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Abstract

In the recent years, a rapid growth of IoT devices has been observed, which in turn results
in a huge amount of data produced from multiple sources towards the most disparate cloud
platforms or the Internet in general. In a typical cloud-centric approach, the data produced
by these devices is simply transmitted over the Internet, for consumption and/or storage.
However, with the exponential growth in data production rates, the available network re-
sources are becoming the actual bottleneck of this huge data flowing. Therefore, several
challenges are appearing in the coming years, which are mainly related to data transmis-
sion, processing, and storage along the so-called cloud-to-thing continuum. In fact, one of
the most critical requirements of several IoT applications is low latency, which often hinders
raw data consumption to happen at the opposite endpoint with respect to its production.
In the context of IoT data stream analytics, for instance, the detection of anomalies or
rare-events is one of the most demanding tasks, as it needs prompt detection to increase its
significance. In this respect, Fog and Edge Computing seem to be the correct paradigms
to alleviate these stringent demands in terms of latency and bandwidth as, by leveraging
on re-configurable IoT gateways and smart devices able to support the distribution of the
overall computational task, they envisage to liquefy data processing along the way from
the sensing device to a cloud endpoint. In this paper, we will present IRESE, that is a
rare-event detection system able to apply unsupervised machine learning techniques on the
incoming data, directly on affordable gateways located in the IoT edge. Notwithstanding
the proposed approach enjoys the benefits of a fully unsupervised learning approach, such as
the ability to learn from unlabeled data, it has been tested against various audio rare-event
categories, such as gunshot, glass break, scream, and siren, achieving precision and recall
measures above 90% in detecting such events.
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1. Introduction

Improved cost-effectiveness and miniaturization of sensing devices have increased their
utility in various domains of daily human life such as healthcare, transport, education,
agriculture, and security. In a typical IoT environment, these sensing devices are connected
to the Internet and responsible to continuously sense their surroundings and then transmit
data to a cloud station for further processing. In the past few years, an exponential growth
in IoT devices have been observed in the form of smart products. Based on the context,
these devices of various varieties produce a huge amount of data at varying rates. According
to an estimate by Cisco Global Cloud Index, the data produced by a variety of data sources
will reach to around 500 zettabytes by 2019, whereas the internet infrastructure will be
capable to handle 10.4 zettabytes by that time [1]. Similarly, according to CISCO Internet
Business Solutions Group the number of devices connected to the internet will reach around
50 Billion by 2020 [2]. These factors (variety, amount of data, and variable data rate) have
raised serious concerns in an IoT environment, which mainly relates to data transportation,
data storage, data processing, and security. The first concern, transportation of data, needs
a high-speed Internet, which can quickly and efficiently transmit data to the destination.
The second concern, storing huge amount of data, needs cloud services and other necessary
networking infrastructure. The third concern, data processing, is important to be handled
because raw data is not meaningful and it is required to transform raw data into meaningful
information [3]. The fourth concern, security must be addressed for critical applications in
which IoT data can be stolen or intruders can attack the system. Cloud-based paradigms are
widely used in IoT systems, in which the data is pushed to the cloud and after computations,
the outcome is delivered back to the local system. However, due to the proliferation of IoT,
an increased amount of data is produced at the edge of the network. The limited network
bandwidth is unable to meet the requirements of low-latency transportation of data coming
at a high speed [4]. Therefore, one can conclude that Cloud Computing alone is not efficient
enough to handle the IoT generated data in the coming years [5]. Since data production at
the edge of a network is increasing, an adequate choice is to perform the necessary processing
on an edge device; near the source. The edge devices are becoming more powerful and
resource friendly with optimal utilization of resources such as memory and energy.

Formally, in Edge Computing nomenclature, an edge device (e.g., a gateway) is used to
perform computation over data. In fact, Edge Computing approaches aims at performing
data processing as close as possible to its source. Moreover, it is an effort to involve decen-
tralized agents to perform necessary processing, which can reduce the burden on centralized
processing units [6]. Edge Computing is particularity useful in time-critical applications, in
which quick data processing is required with prompt response in a particular situation. For
example, Boeing 787 generates around 5 Gigabyte of data in each second and it needs a large
bandwidth to transmit this data, which is not realistic [4]. In such scenarios computing at
the edge is crucial, as users may need very fast responses from the system.

Edge Computing has gained much attention in the recent years due to improved resources
and increased processing power of an edge device. Today, Edge Computing is widely used in
various applications such as smart home, smart city, smart health, and smart transportation.
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In these applications, data is processed by an edge device such as a gateway to extract
meaningful information from it and take necessary actions. IoT generate a data stream
which contains patterns indicating several events of interest. Data stream analytics is done
to discover interesting patterns hidden in a disorganized and unbounded data stream. In
this work, we will present a model which relies on the edge device to perform data stream
analytics for discovering interesting patterns. In fact, our objective is to detect those patterns
which reflect the occurrence of a rare-event or outlier in an IoT data stream. We have used
the term rare-event instead of outlier or anomaly due to our use-case, which we will introduce
later while discussing the contributions of this work. In the following subsections, we will
define the problem in the context of IoT data stream containing rare-events, afterward, we
highlight the contributions of our work.

1.1. Problem Formulation

In the context of data stream analytics, the most demanding task is to discover patterns
reflecting short duration abrupt changes in a data stream which may indicate an unusual
situation or event [7]. In literature, different terms are used for such short duration abrupt
changes including rare-event, anomaly, or outlier. Summarizing various definitions of these
terms given in the literature [8, 9, 10], we can formally define a rare-event as follows.

