Working paper Open Access

Deep Learning e calcolo ad alte prestazioni per l'elaborazione di immagini biomediche

Aldinucci; Berzovini; Grana; Grangetto; Pireddu; Zanetti


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3338256</identifier>
  <creators>
    <creator>
      <creatorName>Aldinucci</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8788-0829</nameIdentifier>
      <affiliation>Marco</affiliation>
    </creator>
    <creator>
      <creatorName>Berzovini</creatorName>
      <affiliation>Claudio</affiliation>
    </creator>
    <creator>
      <creatorName>Grana</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4792-2358</nameIdentifier>
      <affiliation>Costantino</affiliation>
    </creator>
    <creator>
      <creatorName>Grangetto</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2709-7864</nameIdentifier>
      <affiliation>Marco</affiliation>
    </creator>
    <creator>
      <creatorName>Pireddu</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4663-5613</nameIdentifier>
      <affiliation>Luca</affiliation>
    </creator>
    <creator>
      <creatorName>Zanetti</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1683-7350</nameIdentifier>
      <affiliation>Gianluigi</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Deep Learning e calcolo ad alte prestazioni per l'elaborazione di immagini biomediche</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Deep Learning</subject>
    <subject>Healthcares</subject>
    <subject>Cloud</subject>
    <subject>High-Performance Computing</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-03-18</date>
  </dates>
  <language>it</language>
  <resourceType resourceTypeGeneral="Text">Working paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3338256</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3338255</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/deephealth</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Il progetto DeepHealth, recentemente finanziato dalla Commissione Europea, ha come obiettivo la realizzazione di un ecosistema europeo costituito da piattaforme di calcolo ad alte prestazioni, li- brerie software e competenze multi-disciplinari di intelligenza artificiale, calcolo parallelo e scienze mediche per l&amp;rsquo;elaborazione e la diagnosi basata su immagini. Il contributo presenta sinteticamente le competenze e le infrastrutture nazionali coivolte nel progetto.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825111/">825111</awardNumber>
      <awardTitle>Deep-Learning and HPC to Boost Biomedical Applications for Health</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
88
105
views
downloads
All versions This version
Views 8888
Downloads 105105
Data volume 574.9 MB574.9 MB
Unique views 7575
Unique downloads 8181

Share

Cite as