the
key issues towards the uptake of FPGAs for HPC is the need to truly decouple
the FPGA resources from the host CPU [15,1]. This way, the FPGA will be
able to communicate with other FPGA resources directly, rather than having
to initiate transactions via the CPU, which will dramatically reduce the latency
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of communications and better facilitate data-flow style processing among FP-
GAs. In theory this is relatively simple, and IP cores are available and can be
readily used to provide Ethernet based communications within the fabric of the
FPGA [17]. Unfortunately these existing solutions are unsuited for HPC, due to
the requirements for high reliability in the network. Packet dropping is simply
not an option within HPC environments, as guarantee of delivery is required.
Leveraging these IPs with a TCP stack is not really feasible since it would re-
quire either either a software implementation (running in the CPU) or a full
hardware-offloaded solution. The former is antithetical to our requirement that
the FPGA acts as an independent peer on the network. The latter is also in-
appropriate due to high resource consumption and limited scalability due to its
connection-based nature. In prior work [8,2] we discussed in greater detail why
traditional network protocols are unsuited for FPGA-based HPC systems, and
presented a Network Inteface (NI) to enable FPGA based communication using
RDMA (Remote Direct Memory Access) and NUMA (Non-Uniform Memory
Access) type communications over a custom HPC network protocol. Our NI is
leveraged along with our custom FPGA-based switch design [2], which lowers
area and power overheads by means of a geographic addressing scheme.

This main contribution in this work is the presentation of a micro-architectural
design which provides a significant enhancement in the architecture over the
preliminary RDMA infrastructure presented in [8]. RDMA is a technique for
transferring data to remote nodes which frees the CPU to perform useful work
while network transactions are in progress, and is supported in the majority of
high performance interconnection networks today. We enhance the performance
of receive operations in our system by tracking incoming RDMA transfers in
order to provide a receive side notification upon completion. Thus avoiding the
round trip latency for the ACK, required for sender-side notifications. We show
results of a send and receive operation using varying message sizes and show that
the latency of small messages can be improved significantly. Our results show
that we are able to scale the mechanism out to a large number of outstanding
DMA operations, and achieve a latency reduction of up to 20% on small RDMA
operations over a single hop distance.

Our mechanism is able to handle out-of-order packet delivery, maintaining
a fully connectionless (datagram based) approach to the transport layer, and
enabling the use of fully adaptive routing at packet level granularity within the
network. A connectionless approach is essential to provide full decoupling of CPU
and FPGA resources. Managing connection state information and the associated
retransmission buffers is complex [9]. This is prohibitively expensive to imple-
ment within the FPGA fabric, given that the amount of Block RAM is limited
(around 35Mb on the Zynq Ultrascale+ [20]). This is particularly true in a HPC
context where the number of outstanding connections may be very large. This is
the main reason why reliability is typically offered as a software solution; because
the complexity of offloading is too great when rapid connection setup/teardown
is required, especially for large number of concurrent connections. We argue for
a connectionless approach for just this reason, to reduce the area overhead of
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the transport layer, and increase the scalability by reducing the information re-
quired in the NIC. For example, we need no retransmission buffering, and push
the responsibility for flow control into the network. As well as this, having the
ability to route packets adaptively (as our switch design does [2]) presents the
opportunity for much better load balancing within the network and enhanced
fault tolerance due to the ability to properly utilize path-diversity [3].

2 Related Work

Our earlier work [8] has shown that traditional protocols such as Ethernet and
Infiniband are unsuitable for use in FPGA based HPC systems, due to perfor-
mance and area concerns respectively. We therefore propose the use of a custom
protocol in order to avoid some of the issues with traditional networking stacks.
Likewise, the majority of solutions for offering reliable communications in FP-
GAs are also unsuitable for our needs. This is because they typically rely on
software mechanisms to enable retransmission, or hold connection states. We
argue that a connectionless approach is necessary in order to enable accelerators
to communicate directly with one another without CPU involvement (a key re-
quirement for harnessing the potential of FPGAs within a HPC context [15]),
and that hardware offloading of the whole transport mechanism is the only way
to achieve this.