Definition 1. A rare-event, or outlier, is as an observation (or set of few observations)
which occurs infrequently and deviates or inconsistent with respect to other observations so
much that it becomes suspicious to indicate an irregularity or an anomaly in the given set
of observations.

It is important to detect rare-events occurring in a data stream, as it may be helpful
in detecting a potentially hazardous situation. For example, a microphone is deployed
in an outdoor environment, receiving typical city-related sounds (e.g., cars, horns, birds,
etc.). All of a sudden, a siren is heard; this sound is very different from the background
audio, and for this reason, it is considered as a rare-event with respect to its background
environment. Consider another example, a vibration sensor is deployed on a machine located
in an industrial plant to continuously measure the vibrations generated by its motor(s); when
the machine will start malfunctioning, an abnormal vibration pattern may be registered
by the attached sensor, representing this a rare-event in the context of normal working
conditions of that machine.

Due to the network bandwidth vs. data production rate bottleneck, Cloud Computing
has limitations in rare-event detection. Particularly, in time-critical applications, cloud-
based paradigms may not be able to generate timely alerts for users. On the other hand,
in Edge Computing, IoT data can be locally processed by an intelligent gateway. Hence an
edge device may be able to quickly detect rare-events occurring in a data stream, directly
generating prompter warnings/alerts and reducing network traffic. In this work, our primary
focus is to use an edge device to analyze digitized data streams produced by IoT devices,
to detect rare-events there occurring. For this purpose, we propose an intelligent rare-event
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detection system suitable for the IoT Edge, which we called IRESE. The system uses machine
learning techniques to detect rare-events occurring in the incoming data streams. Fig. 1
illustrates the overall concept of IRESE: the IoT devices continuously sense the environment,
while an edge device (intelligent gateway) processes the incoming data streams with the goal
of detecting rare-event instances and then transmit it to a cloud-based storage.

Figure 1: The conceptual diagram of IRESE.

1.2. Contributions

Rare-event detection has been widely studied, resulting in a well-covered research area.
However, IRESE strictly focuses on edge device based rare-event detection for IoT data
streams. In Sec. 2, we will compare in detail the proposed approach with the most recent
state-of-the-art research happening in this field. Briefly, the main contributions of this work
can be summarized as following:

• Sharp technological focus on Edge Computing: in this paper, one of the major ob-
jectives is to utilize the typical computational power available on an edge device to
process the data coming from various IoT devices. For this purpose, IRESE is deployed
on an edge device. Such edge device is preferably an IoT gateway which continuously
receives data from sensing devices and apply some data analytics techniques to detect
rare-events. Edge computing helps to reduce the data transmission and analysis costs
associated to a cloud-based IoT platform, as data is processed closer to its source and
only the data patterns of interests are transferred to the upper layers (i.e., from fog to
cloud-level devices and infrastructures). Consequently, the cost (in terms of bandwidth
and latency) of data transportation is consistently reduced. A recent and detailed re-
view of edge-based IoT platforms is given in [11], while it is important to mention here
that our goal is not to compare edge computing approaches against cloud computing
ones, rather the aim is to introduce a framework which can empower edge devices to
directly analyze data and discover useful patterns like rare-events. The motivation
behind our choice to adopt an edge based approach is simply to reduce the burden of
transmitting and processing data up to a cloud endpoint.

• Data stream analytics: we have strictly considered limitations of data stream analyt-
ics in the proposed model. Data streams are continuous, high speed, and unbounded.
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Due to these unique characteristics, data stream needs a quick data processing without
storing the data. For this reason, we have used data stream processing machine learn-
ing algorithms which work in two stages: micro-clustering and macro-clustering [12].
In a nutshell, micro-clustering enables an edge device to quickly get summaries of high
speed incoming data stream in real-time without storing it, whereas macro-clustering
further processes micro-clusters to discover separate clusters of rare-events and nor-
mal events. In order to demonstrated the effectiveness of IRESE, we have practically
deployed it on a gateway device which continuously receives audio data through mi-
crophones and detect rare-events happened in an environment such as a gun shot. In
fact, IRESE turns an edge device into an intelligent box, which continuously receives
an audio stream and generates an alarm whenever a rare-event occurs.

• Detecting rare-event without prior knowledge: IRESE relies on a combination of unsu-
pervised machine learning techniques. One of the challenging tasks in machine learning
is to label data and provide it as training examples to a supervised machine learning
algorithm. In order to avoid the efforts of having labeled data, we have considered
unsupervised machine learning techniques, which do not need labeled data and once
a rare-event is detected we can further investigated its type. Furthermore, unsuper-
vised machine learning techniques allows us to automatically detect hidden pattern of
interests in data, without having prior knowledge about these patterns. This feature
is quite appealing to use it in an edge device as it is difficult to get knowledge about
the raw data generated at source. In particular, we applied BIRCH (Balanced Itera-
tive Reducing and Clustering using Hierarchies) algorithm [13] to get micro-clusters
and Agglomerative Clustering [14] is used to get macro-clusters from the input data
stream. More details on the applied techniques are presented in Section 3.4.

