Working paper Open Access
Aldinucci;
Berzovini;
Grana;
Grangetto;
Pireddu;
Zanetti
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">ita</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Deep Learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Healthcares</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Cloud</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">High-Performance Computing</subfield> </datafield> <controlfield tag="005">20200120170433.0</controlfield> <controlfield tag="001">3338256</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">18 March 2019</subfield> <subfield code="g">Ital-IA</subfield> <subfield code="a">Convegno Nazionale Italiano sull'Intelligenza Artificiale</subfield> <subfield code="c">Rome</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Claudio</subfield> <subfield code="a">Berzovini</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Costantino</subfield> <subfield code="0">(orcid)0000-0002-4792-2358</subfield> <subfield code="a">Grana</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Marco</subfield> <subfield code="0">(orcid)0000-0002-2709-7864</subfield> <subfield code="a">Grangetto</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Luca</subfield> <subfield code="0">(orcid)0000-0002-4663-5613</subfield> <subfield code="a">Pireddu</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Gianluigi</subfield> <subfield code="0">(orcid)0000-0003-1683-7350</subfield> <subfield code="a">Zanetti</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">57556</subfield> <subfield code="z">md5:f6ae2a0ce5353f7871b72699aec0aaf5</subfield> <subfield code="u">https://zenodo.org/record/3338256/files/papers_DeepHealthIA19.pdf</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">30940606</subfield> <subfield code="z">md5:11133e83fea2836f4c19c82e389bbb22</subfield> <subfield code="u">https://zenodo.org/record/3338256/files/presentations_DeepHealth-ITALIA19-correct-logos.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="y">Conference website</subfield> <subfield code="u">http://www.ital-ia.it</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-03-18</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-deephealth</subfield> <subfield code="o">oai:zenodo.org:3338256</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Marco</subfield> <subfield code="0">(orcid)0000-0001-8788-0829</subfield> <subfield code="a">Aldinucci</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Deep Learning e calcolo ad alte prestazioni per l'elaborazione di immagini biomediche</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-deephealth</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">825111</subfield> <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Il progetto DeepHealth, recentemente finanziato dalla Commissione Europea, ha come obiettivo la realizzazione di un ecosistema europeo costituito da piattaforme di calcolo ad alte prestazioni, li- brerie software e competenze multi-disciplinari di intelligenza artificiale, calcolo parallelo e scienze mediche per l&rsquo;elaborazione e la diagnosi basata su immagini. Il contributo presenta sinteticamente le competenze e le infrastrutture nazionali coivolte nel progetto.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3338255</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3338256</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">workingpaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 97 | 97 |
Downloads | 117 | 117 |
Data volume | 575.6 MB | 575.6 MB |
Unique views | 84 | 84 |
Unique downloads | 92 | 92 |