There are several FPGA based TCP-offload engines available commercially
such as [11] and [12]. TCP offloading aims to either offload fully or partially
the functionality of the TCP protocol into hardware. They are often touted as
a good solution to the performance issues associated with the TCP /IP software
stack. (These problems being latency issues due to excessive memory copying
and context switching etc.) However, the TCP stack is very complex, and as such
fully offloading the transport layer to hardware is very difficult, particularly for
FPGA implementations. The majority of solutions therefore only offload por-
tions of the stack to hardware such as checksumming or segmentation. To our
knowledge, the only fully hardware offloaded solutions for FPGA are used for
financial trading. These systems are latency-critical so the solution is fully of-
floaded at the expense of dramatically reduced scalability [11,12]. Obviously this
is inappropriate in the context of HPC. In [14] a solution is proposed to over-
come this scalability issue, allowing for over 10,000 simultaneous connections.
However, this connection based approach still suffers massive memory utiliza-
tion. They require external session buffers in DRAM, amounting to 1.3GB for
10,000 sessions. Without a huge dedicated RAM for the offload engine this is
extremely wasteful in terms of both memory usage and memory bandwidth.

The Infiniband specification defines a reliable, connectionless transport [7],
but there is no actual hardware implementation. Grant et al. [5] propose a scheme
for performing RDMA transfers using “Unreliable Datagrams” in Ethernet or In-
finiband networks. They propose a method of using existing structures present in
the iWARP protocol [13], writing the incoming RDMA to memory as normal at
the receiver, but recording the incoming datagrams and posting to a completion
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Fig. 1. Architecture of the transport layer for RDMA communications within our cus-
tom NI

queue, which indicates that segments of a full RDMA operation have completed
successfully. Their solution eliminates much of the network stack processing but
is implemented in SW and does not consider reliability.

A similar approach to ours is presented by Xirouchakis et al. [21]. It describes
the design of a system composed of a virtualized RDMA engine and mailboxes.
This features several key differences in design from our own. They do not describe
a method to store and retransmit shared memory operations as we do in [8]. They
rely on software-based retransmissions, meaning that accelerator logic within the
FPGA fabric is incapable of talking directly to the NI without CPU involvement.
While the authors target user-level initiation of transfers to avoid the TCP/IP
stack overheads, they still use a connection based approach, and only allow for
multiple paths to be taken at the granularity of blocks forming these connections,
not fully adaptive multipath routing and support for out-of-order delivery at the
packet level as we do [8].

3 Implementation

Figure 1 shows the architecture of our hardware-offloaded transport mechanism
for RDMA transfers. It can be seen here that both FPGA based accelerator logic
and the hard CPU are able to utilize the NIC, issuing commands and pushing
data to the network in exactly the same manner. The NIC provides reliable
transmissions and allows for out-of-order packet reception using a connection-
less approach. This is split into two major separate control and data-paths,
one for the sending side and one for the receiving side. On the send side the
CPU/accelerator issues DMA operations which are then pulled by the DMA en-
gine from the command queues. The DMA engine is currently the Xilinx CDMA
IP [19], running in Scatter-Gather mode. Every new operation which is pulled
by the DMA engine is logged in the DMA OP Table in the NI. This table is-
sues an OP number for every packet within the operation which is sent to the
network and returned in the acknowledgement, keeping a count of the number
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of successful transfers in a given operation. Individual packets are tracked in
the DMA Transaction Table. This keeps a timeout for individual packets, and
builds retransmission operation entries in the event of lost/timed out or nega-
tively acknowledged packets. Notification of completion is given locally, to let the
processor know that a DMA operation has finished sending data, and remotely,
to tell the remote processor that it has new data at a given location.

3.1 Segmentation

Due to our connnectionless approach and out-of-order delivery of packets, the
receiver needs to know when a whole operation is finished before it can begin
work on the data, as it cannot guarantee which data has arrived at which point.
Due to the importance of overlapping computation and communication for many
data-intensive workloads [4] we attempt to ameliorate the additional latency that
this imposes on the system by allowing for segmentation of large RDMA transfers
into multiple smaller ones (as in Figure 2). Doing this is simple as the RDMA
commands issued by the CPU /accelerator pass through the NI, and information
can be captured and altered at this point. Figure 3 shows how the segmentation
mechanism works. If a given command is seen to be over a certain threshold size
it can be sent to a special “Large Transfer” queue. In this instance when the
command is processed it can be assigned a status flag in the DMA Operation
table. When an operation completes with this special status flag then no local
notification is posted; only the notification to the receiver.