2. Related Works

Several Anomaly Detection (AD) techniques have been proposed in the literature us-
ing different machine learning approaches based on supervised, unsupervised, and semi-
supervised training algorithms. Generally speaking, supervised learning techniques use
training algorithms that require datasets with a sufficiently large number of instances. Then,
in order to discriminate between normal events and anomalous ones, these datasets have to
be labeled either manually or automatically. In this context, widely applied algorithms are
multi-class Support Vector Machines (SVMs) [15], Bayesian classifiers [16], Neural Networks
and Deep Neural Networks, Extreme Learning Machines [17], Gaussian Mixture Models
(GMM) [18, 19], and Decision Trees [20].

Focusing on audio anomaly and rare event detection, several novel techniques have been
proposed within the Task 2 of the DCASE 2017 Challenge [21]. Many submitted techniques
adopt deep neural network architectures [22, 23, 24, 25] to create classifiers able to detect the
on-set time instant of rare-events (e.g., gunshots, glass breaks, baby cries) over a background
audio. However, supervised algorithms can be adopted if and only if a labeled dataset is
available. Usually, these datasets are manually generated (i.e., labeled) by researchers, but

5



this is an arduous and tedious work. Apart from being not affordable from time and money
perspectives, this approach is not always feasible because some events are either extremely
rare or unknown. For this reason, wherever possible, unsupervised approaches (e.g., learning
algorithms that can be trained using unlabeled datasets, because they are able to identify,
extract, and learn patterns directly from data) are always advisable.

Oh et al. [26] propose an AD strategy based on an auto-encoder to detect audio anomalies
produced by a Surface-Mounted Device (SMD) machine that places components on top of
a Printed Circuit Board (PCB). The algorithm creates an auto-encoding manifold able to
measure differences among instances and the manifold, signaling an anomaly if such distances
are too large. Kouzumi et al. [27] propose a similar AD approach based on an auto-encoder.
They trained the unsupervised algorithm by optimizing an objective function formulated by
starting from the Neyman-Pearson lemma. In order to pursue this way, they assumed that
the AD task was a statistical hypothesis test.

Recently, Bose et al. [17] proposed a novel approach to Anomaly Detection on the IoT
Edge. There, the authors describe a new computing schema, called Anomaly Detection
based Power Saving (ADEPOS), to adaptively update an anomaly detector, through time,
without losing detection accuracy. The authors validated their approach by implementing a
system to detect anomalies and failures of rotating bearing equipments by analyzing some
time-based features extracted from vibrations. This technique consists in a group of one-
class classifiers, which detect if an anomaly happened or not, followed by a majority voting
strategy. ADEPOS is used to vary the number of detectors in the ensemble. Moreover, they
evaluated the power saving of ADEPOS by simulating it in a Very Large Scale Integration
(VLSI) hardware architecture. However, ADEPOS and IRESE have two different targets:
the former aims to create adaptive anomaly detection systems, based on edge devices, that
requires a small amount of energy. IRESE aims to create an Audio Rare-Event Detection
system (Audio Anomaly Detection system), based on unsupervised machine learning, that
runs on an IoT Gateway.

Another class of techniques that allow anomaly detection in audio streams are the semi-
supervised learning algoritms. Aurino et al. [28] propose a 1-SVM approach within an
automatic surveillance framework to detect burst-like audio events, namely screams, gun-
shots, and glass breaks. Such an approach uses a two-stage classification scheme: the first
stage classifies short audio segments (200 ms) through an ensemble of 1-SVM classifiers,
while the second stage composes and re-classifies the first stage’s decisions using a majority
strategy, in order to take one decision per second. Elizalde et al. [29] present a framework
to train audio event detectors using a semi-supervised self-training approach. Audio Event
Detectors have to be firstly trained on the UrbanSound8K dataset [30], then have to run
on unlabeled audio streams extracted from YouTube videos. If the detector recognizes a
known sound with an high level of confidence, it is uses that sound to re-train the model.
This approach helps to train models with acoustic diversity even if the original dataset is
relatively small.
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2.1. Audio Anomaly Detection in IoT contexts

AD algorithms have been adopted also in IoT contexts, by creating more intelligent,
reactive and secure environments. Hilal et al. [15] present and describe a Sensor Manage-
ment framework called IntelliSurv. It realize an acoustic surveillance system that follows
the pervasive IoT paradigm, being it able to detect and localize anomalous audio events us-
ing different kinds of distributed devices: smart sensors for environmental monitoring, and
delegate sensors devoted to sensor management, localization and identification of anomalous
events. Moreover, all the smart sensors have enough computing capabilities to locally exe-
cute the abnormality detection. At the classification stage of events, authors adopted SVM
and LDA models.
Socoró et al. [19] propose an Anomalous Noise Event Detector (ANED) algorithm to map
the traffic noise in urban and sub-urban areas using low-cost wireless sensor networks. These
networks are composed of smart devices that perform simple signal pre-processing, then ex-
ecute event detection using machine learning algorithms and finally they send labels to a
central server that updates and draw noise maps. The authors there adopted a two-class
classification scheme to distinguish the anomalous traffic noise (e.g., jammed or semi-jammed
traffic) from the normal traffic noise. They discovered that this approach performs better
than the one using the one-class classifier, but they had to manually annotate the dataset.
This system has been conceived using some outcomes from the European Project called
DYNAMAP [31].
Alsina-Pagés et al. [32] present an Ambient Assisted Living (AAL) system, called home-
sound, that is able to detect and recognize different audio rare events happening in an
everyday environment. This system uses a wireless sensor network to record audio from the
environment; then the sensors forward the sampled audio streams to a GPU-based central
device, which has two roles: first, it performs feature extraction from the raw audio stream,
by computing 48 Mel Frequency Cepstral Coefficients (MFCC) and considering only the first
13 coefficients; then, it executes the inference of data using the trained model that is based
on a classification algorithm (SVM) and clustering algorithm. The model response is finally
sent to a remote system, where the medical staff can monitor the patient status.

