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A B S T R A C T

Hairpin DNA (hpDNA) loops were used for the first time as molecular binding elements in gas analysis. The
hpDNA loops sequences of unpaired bases were studied in-silico to evaluate the binding versus four chemical
classes (alcohols, aldehydes, esters and ketones) of volatile organic compounds (VOCs). The virtual binding score
trend was correlated to the oligonucleotide size and increased of about 25% from tetramer to hexamer. Two
tetramer and pentamer and three hexamer loops were selected to test the recognition ability of the DNA motif.
The selection was carried out trying to maximize differences among chemical classes in order to evaluate the
ability of the sensors to work as an array. All oligonucleotides showed similar trends with best binding scores for
alcohols followed by esters, aldehydes and ketones. The seven ssDNA loops (CCAG, TTCT, CCCGA, TAAGT,
ATAATC, CATGTC and CTGCAA) were then extended with the same double helix stem of four base pair DNA
(GAAG to 5′ end and CTTC to 3′ end) and covalently bound to gold nanoparticles (AuNPs) using a thiol spacer
attached to 5′ end of the hpDNA. HpDNA-AuNPs were deposited onto 20MHz quartz crystal microbalances
(QCMs) to form the gas piezoelectric sensors. An estimation of relative binding affinities was obtained using
different amounts of eight VOCs (ethanol, 3-methylbutan-1-ol, 1-pentanol, octanal, nonanal, ethyl acetate, ethyl
octanoate, and butane-2,3-dione) representative of the four chemical classes. In agreement with the predicted
simulation, hexamer DNA loops improved by two orders of magnitude the binding affinity highlighting the key
role of the hpDNA loop size. Using the sensors as an array a clear discrimination of VOCs on the basis of
molecular weight and functional groups was achieved, analyzing the experimental with principal components
analysis (PCA) demonstrating that HpDNA is a promising molecular binding element for analysis of VOCs.

1. Introduction

In the past decade, DNA was extensively used in sensors design,
fabrication, characterization and application providing new impulses to
analytical research (Bettazzi et al., 2017; Rasheed and Sandhyarani,
2017). Through the selection of the DNA sequence, a wide variety of
analytical applications have been proposed, the majority of which were
applied to liquid samples. Currently, very few gas sensors propose DNA
as functional material (Wasilewski et al., 2017). The first attempts to
use DNA in gas sensing was reported few years ago and was obtained by
decoration of carbon nanotubes (Khamis et al., 2012; Kybert et al.,
2013; Staii et al., 2005; Su et al., 2013). In a recent work DNA extracted
from fish sperm was introduced between a gate dielectric and an

organic semiconducting layer to build up an organic field-effect tran-
sistor sensor for NO2 detection (Shi et al., 2016). Another interesting
work evaluated the ability to detect odors delivered in the vapor phase
of double-stranded (dsDNA) and single-stranded DNA (ssDNA); ssDNA
exhibited sequence-specific responses for a variety of volatile com-
pounds (White et al., 2008).

To date no gas sensor works has explored the use of hpDNA for
sensing of VOCs. In fact, hpDNA has been used for sensor applications
only in liquid media, mainly coupled to electrochemical transducers
(Martín-Fernández et al., 2015; Wang et al., 2014). The particular shape
of hpDNA is very interesting since it appears ideal to maximize the
orientation of the binding element (via the stem) using the loop as
sensing element.
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In this work, hpDNA conjugated with AuNPs was used as a mole-
cular binding element in piezoelectric gas detection (Fig. 1S). Piezo-
electric transducers can monitor the frequency change of functionalized
QCMs when gaseous molecules are adsorbed, providing the relationship
between mass and resonant frequency shift (Skládal, 2016). In gas
piezoelectric sensors, the use of AuNPs as platform for VOCs binding
was found to increase the sensitivity by two orders of magnitude versus
monolayer modified QCMs (Compagnone et al., 2013).

The new hpDNA-AuNP piezoelectric gas detection strategy, de-
scribed in this paper, is based on in-silico calculation of the hpDNA loop
binding. HpDNA loop shape is ideal to build sensing molecules since
provides a large combinatorial complexity of structures; the latter can
be tailored with the help of computer-aided methods to respond to
different volatile chemicals. In-silico rationally designed molecular
traps have been demonstrated to have a strong impact on the devel-
opment of analytical strategies since they minimize experimental issues
such as reagent stability and nonspecific recognition also for separation
procedures (Baggiani et al., 2013; Mascini et al., 2013; Narcisi et al.,
2011; Uzun and Turner, 2016). A computational approach was also
recently used to reduce the large number of attempts necessary to select
the right combination of tools for different gas sensing application
(Gustafson and Wilmer, 2017; Mascini et al., 2017; Pizzoni et al., 2014).

AuNPs were used as immobilization platform for the hpDNA se-
quences. The relative binding affinities of the hpDNA loops vs. different
VOCs belonging to relevant chemical classes were evaluated. The re-
sults showed a significant increase of the binding affinity versus VOCs
with the increase of the hpDNA loop size highlighting the key role of
the molecular geometry.