If the command is of size M, and the segment size is N, then the head of
the “Large Transfer” queue remains in place for M/N operations. The offset for
the base address and the number of bytes to be transferred are simply updated
at the head of the queue following a new segmented command being pulled by
the DMA engine (Figure 3). Upon the issue of the last command, the special
status flag remains deasserted, so local completion notification for the original
full transfer can be formed. The threshold for the optimal maximum size of a
segmented operation is highly dependent on the structure of the application and
so should be defined by the programmer during configuration of the NI.

There is little overhead in actually performing these modifications to the
DMA commands. The DMA engine is set up in a cyclic buffer mode so it simply
posts read requests to the NIC to pull new operations into the engine. The
only difference in this instance is that the DMA engine will see a modified work
item from that which the CPU/accelerator posted to the NI. Since the DMA
engine can queue the next command to be performed internally, the new modified
command can be formed while the current operation is in flight, so no additional
latency is caused by this mechanism.

3.2 Receiver Registration

To reduce latency we track the receive side RDMA operations to provide local
completion notification, and to handle out-of-order packets. Upon receiving an
RDMA transaction, the operation can be logged in the Receive Registration
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Fig. 3. Shows the update of the “Large Command” queue head for an operation of
1MB, to be split into 64K transfers.

Table (see Figure 1). It may or may not require registration depending on the
transfer size (this will be discussed further in Section 4). Operations are regis-
tered by using a special entry in the “Type” field in the packet header, which
is given to the first transfer of an operation. When the receiver sees this trans-
action they register the range of addresses which are expected from the whole
operation.

Out-of-order packet delivery is handled here by creating an escape channel
for any packets which currently have not had a table entry created. Until the first
packet has arrived any out-of-order packets which arrived first will be put in the
escape channel in order not to stall the pipeline. We are able to do this because
the data that enters the NI is written to memory in a store-and-forward fashion.
The data cannot be allowed to enter into memory until a CRC has confirmed
the validity of the packet, so there is an (X cycles) latency corresponding to the
number of flits within the packet. In this time we are able to drain the previous
packet into the escape channel.

Once the first packet associated with the DMA is seen, registration of the
operation is completed and a mask is used to determine when all corresponding
packets have been received for the operation, and to drop duplicates. An initial
mask is required to account for the fact that an operation may be smaller than
the maximum possible registered operation (M askbitwidth x Packetsize). This
mask is created by a barrel shifter which uses a field in the header of the first
packet of the operation, which denotes the number of expected packets. We
shift in zeroes to form the appropriate initial operation state. A single 1 is
added to the end of this process (as the first packet must have arrived to begin
this registration process). For example, if we assume a 4KB operation, a 16KB
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Fig. 4. Creating the bitmask for the new dma data, to check for duplicates and com-
pletion status.

mask size and a packet size of 512B, the initial mask after registration would be
’b1111.1111.1111.1111.1111.1111_0000-0001 (8 packets are needed and the first
one is received).

3.3 Receiver Notification and Duplicate Data

Every time a new packet arrives the table is checked in order to determine
whether any existing entry matches with the new packet. This is done by calcu-
lating whether the incoming destination is within the range of the entry currently
being checked. If there is no corresponding entry in the table then the data is
sent to the escape channel, and an associated timer is started. If this times out
then the packet and its associated data is dropped. This timeout can happen
for two reasons: i) The packet is a duplicate and the corresponding operation
has already completed. The packet is rightfully dropped as the operation has
completed and been removed from the table of active operations. In this case
dropping the packet is safe because the previous packet must have sent a cor-
rect acknowledgement back to the sender. i) The first packet in the operation is
severely delayed or lost in the network, so registration never happens. In this case
dropping the packet is safe because the sender will have received no acknowl-
edgement or negative acknowledgement, and will itself time out and retransmit
the packet. In the event that data is found to correspond to an entry in the table,
but is a duplicate, the data can be safely dropped straight away and there is no
need for the timer.