3. Framework

In principle, the proposed model involves IoT devices which are deployed in an environ-
ment to measure signal energy through its transducer. An environment could be indoor or
outdoor which has uniform characteristics and does not suppose to have frequent abrupt
changes. We considered sensors which can produce a continuous waveform for the mea-
sured quantities such as acoustic events, vibrations, and acceleration. It is important that
measured quantities are represented as a waveform as IRESE performs complex spectrum
analysis to detect a rare-event. Fig. 2 shows the overall architecture of the rare-event detec-
tion system which is deployed on an edge device. IoT devices (for example, sensing devices)
generate a data stream D[n] sampled at sampling frequency fs, where fs satisfies Nyquist-
Shannon sampling theorem: fs ≥ 2fmax, fmax represents the maximum frequency occurs
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in the signal. An unbounded time series data stream is represented as a discrete signal:
D[n] = xn, xn−1, ..., xn−t, ..., where xn is the current sample, and xn−t is the first recorded
sample. Since the data stream is unbounded, we need to buffer it to hold it for a small
duration for further processing.

Figure 2: Proposed framework for rare-event detection system.

3.1. Data Buffering
The incoming data stream D[n] is periodically buffered in the local memory of an edge

device. Each cycle is of fixed duration, in which data is buffered during a short interval of
η seconds, for example, 60 or 120 seconds. The data is buffered because it is continuously
generated at a high speed, and buffering time allows IRESE to apply detection method on
the buffered data. The buffering time η could vary according to the type of data generated
by IoT devices, however, it remains fixed for a particular setup. The buffered data is further
supplied to a Data Framing module, which breaks it into even smaller frames which are
suitable for feature extraction techniques.

3.2. Data Framing
The data framing module takes buffered data and breaks it into smaller frames of duration

Δ seconds, where Δ << η, for example Δ is 1 second when η is 60 seconds. For data framing,
we defined a fixed length rectangular window of Δ seconds. The rectangular window function
is represented in (1). It is a tumbling window, which moves over the buffered data stream
in a way that two consecutive windows do not overlap with each other. For example, the
buffer holds data for 60 seconds then data framing module breaks this buffered data into 60
equal sized frames by using a fixed window of size Δ = 1 second.

ω(n) =

{
1 if 0 ≤ n ≤ Δ · fs
0 otherwise

(1)
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By multiplying the data stream D[n] with the rectangular window function of (1), we
obtain an individual frame Fi[n], also represented as:

Fi[n] = D[n] · ω(n) (2)

where, Fi[n] = xn, xn−1, ..., xn−Δ·fs is the i
th individual frame of buffered data, containing

a sequence of samples selected during the interval starting at n −Δ · fs and ending at nth

time instant.

3.3. Feature Extraction

We have considered both time and frequency domain features to effectively and accurately
detect abrupt changes visible in time or frequency domain. In order to preserve the time-
domain envelope of the signal, we have used Linear Predictive Coding (LPC) [33], which is
a well known technique used for feature extraction for audio and speech signals [34]. For the
frequency domain analysis, we selected Mel-frequency cepstral coefficients (MFCCs) [35, 36]
and Gammatone frequency cepstral coefficients (GFCC) [37]. MFCC and GFCC filter banks
uniquely characterize the input signal to detect a rare-event. Thus, the feature vector ν is
a tuple which is composed of subset features: Lp(LPC), Mf (MFCC), and Gf (GFCC),
which can be represented as ν = {Lp1, Lp2, ..., Lpi,Mf1,Mf2, ...,Mfj, Gf1, Gf2, ..., Gfk}. In
the following paragraphs, we will briefly explain these three types of feature extraction
methods and also explain how we have used them in our model.

3.3.1. Linear Predictive Coding (LPC)

LPC [33] is a method which linearly combines past samples of a signal to predict its
current sample. Exploiting the fact that speech and audio signals have redundancy, LPC
is frequently used in such systems to detect various events. The algorithm is simple in
which past samples are modulated as the weighted sum of ρ previous values to minimize an
error function. The error is actually the difference between actual samples and predicted
samples. The weighted sum is estimated using coefficients of the error function. LPC
algorithm recursively computes coefficients for each frame Fi[n] in which the objective is to
minimize the error ei[n] given in Equation 3. We have used auto-correlation [38, 34] method
to compute LPC coefficients.

ei[n] = Fi[n]− F̂i[n] (3)

Where, F̂i[n] is the predicted frame and ei[n] is the error.

3.3.2. Mel-frequency cepstral coefficients (MFCCs)

In order to include spectral analysis, we extracted MFCC [35, 36] for each frame Fi[n].
MFCCs has been widely used in various audio and speech recognition applications. The
technique involves a series of steps: windowing (sub-framing), Discrete Fourier Transform
(DFT), computing Mel spectrum, computing log of Mel spectrum, and finally Discrete Co-
sine Transform (DCT) is computed to get Mel Frequency Cepstrum Coefficients (MFCCs).
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An individual frame Fi[n] will be the input of MFCC feature extraction block. The window-
ing function in MFCC technique breaks each frame into equal sized smaller sub-frames sr[n]
of few milliseconds. In the end, mean value of all MFCCs is computed which are obtained
from each sub-frame sr[n].

