Dataset Restricted Access

MUSDB18-HQ - an uncompressed version of MUSDB18

Rafii, Zafar; Liutkus, Antoine; Stöter, Fabian-Robert; Mimilakis, Stylianos Ioannis; Bittner, Rachel


JSON Export

{
  "owners": [
    30160
  ], 
  "doi": "10.5281/zenodo.3338373", 
  "stats": {
    "version_unique_downloads": 2270.0, 
    "unique_views": 4448.0, 
    "views": 6454.0, 
    "version_views": 6450.0, 
    "unique_downloads": 2272.0, 
    "version_unique_views": 4444.0, 
    "volume": 85415623457190.0, 
    "version_downloads": 3765.0, 
    "downloads": 3770.0, 
    "version_volume": 85302340136955.0
  }, 
  "links": {
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3338372.svg", 
    "doi": "https://doi.org/10.5281/zenodo.3338373", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3338372", 
    "latest_html": "https://zenodo.org/record/3338373", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3338373.svg", 
    "html": "https://zenodo.org/record/3338373", 
    "latest": "https://zenodo.org/api/records/3338373"
  }, 
  "conceptdoi": "10.5281/zenodo.3338372", 
  "created": "2019-08-02T10:05:22.537597+00:00", 
  "updated": "2020-01-24T19:26:07.687480+00:00", 
  "conceptrecid": "3338372", 
  "revision": 4, 
  "id": 3338373, 
  "metadata": {
    "access_right_category": "danger", 
    "doi": "10.5281/zenodo.3338373", 
    "description": "<p>MUSDB18-HQ is the uncompressed version of the MUSDB18 dataset. It consists of a total of 150 full-track songs of different styles and includes both the stereo mixtures and the original sources, divided between a training subset and a test subset.</p>\n\n<p>Its purpose is to serve as a reference database for the design and the evaluation of source separation algorithms. The objective of such signal processing methods is to estimate one or more sources from a set of mixtures, e.g. for karaoke applications. It has been used as the official dataset in the professionally-produced music recordings task for SiSEC 2018, which is the international campaign for the evaluation of source separation algorithms.</p>\n\n<p><em>musdb18-hq</em> contains two folders, a folder with a training set: &ldquo;train&rdquo;, composed of 100 songs, and a folder with a test set: &ldquo;test&rdquo;, composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.</p>\n\n<p>All files from the <em>musdb18-hq</em> dataset are saved as uncompressed wav files. Within each track folder, the user finds</p>\n\n<ul>\n\t<li>mixture.wav</li>\n\t<li>drums.wav</li>\n\t<li>bass.wav,</li>\n\t<li>other.wav,</li>\n\t<li>vocals.wav</li>\n</ul>\n\n<p>All signals are stereophonic and encoded at 44.1kHz.</p>\n\n<p>&nbsp;</p>\n\n<p>If you use the MUSDB dataset for your research - Cite the MUSDB18 Dataset</p>\n\n<pre><code>@misc{MUSDB18HQ,\n  author       = {Rafii, Zafar and\n                  Liutkus, Antoine and\n                  Fabian-Robert St{\\\"o}ter and\n                  Mimilakis, Stylianos Ioannis and\n                  Bittner, Rachel},\n  title        = {{MUSDB18-HQ} - an uncompressed version of MUSDB18},\n  month        = dec,\n  year         = 2019,\n  doi          = {10.5281/zenodo.3338373},\n  url          = {https://doi.org/10.5281/zenodo.3338373}\n}</code></pre>\n\n<p>If compare your results with SiSEC 2018 Participants - Cite the SiSEC 2018 LVA/ICA Paper</p>\n\n<pre><code>@inproceedings{SiSEC18,\n  author=\"St{\\\"o}ter, Fabian-Robert and Liutkus, Antoine and Ito, Nobutaka\",\n  title=\"The 2018 Signal Separation Evaluation Campaign\",\n  booktitle=\"Latent Variable Analysis and Signal Separation:\n  14th International Conference, LVA/ICA 2018, Surrey, UK\",\n  year=\"2018\",\n  pages=\"293--305\"\n}</code></pre>\n\n<p>&nbsp;</p>", 
    "title": "MUSDB18-HQ - an uncompressed version of MUSDB18", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3338372"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3338373"
          }
        }
      ]
    }, 
    "access_conditions": "<p>The musdb is provided for educational purposes only and the material contained in them should not be used for any commercial purpose without the express permission of the copyright holders:</p>\n\n<ul>\n\t<li>100 tracks are taken from the DSD100 data set, which is itself derived from The &lsquo;Mixing Secrets&rsquo; Free Multitrack Download Library. Please refer to this original resource for any question regarding your rights on your use of the DSD100 data.</li>\n\t<li>46 tracks are taken from the MedleyDB licensed under Creative Commons (BY-NC-SA 4.0).</li>\n\t<li>2 tracks were kindly provided by Native Instruments originally part of their stems pack.</li>\n\t<li>2 tracks a from from the Canadian rock band The Easton Ellises as part of the heise stems remix competition, licensed under Creative Commons (BY-NC-SA 3.0).</li>\n</ul>\n\n<p>If you use the MUSDB dataset for your research - Cite the MUSDB18 Dataset</p>\n\n<pre><code>@misc{MUSDB18HQ,\n  author       = {Rafii, Zafar and\n                  Liutkus, Antoine and\n                  Fabian-Robert St{\\\"o}ter and\n                  Mimilakis, Stylianos Ioannis and\n                  Bittner, Rachel},\n  title        = {{MUSDB18-HQ} - an uncompressed version of MUSDB18},\n  month        = dec,\n  year         = 2019,\n  doi          = {10.5281/zenodo.3338373},\n  url          = {https://doi.org/10.5281/zenodo.3338373}\n}</code></pre>\n\n<p>If compare your results with SiSEC 2018 Participants - Cite the SiSEC 2018 LVA/ICA Paper</p>\n\n<pre><code>@inproceedings{SiSEC18,\n  author=\"St{\\\"o}ter, Fabian-Robert and Liutkus, Antoine and Ito, Nobutaka\",\n  title=\"The 2018 Signal Separation Evaluation Campaign\",\n  booktitle=\"Latent Variable Analysis and Signal Separation:\n  14th International Conference, LVA/ICA 2018, Surrey, UK\",\n  year=\"2018\",\n  pages=\"293--305\"\n}</code></pre>", 
    "version": "1.0.0", 
    "communities": [
      {
        "id": "sigsep"
      }
    ], 
    "publication_date": "2019-08-01", 
    "creators": [
      {
        "affiliation": "Gracenote", 
        "name": "Rafii, Zafar"
      }, 
      {
        "affiliation": "INRIA and LIRMM, University of Montpellier", 
        "name": "Liutkus, Antoine"
      }, 
      {
        "orcid": "0000-0002-2534-1165", 
        "affiliation": "INRIA and LIRMM, University of Montpellier", 
        "name": "St\u00f6ter, Fabian-Robert"
      }, 
      {
        "affiliation": "Fraunhofer IDMT, Ilmenau", 
        "name": "Mimilakis, Stylianos Ioannis"
      }, 
      {
        "affiliation": "Spotify, New York", 
        "name": "Bittner, Rachel"
      }
    ], 
    "access_right": "restricted", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3338372", 
        "relation": "isVersionOf"
      }
    ]
  }
}
6,450
3,765
views
downloads
All versions This version
Views 6,4506,454
Downloads 3,7653,770
Data volume 85.3 TB85.4 TB
Unique views 4,4444,448
Unique downloads 2,2702,272

Share

Cite as