Figure 4 shows how the mask is updated upon receiving a new packet. If the
table entry being checked is found to match the incoming data, then it proceeds
to create a new mask. The base address of the entry and the number of bytes of
the operation are used to calculate whether the operation being checked in the
table relates to the new packet arriving. An offset is then created for a barrel
shifter, which generates a mask to cause a bit flip. If the mask is found to be
all 1’s then the operation must be completed. If Newmask == Originalmask
then the packet must be a duplicate and can be dropped.

Once a full operation has been completed the receiver is notified locally of
the RDMA operation, which saves a full round-trip packet latency compared to
waiting for the sender to provide a completion notification upon receiving the last
acknowledgment (see Fig. 5). The notification is currently sent to a queue which
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Fig. 5. Time for send and receive operations to complete for registered and unregistered
transfers.

can be polled by the receiver. Doing this allows for a non-blocking or a blocking
receive to be performed in the application. Polling the notification queue when
empty returns a special default value. This can be used to effectively create a
spin-lock in the software, only returning from the blocking receive function when
the notification has indeed been posted, and the return value is not equal to the
default value.

3.4 Non-Registered Operations

There may be points where either registering an operation is unnecessary, or is
not sensible given the number of communications (for example in a many-to-one
collective involving many nodes). In this case the operation remains unregistered
and we must suffer the additional round trip latency for acknowledgement. How-
ever, in this case there is no need to track and handle duplicate packets, or out-of-
order delivery. The addresses of the packets which form the DMA operations are
simply memory locations within a global virtual address space (described in [6]),
it does not matter if this memory location is overwritten, because the acknowl-
edgement for the operation happens only once all the corresponding packets
have been acknowledged to the sender. We provide strong ECC protection for
ACK packets so that they will only be lost or corrupted in the most exceptional
circumstances. If packets arrive out-of-order then they are simply written to the
correct place in memory regardless, as the packet has a base address associated
with it, which is formed in the DMA engine at the sender.

4 Evaluation

The Network Interface, and thus all the components shown and discussed in
Section 3 are implemented completely within the fabric of the FPGA. For all
evaluation within this Section we use the Xilinx Zynq Ultrascale+ ZCU102 de-
velopment board (part number EK-U1-ZCU102-G). The test setup is shown in
Figure 6. There are two entirely segregated datapaths within the FPGA, em-
ulating completely the action of a distributed setup except we implement the
send node’s IP and the receiving node’s IP within a single FPGA. We have
shown in previous work communication over a complete networked solution in-
cluding the router/switch [2, 8], but in order to more accurately measure time,
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Fig. 6. Experimental setup on the Zynq Ultrascale+ FPGA.

we use a loopback setup. Using the NIC in conjunction with the switch allows
for a much higher number of connections to/from a single node. The processing
system contains four hard-core ARM-A53 processors, as well as cache-coherent
interconnect, IOMMU, DRAM controller etc, while the programmable logic is
just that; the FPGA fabric of the device [18]. It can be seen that the current
DMA engine is the Xilinx CDMA [19], and we use Aurora PHY IP to enable 10G
line-rate across the links [16]. This IP is used simply to perform serialization and
64/66b line encoding/decoding, and does not wrap the packet using any other
protocol. The frequency of all components implemented within the FPGA fabric
is 156.25MHz. The processing system runs at 1GHz.

4.1 Latency of Send and Receive Operations

In order to balance the requirements for low latency transfers with reduced
area overheads, only a limited range of message size for registration is required.
Figure 7 shows the results of an experiment to show the performance benefits
of registered receive side transactions. This shows the latency for the transfer
of data and notification of completion in a user-space application for a single
hop transfer. The latency of the send operation is the time taken to configure
the DMA engine from user-space, and for notification to be received at the
sender that the DMA engine has pushed all the data into the network. The
measurement we take is thus for a non-blocking send, for the data to simply
enter the network. A blocking send operation would have higher latency than
the registered receive operation since it must wait for the last ACK to arrive.
The latency of receive operations are measured from the time the sender begins
to initialize the transfer, until the receiver gets notification that the DMA data
is placed in memory, either by local notification from the NI (Registered), or as
a notification packet from the sender.