3.3.3. Gammatone Frequency Cepstral Coefficients (GFCC)

Although MFCC has been widely used for audio classification applications, it shows
some limitations for signals having strong temporal domain signatures [37]. In [39, 40],
authors have discussed such limitations of MFCC in time-frequency domain parameterization
and feature selection methods. Considering such limitations, another biologically inspired
technique has been proposed which is based on Gammatone (GT) filters [37]. The process
of computing GFCC is more or less the same as of MFCC with the difference of using GT
filer bank in GFCC. The GT filter bank is based on Gammatone function which is inspired
from human auditory filter response [41]. The impulse response g(t) of a GT filter is the
product of Gamma distribution function and a sinusoidal tone having fc central frequency
as given in Equation 4[37].

g(t) = Kt(n−1)e−2πBtcos(2πfct+ ϕ) t > 0 (4)

where K is the filter amplitude; n is the filter order; fc is the central frequency in Hertz; ϕ
is the phase shift; and B is the duration of impulse response. We have computed GTCC for
each sub-frame sr[n]. Like MFCC, an individual frame Fi[n] is the input to GFCC block,
which further divided into sub-frames sr[n]. The GTCC is computed for each sub-frame
sr[n] and, afterward, a mean is computed for all the GTCCs obtained from each sub-frames.

3.4. Unsupervised Machine learning

In Section 2, we have discussed in detail the application of machine learning in anomaly
detection. However, in this work, our emphasis is to automatically extract patterns of
rare-events occurring in an IoT data stream using an edge device. In case of supervised
machine learning, we need to individually label patterns of rare-events exhibited by extracted
features. Data labeling is a difficult and time consuming task as it requires an expert who
closely observes incoming instances and assign them meaningful labels [42] In order to avoid
the effort involved in data labeling and to automatically find the patterns of rare-events
hidden in a data stream, we have used a two-stage rare-event detection strategy which relies
on a combination of state-of-the-art unsupervised machine learning techniques. As shown
in Figure 2, the unsupervised machine learning module takes stacked feature instances as
input and process it in two stages to detect the occurrence of a rare-event. Here it is
important to highlight the working of an unsupervised machine learning technique, which
basically aims to partition data instances in a way that similar instances are grouped in
same cluster [43]. Hence, dissimilar instances belong to different clusters. Exploiting the
fact that the patterns of rare-events are reasonably different from the normal events, IRESE
tries to find two separate clusters in the incoming data stream. Eventually, in these two
clusters, one cluster contains instances of normal events where as the other cluster contains
instances of rare-events.
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The two-stage strategy is used due to the one-pass constraint of a high speed incoming
data stream [44]. It is not possible to store such high speed data stream due to lack of
resources and amount of data produced. The incoming data stream is processed in two-
stages: online micro-clustering, and offline macro-clustering [12, 45]. In the first stage,
online micro-clustering, the high speed data stream is processed in real-time to quickly
extract statistical information from it in the from of micro-clusters. Micro-clusters could
indicate the presence of rare-event patterns in the data steam. Therefore, it is further
processed in the second stage i.e., offline macro-clustering, which in an offline phase and
extracts rare-events from the incoming data stream. As mentioned earlier, the final output
is in the form of two clusters: cluster A is dense and containing data points reflecting
normal behavior, whereas cluster B containing a rare-event (if it exists) which is an outlier
and different from other events occurring in that specific interval of buffered data. A further
detail of both stages is described in the following subsections.

3.4.1. Micro-Clustering

Since data streams are unbounded and having large amount of data, an efficient method
is required to extract important statistics from the data in real-time. An online micro-
clustering [12, 45] technique considers one pass nature of streaming data and attempts
to quickly and efficiently collect the useful summary of data. One pass means that it is
not sutiable to store raw data and it must be efficiently processed in first attempt to get
meaningful information from it. The outcome of micro-clustering is several small clusters
having unique properties due to the similarity between instances observed during the small
time duration. There are several stream clustering techniques available for online micro-
clustering which are compared in [45]. We have used the BIRCH (acronym of Balanced
Iterative Reducing and Clustering using Hierarchies) algorithm, that is a tree-based stream
clustering algorithm proposed in [13]. The algorithm constructs a clustering feature (CF)
tree for incoming data instances, in which leaf nodes are micro-clusters. BIRCH is a fast
and memory efficient algorithm and these characteristics make it suitable to be used in an
edge device.

3.4.2. Macro-Clustering

In the offline macro-clustering phase [12, 45], micro-clusters are further processed and
merged together to produce bigger clusters. The merging of clusters is based on the distance
between the cluster centroids. Hence, the clusters having centroids close to each other are
merged together to form a single cluster. Keeping in mind the fact that a rare-event has
distinctive features, which keeps it in a separate cluster. We have used Agglomerative Clus-
tering [44, 46] and used Ward method [14] to recursively merge micro-clusters by minimizing
variance between them.