The hpDNA sensors were then used in a sensor array format using
the principle of combinatorial selectivity. The combination of such
sensors into arrays was thought to overcome the limited selectivity of a
single oligonucleotide that is common, to the majority of gas sensing
devices. When complemented by a multivariate data analysis tech-
nique, this sensor array allows for the classification and the identifi-
cation of compounds with a performance well beyond that of a single
selective sensor.

As a practical use, the pattern recognition of these new sensors was
estimated by using the unsupervised multivariate algorithm PCA, a
convenient tool often used in sensors post-processing analysis
(Akamatsu et al., 2017; Compagnone et al., 2015; Di Natale et al., 2014;
Imamura et al., 2017). Data obtained demonstrated that the hpDNA
sensors, used as array, were able to discriminate the eight molecules on
the basis of molecular weight and functional groups.

2. Materials and methods

2.1. In-silico screening

The in-silico screening procedure was aimed to test the virtual
binding affinities of all possible combinations of tetramer, pentamer
and hexamer single strain DNA (ssDNA) of the hairpin loop versus four
chemical classes. The classes were represented by the following com-
pounds: 14 Alcohols ((1S,2R,5R)-2-isopropyl-5-methyl-cyclohexanol;
(2S)-propane-1,2-diol; (2Z)-3,7-dimethylocta-2,6-dien-1-ol; (3R)-3,7-
dimethylocta-1,6-dien-3-ol; (3R,6Z)-3,7,11-trimethyldodeca-1,6,10-
trien-3-ol; (3S)-3,7-dimethyloct-6-en-1-ol; (3S)-oct-1-en-3-ol;
(4S,4aR,8aR)-4,8a-dimethyldecalin-4a-ol; 2-Propanol; 3-methylbutan-
1-ol; Ethanol; Hex-3-en-1-ol; hexan-1-ol; Terpinen-4-ol); 13 aldehydes (
(2E,6Z)-nona-2,6-dienal; (2S)-2-methylbutanal; (2Z)-3,7-dimethylocta-
2,6-dienal; (3S)-3,7-dimethyloct-6-enal; (E)-non-2-enal; (Z)-hex-3-enal;
2-methylpropanal; 3-methylbutanal; acetaldehyde; decanal; hexanal;
nonanal; octanal); 18 esters (5-methylhexanoate; butanoate; ethyl (2S)-
2-methylbutanoate; ethyl 3-methylbutanoate; ethyl acetate; ethyl bu-
tanoate; ethyl hexanoate; ethyl octanoate; ethyl propanoate; hexyl
acetate; Isopentyl acetate; methyl acetate; methyl butanoate; methyl
formate; methyl propanoate; octyl acetate; pentyl butanoate; pentyl

pentanoate); 5 ketones (5 molecules: (1S,4S)-1,7,7-trimethylnorbornan-
2-one; acetone; butane-2,3-dione; cyclopentadecanone; pentane-2,3-
dione). The 50 molecules were selected in order to possess different
functional groups and size.

The entire DNA library of tetramer, pentamer and hexamer ssDNA
was generated using Hyperchem 8.0.5 software on a Microsoft
Windows 10 laptop. Calculations of the in-silico screening process, in-
cluding molecular docking run and data preparation were performed
using a desktop computer with 19 processors Intel Xeon X5690 at
3.47 GHz each, with 94.5 GiB RAM, running Kernel Linux 2.6.32-
642.1.1el6.x86_64, GNOME 2.28.2. Tools from OpenEye Scientific
Software package under academic license, were used at different stages
of the in-silico procedure. VOCs were obtained via LEXICHEM 2.1.0
package, by converting ligands standard IUPAC names into their cor-
responding structures (LEXICHEM version 2.1.0). SZYBKI 1.5.7 with
default parameterization was used to optimize molecular geometries
(SZYBKI version 1.5.7). Conformational space for both ssDNA and VOCs
was taken into account with OMEGA 2.4.6 (Hawkins and Nicholls,
2012; Hawkins et al., 2010; OMEGA version 2.4.6). Multi-conformer
rigid body docking was carried out using OEDocking 3.0.0, having
Chemgauss4 as scoring function (Kelley et al., 2015; OEDocking version
3.0.0). Structures visualization and generation of molecular surfaces
were performed using VIDA 4.1.1 (VIDA version 4.1.1).

The entire DNA molecular surface was included in the active site
box defining the area where VOCs were expected to bind. For each
ssDNA receptor, a dedicated box (10– 20 nm3) was generated. The time
elapsed for processing each DNA conformer was about 2min per pro-
cessor, from the initial 3D structures generation to final docking results.
Ten conformers per ssDNA and a maximum of 200 conformers for each
of the 50 VOCs were considered. The binding score average for each
DNA was calculated over all the conformers. The entire process was
automated using a bash script and using a freeware BASIC-like scripting
language (AutoIT V3) for post processing data analysis.