As shown in Figure 7, the latency of a receive operation for a 1KB transfer
is around 5.23us, and for a registered receive is only 4.21us, cutting ~20% from
the latency of the recevie side being notified of the transaction. We also see that
the performance gains from this registration technique diminish with transfer
size and become insignificant at around 32KB. At much larger transfers the
measured latency for send/recv/registered recv are very similar, as is seen in
the convergence of the results in Figure 7. This is because the extra round trip
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Fig. 7. Latency of a send/recv operation over a single hop distance.

latency is dwarfed by the overall transfer time for the data. What this means in
practice is that registered transactions will only show significant benefits within a
certain range of smaller message sizes. Although this is dependent on the distance
from the destination and the network load (affecting latency). As the distance
between source and destination increase, or the load of the network goes up, we
would see larger and larger message sizes be able to benefit from receive side
registration. The distance between sender and receiver can be worked out easily
owing to the geographical routing scheme which we employ [2], so adjusting the
threshold for registration based upon this would be trivial. However, dynamically
adjusting these thresholds based upon the network load may be very difficult and
be potentially very wasteful of resources.

4.2 Area of Receiver Registration Module

Clearly there will be high variability in the performance gains of registering the
receive side operations, depending on the distance of communications. It there-
fore seems appropriate to perform a parameter sweep for various configurations
of number of simultaneous outstanding operations the node can handle, and the

Table 1. Area utilization (% total) for various combinations of max packet size and
table depth. Total LUTs = 274080, total BRAMs = 912.
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largest possible size of operation for receiver registration. Table 1 shows the area
utilization of the Receive Registration module (shown in Figure 1), under dif-
fering configurations. We consider bitmasks for between 32KB and 512KB and
packets of 512KB-a small packet size used to ease congestion and help with
load balancing. We vary the number of outstanding operations (table entries)
between 64 and 1024.

The results show that varying the maximum operation size for registra-
tion has little effect on the number of LUTs. This is because the logic to de-
code/encode the mask is not significant, compared with other components in
the module. The number of BRAMs jumps considerably at certain boundaries,
which is due to the odd bit width of the table entries. Effectively this creates a
scenario where we can gain “free” entries to the table because of the fixed size
BRAMSs being utilized more efficiently. It is also worth noting that the num-
ber of BRAMs for the smallest 64x64 configuration does not correspond to the
utilization of the table. This is because the storage for the data in the escape
channel is set to enable 64 full packets to be held in the NI. This uses 43 BRAMs,
which is why we still see a baseline for the BRAM utilization at this small con-
figuration. Although this value is highly acceptable, and not prohibitive for the
implementation of accelerators in combination with our NI, with the largest pos-
sible configuration only requiring 10% of the total BRAMs, and uses no DSP
slices, which are key for efficient floating point arithmetic

5 Conclusions

In this paper we have presented an optimization for the hardware-offloaded
transport layer of an FPGA based Network Interface. A micro-architecture is
presented which allows for the receiver of an RDMA operation to register the
operation, thereby enabling receive side notification upon completion of the op-
eration. We show that for small RDMA operations the latency of the receive
operation can be reduced by ~20%. This can be leveraged with a method of seg-
menting large DMA operations into a number of smaller ones, thereby enabling
us to maintain a connectionless (datagram based) approach to our transport
layer, while allowing communication and computation to overlap. The connec-
tionless approach maintains scalability of the system, and allows for fully adap-
tive routing at packet level granularity, giving better load-balancing properties
to the network.

We provide an analysis of the area utilization of various configurations of the
receive-side registration module, and show that, due to the fixed sized BRAMs
and the odd bit-width of table entries, certain configurations make better use of
the BRAMs. In the most aggressive implementation, the total BRAM use of the
receive registration module is below 10% of the available, whereas the number
of LUTs is around 4%. More reasonable configurations lower these to around
6% and 1.5%, respectively. Hence, the overall area utilization is very acceptable,
leaving plenty for use by accelerator blocks etc. Particularly when noting that
our implementation does not utilize any DSP blocks on the FPGA.
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