Fig. 3 shows the overall process of cluster merging. Following Ward algorithm, note
that d is the squared Euclidean distance between the centroids of any two given micro-
clusters. A low value of d shows that two micro-clusters are close to each other having
similar characteristics, whereas a high values of d means that two clusters are far from
each other due to their varying characteristics. The algorithm recursively merges any two
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given micro-clusters at each step while optimizing the objective function which is based
on minimizing the total with-in cluster variance. The algorithm continuous the merging
process until only two clusters left indicating the normal events and rare-events, if exist.
The objective function considers a threshold value Th, which decides whether two micro-
clusters are close enough to be merged together or not. Theoretically, increasing the value
of Th expands the size of a recursively merged cluster while reducing the detection rate of
a rare-event, Whereas decreasing the value of Th results in recognizing a normal event as
a rare-event. The Th value varies from one environment to another and it is selected after
empirical analysis of received data.

Figure 3: Macro-cluster formation in IRESE.

4. Experimentation

In order to quantitatively assess the proposed approach, we have conducted experiments
with a typical use case involving the processing of audio data containing rare-events. In
fact, we can safely extend our hypothesis that IRESE is also valid for other similar use
cases which involve data streams from IoT devices having similar temporal and spectral
characteristics. For example, another suitable scenario is the detection of faults in the
machines using vibration and acoustic sensors. This section explains experiments conducted
to detect various types of rare-events. Continuing the discussion from previous sections, the
experiments validate the following claims in the context of rare-event detection: i) Detection
of rare-events with high precision is the core objective of this work, as lower precision values
generate more false alarms; ii) IRESE should independently detect rare-events, without
considering the type of an event; iii) rare-events should be detected without having any
prior knowledge since, as already mentioned, it is often difficult to develop prior knowledge
on rare-events in the form of labels or experts’ advice; iv) the whole process should be
automated and scalable while considering the same features for other similar use cases;
v) IRESE cannot be arbitrarily complex, as it is supposed to be executed by tiny edge
devices.
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4.1. Experimental setup

Connected devices and IoT technologies are spreading in all the application domains (e.g.,
health-care, smart homes, wearable devices, etc.) and they are changing how humans inter-
act with the surrounding environment. Typically, these devices have constrained computing
and networking capabilities in order to reduce costs and energy consumption since are often
battery-powered. In many scenarios, devices need an external entity, called gateway, that
is deployed close to devices and it is able to execute computing- and networking-intensive
operations, e.g., bridging different networking worlds like Bluetooth and Wi-Fi. One of the
players in the open-source landscape is the Adaptive Gateway for dIverse muLtiple Envi-
ronment (AGILE)[47]. AGILE is a modular software framework for IoT gateways with a
wide support for many network stacks and devices. Moreover, AGILE has been designed by
following the micro-service paradigm that was initially conceived for distributed systems.
This paradigm defines that all modules of the system are independently designed and im-
plemented and they are able to interact among them using a well-defined set of Application
Programming Interfaces (APIs). This enables strong modularity, resiliency against failures,
scalability, reliability and simpler maintenance. The paradigm has been successfully applied
to different domains (e.g., Cloud Computing).

AGILE follows this paradigm in order to implement modules and services: all modules
expose a set of APIs, via DBus1 or RESTful interfaces, that enable interactions and data
exchange. In this way, the gateway is more resilient against failures since, in the worst
case, if a module crashes the system remains alive maybe with a limited set of capabilities.
Finally, AGILE runs on x86 and ARM-based platforms like Raspberry Pi2.

The framework for audio rare-event detection presented in this work has been imple-
mented as an independent micro-service within the AGILE gateway framework. Since this
module requires a raw audio stream in order to extract features, the AGILE gateway board,
i.e., a Raspberry Pi, is powered with a USB microphone. This microphone is recognized
as a classic microphone by the gateway operating system. The micro-service records the
audio stream from the microphone, then it performs data buffering and windowing. Thus, it
extracts features over a temporal frame by computing MFCC, LPC and GFCC coefficients.
Consequently, the module feeds the algorithm with the feature vector and finally verifies if
the anomaly happened or not by checking which cluster, normality or anomaly, contains the
audio frame.

This module can be used with two different data source: recorded (from microphone)
audio stream and evaluation audio stream. Fig. 4 shows how it is possible to choose the
data source. If we select the recorded audio stream, the system behaves as presented above.
If we choose the latter stream, the module loads the audio stream from WAV files stored in
the SD card of the gateway. Using this mode, we can evaluate the system performances as
will be described in Section 4.

1https://dbus.freedesktop.org/
2https://www.raspberrypi.org/
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Figure 4: Functional schema, implementation of IRESE with AGILE.

4.2. Software tools

The overall system is implemented in Python. Three types of features are extracted
using three python libraries: 1) LPC features are extracted using audiolazy3 python library;
2) MFCC are extracted using librosa4; 3) GFCC are extracted using gammatone python
library5. We have used scikit-learn6 to apply unsupervised machine learning techniques
Birch and Agglomerative Clustering.

