Dataset Restricted Access

MUSDB18-HQ - an uncompressed version of MUSDB18

Rafii, Zafar; Liutkus, Antoine; Stöter, Fabian-Robert; Mimilakis, Stylianos Ioannis; Bittner, Rachel


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3338373</identifier>
  <creators>
    <creator>
      <creatorName>Rafii, Zafar</creatorName>
      <givenName>Zafar</givenName>
      <familyName>Rafii</familyName>
      <affiliation>Gracenote</affiliation>
    </creator>
    <creator>
      <creatorName>Liutkus, Antoine</creatorName>
      <givenName>Antoine</givenName>
      <familyName>Liutkus</familyName>
      <affiliation>INRIA and LIRMM, University of Montpellier</affiliation>
    </creator>
    <creator>
      <creatorName>Stöter, Fabian-Robert</creatorName>
      <givenName>Fabian-Robert</givenName>
      <familyName>Stöter</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2534-1165</nameIdentifier>
      <affiliation>INRIA and LIRMM, University of Montpellier</affiliation>
    </creator>
    <creator>
      <creatorName>Mimilakis, Stylianos Ioannis</creatorName>
      <givenName>Stylianos Ioannis</givenName>
      <familyName>Mimilakis</familyName>
      <affiliation>Fraunhofer IDMT, Ilmenau</affiliation>
    </creator>
    <creator>
      <creatorName>Bittner, Rachel</creatorName>
      <givenName>Rachel</givenName>
      <familyName>Bittner</familyName>
      <affiliation>Spotify, New York</affiliation>
    </creator>
  </creators>
  <titles>
    <title>MUSDB18-HQ - an uncompressed version of MUSDB18</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-08-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3338373</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3338372</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sigsep</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0.0</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;MUSDB18-HQ is the uncompressed version of the MUSDB18 dataset. It consists of a total of 150 full-track songs of different styles and includes both the stereo mixtures and the original sources, divided between a training subset and a test subset.&lt;/p&gt;

&lt;p&gt;Its purpose is to serve as a reference database for the design and the evaluation of source separation algorithms. The objective of such signal processing methods is to estimate one or more sources from a set of mixtures, e.g. for karaoke applications. It has been used as the official dataset in the professionally-produced music recordings task for SiSEC 2018, which is the international campaign for the evaluation of source separation algorithms.&lt;/p&gt;

&lt;p&gt;&lt;em&gt;musdb18-hq&lt;/em&gt; contains two folders, a folder with a training set: &amp;ldquo;train&amp;rdquo;, composed of 100 songs, and a folder with a test set: &amp;ldquo;test&amp;rdquo;, composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.&lt;/p&gt;

&lt;p&gt;All files from the &lt;em&gt;musdb18-hq&lt;/em&gt; dataset are saved as uncompressed wav files. Within each track folder, the user finds&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;mixture.wav&lt;/li&gt;
	&lt;li&gt;drums.wav&lt;/li&gt;
	&lt;li&gt;bass.wav,&lt;/li&gt;
	&lt;li&gt;other.wav,&lt;/li&gt;
	&lt;li&gt;vocals.wav&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;All signals are stereophonic and encoded at 44.1kHz.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;If you use the MUSDB dataset for your research - Cite the MUSDB18 Dataset&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;@misc{MUSDB18HQ,
  author       = {Rafii, Zafar and
                  Liutkus, Antoine and
                  Fabian-Robert St{\"o}ter and
                  Mimilakis, Stylianos Ioannis and
                  Bittner, Rachel},
  title        = {{MUSDB18-HQ} - an uncompressed version of MUSDB18},
  month        = dec,
  year         = 2019,
  doi          = {10.5281/zenodo.3338373},
  url          = {https://doi.org/10.5281/zenodo.3338373}
}&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;If compare your results with SiSEC 2018 Participants - Cite the SiSEC 2018 LVA/ICA Paper&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;@inproceedings{SiSEC18,
  author="St{\"o}ter, Fabian-Robert and Liutkus, Antoine and Ito, Nobutaka",
  title="The 2018 Signal Separation Evaluation Campaign",
  booktitle="Latent Variable Analysis and Signal Separation:
  14th International Conference, LVA/ICA 2018, Surrey, UK",
  year="2018",
  pages="293--305"
}&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
</resource>
6,450
3,765
views
downloads
All versions This version
Views 6,4506,454
Downloads 3,7653,770
Data volume 85.3 TB85.4 TB
Unique views 4,4444,448
Unique downloads 2,2702,272

Share

Cite as