4.3. Dataset

There are several datasets available for various audio events — UrbanSound8K [30], TUT
Sound Events [48], and Audio set by Google [49] to name a few. In [50], author has provided
a resourceful compilation of various audio datasets which include tagged and mixed audio
events. Since we are using unsupervised machine learning to detect rare-events, we needed
a dataset having labeled time stamps of various rare-events with normal background audio
signals. In DCASE 2017 Challenge, authors produced a dataset with various backgrounds
for three events: gunshot, glass break, and baby cry. However, in our understanding, their
mixture model is not suitable for our case study, as we are looking for relatively more
prominent rare-events from different sources and having varying characteristics which could
highlight the seriousness of the situation For this purpose, we produced a dataset by mixing
various rare-events, from multiple sources, with different backgrounds. In order to ensure
the relatedness of this work with the state-of-the-art research happening in the domain,
we rely on already published datasets to produce our mixture models. Therefore, we col-
lected background sounds from DCASE 2017 Challenge dataset, and collected a subset,
containing several variations, of rare-events from UrbanSound8K or downloaded directly
from Freesound search engine. In particular, we have considered four types of rare-events:
gunshot, glass break, scream, and siren. Furthermore, the sounds in each type of rare-event
are also different from each other. We created in total 160 samples of each type of adding

3https://pythonhosted.org/audiolazy/
4https://librosa.github.io/librosa/
5https://github.com/detly/gammatone
6http://scikit-learn.org/stable/
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a rare-event at a random time instant in a background sound. We used Pydub7, python
library, for mixing rare-events with background sounds. Each sound clip randomly contains
exactly one rare-event. The sound is sampled at 44.1 KHz, which meets the standard audio
sampling rate. Since we are simulating an IoT environment, we can safely assume that these
sounds are similar as received by a microphone deployed in the environment. As illustrated
in Fig. 2, the data received from the IoT devices is temporarily stored in a buffer for few
seconds. The buffer size is variable, however, it remains fixed for a particular environment.
In these experiments, we have considered the buffer size equals to 30 seconds, which is
simulated by taking 30 second sound clip each time. The 30 second sound is further split
into frames, and for each frame features are extracted. We already discussed in detail the
feature extraction method in Sec. 3. However, here it is important to mention the number
of coefficients, we have considered for each of three types of features extraction methods:
LPC, MFCC, and GFCC. We have taken 10 coefficients of LPC, 40 MFCCs, and 40 GFCCs.
Thus, in total, the length of the feature vector is 90 in which each value is a floating point.

4.4. Experimental results

In this section, we will explain empirical results obtained while conducting experiments
using IRESE on the dataset described above. The two-staged unsupervised machine learning
strategy of IRESE ultimately produces two clusters: a cluster of normal events, and a
separate cluster of rare-event, if it exists. As mentioned in the previous section, we have
synthetically constructed the dataset, in which we have added a rare-event sound at a random
time instant in a background sound of relatively longer duration. For the sake of evaluation,
we recorded the time instant at which we added a rare-sound in a background sound clip.
The recorded information is used to evaluate the performance of IRESE by comparing the
time instant, called ”On-Set”, at which IRESE detects a rare-event to the real time instant
when the rare-event actually occurred according to records.

In order to evaluate the model, we have used matching matrix values: True positive
(TP), False positive (FP), and False Negative (FN). In these experiments, a TP occurs
when IRESE correctly separates a rare-event observation from the rest of the observations.
A FP occurs when IRESE wrongly detects a background sound or a normal event as a
rare-event, whereas a FN occurs when IRESE fails to distinguish between a rare-event and
background sounds. Additionally, we have also calculated precision (P), recall (R), and f-
measure (F1) values, where P gives us the positive predictive value, R gives us true positive
rate, and F1 score gives us the harmonic mean of P and R values. In conclusion, the
value of P decreases with an increase in number of FP and, similarly, the value of value
of R decreases as number of FN increases. Following equations are used to calculate these
measures:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

7https://pydub.com
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F1 = 2 · P ·R
P +R

(7)

Figure 5: Finding the optimized threshold (Th) values to detect rare-events

Fig. 5 shows a plot of P , R, and F1 values against the threshold (Th) values discussed
in Sec. 3.4.2 using a specific window size. It is clearly observable that as Th value increases
the precision increases and recall decreases. It confirms the trend that rare-event detection
rate decreases with the increase in Th value, whereas more false predictions are produced
with low values of Th. The reason is that the boundary of the cluster defining normal
events grows with the value of Th. Consequently, at a certain point, the size of the normal
cluster grows so much that even an anomalous observation (occurring at a relatively larger
distance) becomes part of normal cluster which increases the number of FN. We have selected
an optimum value of Th, which could be observed in the graphs, where the combination of
all three values (P , R, and F1) is highest. Thus, for gunshot the optimum value of Th is
0.4 by using a window size of 0.5 second, for glass break the optimum value of Th is 0.45 by
using a window size of 1 second, for siren the optimum value of Th is 0.3 by using a window
size of 1.25, and for scream event the optimum value of Th is 0.4

Window Size

Gun shot (Th=0.4) Glass break (Th=0.45) Siren (Th=0.3) Scream (Th=0.4)

TP FP FN TP FP FN TP FP FN TP FP FN
0.25 151 21 9 156 36 4 156 11 4 157 46 3
0.5 148 10 12 153 32 7 155 11 5 157 28 3
1 143 11 17 149 12 11 154 6 6 157 20 3

1.25 125 27 35 136 18 25 154 6 6 151 19 9
1.5 116 28 44 124 27 36 152 7 8 151 16 9
2 103 26 57 102 23 58 152 6 8 145 13 15

Table 1: TP, FP, and FN results using IRESE for various rare-events with different window sizes.

Table 1 shows the values of TP, FN, and FP measures for the four types of events.
Each row in the table represents the results obtained for a particular window size. Notice
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that window size is the size of an individual frame, as defined in (1). We can observe a
trend in values that TP decreases as window size increases, and it is true for all the cases.
Consequently, FN increases as the window size increases, whereas FP does not follow a
specific trend; it is probably due to using different background sounds which may contain
some sounds similar to the rare-events.

Window Size

Gun shot (Th = 0.4) Glass break (Th =0.45) Siren (Th=0.3) Scream (Th=0.4)

P R F1 P R F1 P R F1 P R F1
0.25 0.87 0.94 0.91 0.81 0.97 0.88 0.93 0.97 0.95 0.77 0.98 0.86
0.5 0.93 0.92 0.93 0.82 0.95 0.88 0.93 0.96 0.95 0.84 0.98 0.91
1 0.92 0.89 0.91 0.92 0.93 0.92 0.96 0.96 0.96 0.88 0.98 0.93

1.25 0.82 0.78 0.8 0.88 0.85 0.86 0.96 0.96 0.96 0.88 0.94 0.91
1.5 0.8 0.72 0.76 0.82 0.77 0.79 0.95 0.95 0.95 0.9 0.94 0.92
2 0.79 0.64 0.71 0.81 0.63 0.71 0.96 0.95 0.95 0.91 0.9 0.91

Table 2: Performance evaluation results using IRESE for rare-event detection.

While looking at Table 2, we can estimate a suitable window size to detect a particular
type of rare event and using an optimum value of Th. The precision increases as the number
of FP decreases, whereas recall increases as number of FN decreases. In general, we can
observe that suitable window size vary from one event to another and it depends on the
duration of occurrence of a particular event. In summary, window size 0.5 seconds show the
optimum detection performance with precision = 0.93, recall = 0.92, and F -measure =
0.93. For the glass break, the optimum window size is 1 second with a precision = 0.92,
recall = 0.93, and F -measure = 0.92. Detection of sirens performs better with a window
size of 1.25 seconds with all precision, recall, and F -measure equals to 0.96. The highest
suitable window size is observed for scream which is 1.5 seconds with a precision = 0.9,
recall = 0.94, and F -Measure = 0.92.

Window Size

Gun shot Glass break Siren Scream

P R F1 P R F1 P R F1 P R F1
0.25 0.66 0.96 0.79 0.63 0.98 0.77 0.9 0.97 0.93 0.66 0.96 0.78
0.5 0.76 0.94 0.84 0.72 0.97 0.83 0.95 0.97 0.96 0.78 0.96 0.86
1 0.76 0.91 0.83 0.83 0.95 0.89 0.94 0.97 0.95 0.81 0.98 0.89

1.25 0.63 0.84 0.72 0.76 0.88 0.82 0.95 0.97 0.96 0.83 0.96 0.89
1.5 0.64 0.81 0.72 0.73 0.86 0.79 0.96 0.95 0.95 0.79 0.92 0.85
2 0.68 0.74 0.71 0.71 0.78 0.75 0.96 0.95 0.95 0.8 0.9 0.84

Table 3: Performance evaluation results without using IRESE (only macro-clustering) for rare-event detec-
tion.

In our understanding, this variation in optimum window sizes is due to the duration of
rare-events. For example, a gunshot sound is sudden and exists for a very short duration
such as between 0.5 seconds to 1 second. On the other hand, the sound of scream normally
last longer (upto few seconds) such as 1.5 seconds or 2 seconds, which is also obvious from
the results.

In order to prove the significance of IRESE, we have also calculated the results of rare-
event detection using only Agglomerative Clustering technique (i.e., macro-clustering stage).
Note that two-stage strategy, micro-clustering followed by macro-clustering, improves the
rare-event detection rate, which is obvious by comparing the results presented in Table 2 and
Table 3. While using IRESE, we can see an improvement in all three calculated (P , R, and
F1 ) values for different rare-events with different window sizes. Besides this improvement,
the major benefit we achieve with IRESE is its suitability for deploying it in an edge device.
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The micro-clustering stage of IRESE is able to quickly extract the statistical information
from an incoming high speed data stream, without storing the data. Later on, this statistical
information is further processed to make macro-clusters, which eventually indicates the
presence of rare-events in the incoming data stream. Hence, IRESE is an effort to provide
a solution to detect rare-events without storing incoming data on an edge device and it also
empowers an edge device with artificial intelligence to reduce the burden on a cloud; sending
only the patterns of interest to the cloud.

5. Conclusion

Edge Computing is becoming crucial with the increase in the amount of data produced
from various IoT devices. Due to the limited amount of network resources, data processing
near the source is highly required, especially for time critical applications. Moreover, the
data stream generated by multiple sources always contain interesting patterns, which must
be discovered to take important decisions. In this context, rare-event detection using an edge
device is a promising research area, in which the objective is to detect critical events quickly
and near the source, so that necessary actions can be taken accordingly. The proposed
system, IRESE, has shown a significant performance to detect various types of rare-events:
gunshot, glass break, siren, and scream. Moreover, we have used two-staged unsupervised
machine learning strategy, which enable the system to detect interesting patterns in the
form of rare-events without having any prior knowledge. The two-tier architecture considers
one-pass nature of data streams and quickly extracts statistical information using micro-
clustering and, afterward, micro-clusters are recursively merged to separate rare-events from
the normal events. We have practically implemented and tested the whole system using an
AGILE-based IoT gateway, which allowed us to fine tune IRESE’s parameters based on the
actual hardware limitations. In conclusion, IRESE is a lightweight and portable system,
which could be quickly and easily deployed in various environments and start detecting
rare-events with initiating any training session.
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