2.2. Experimental procedures

All the reagents and the eight VOCs were purchased from Sigma-
Aldrich (Italy). The eight VOCs (ethanol, 3-methylbutan-1-ol, 1-pen-
tanol, octanal, nonanal, ethyl acetate, ethyl octanoate, and butane-2,3-
dione) were of analytical grade. HpDNA with unpaired tetramer loop
were purchased from Thermo Fischer Scientifics (Italy); the others were
from Integrated DNA technologies (USA). Standard desalted purified
oligonucleotides were bought with a thiol spacer having six carbons
(C6).

The piezoelectric measurements were carried out using an Enose-
UTV from Sensor group, University of Rome Tor Vergata (Italy).
20MHz QCM sensors, were from KVG GmbH (Germany).

Colloidal AuNPs were synthesized using the trisodium citrate re-
duction method (Frens, 1973). In brief, 50mL of 0.3mM tetra-
chloroauric acid solution (in water) was stirred vigorously and heated.
At boiling point, 1.5 mL of 40mM trisodium citrate solution was added.
The mixture was left boiling for 20min (the color turned from clear
liquid to wine red). The colloidal suspension was then cooled down to
4 °C. Ultraviolet-visible spectrophotometry was used to confirm the
AuNPs formation and verify the AuNPs dispersion. The concentration of
AuNPs was 3.5×10-9 M considering an average diameter of 15 nm as
reported by Sanghavi et al. (2016).

Immobilization of the oligonucleotides on the AuNPs surface was
carried out covalently using a C6 thiol modifier group attached to 5’
phosphate end of the hpDNA. Each hpDNA was dissolved in deionized
water and added to 1mL of the AuNPs colloidal solution at a final
concentration of 0.678 μM. The hpDNA-AuNPs colloidal suspensions
were incubated at + 5 °C for 12 h. HpDNA-AuNPs were then cen-
trifuged at 13,000 rpm for 30min at 4 °C. The colorless supernatant was
discarded and the solid pellet was resuspended in 1mL of deionized
water. All steps were monitored via UV–Vis spectrophotometry.
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The QCM sensors modification was achieved by drop casting 5 μL of
the hpDNA-AuNP - suspension on each side of the crystal and let dry for
few minutes. Before the first use, the QCM sensors were completely
dried under N2 at a flow rate of 2 L/h and stored at room temperature in
the dark when not in use. The shape of a single crystal unit resonating at
about 20MHz was a circular plate with a diameter of 8mm (Zampetti
et al., 2008). The QCM background noise in all cases was±1Hz.

The piezoelectric measurements were carried out using N2 as carrier
gas at a flow rate of 2 L/h. Measurements of the VOCs were carried out
using different amounts of compounds introduced in a gas-tight lab
bottle (100mL) connected to the measuring chamber containing sensor
array via three-way stop-cocks. The liquid organic compound was
completely evaporated placing the bottle at 45 °C for 10min. The
temperature was then brought back to 25 °C and the measurement
started opening the stop-cocks and, then, flowing the analyte to the
sensor chamber. The frequency shift (ΔF), taken as analytical signal was
recorded. Steady state was reached between 100 and 200 s after
opening the stop-cocks. After each measurement, a complete recovery
of the signal was achieved under N2 flow in about 400 s. Piezoelectric
responses dataset was analyzed by the unsupervised multivariate
technique principal component analysis (PCA) using MatLab R2011
(USA). Dataset were autoscaled (zero mean and unitary variance) be-
fore analysis. PCA was applied to inspect the multivariate data structure
by decomposing a data matrix of eight rows (the VOCs) and seven
columns (the hpDNA-AuNP sensors).

3. Results and discussion

3.1. In-silico screening: ssDNA vs chemical classes

The binding properties of the ssDNA libraries were calculated
against 50 VOCs molecules belonging to four different chemical classes
(alcohols, aldehydes, esters and ketones). Only the four natural bases
adenine (A), cytosine (C), guanine (G) and thymine (T) were used to
build the ssDNA libraries. The minimum oligomer size to have a sig-
nificant library of loops was using four DNA bases. The tetrameric
structure was then the starting library tested. Considering that more
bases can contribute synergistically in binding the VOCs, the size of the
oligomer library was increased adding in every library an additional
base. All the possible combinations of the four DNA bases were tested;

the libraries consisted, then, in 256 elements for tetramers, 1024 ele-
ments for pentamers and 4096 elements for hexamers. Increasing the
oligomer size by using a pure combinatorial approach generates too
much structures to be calculated, therefore hexamer was the largest
structure tested in this work.

The molecular docking functions used screened compounds that
potentially interacted with the binding site predominantly through non-
covalent interactions, particularly hydrogen bonds. Therefore, only the
hpDNA loops having unpaired bases were virtually screened.
Performing an in-silico screening of the entire hairpin DNA increased
enormously the machine time consumption; this was avoided con-
sidering that the shape of double strain DNA has no preferential sites for
the VOCs binding.

Fig. 1 reports the binding score trend of tetramer, pentamer and
hexamer hpDNA loop libraries for the four chemical classes tested. The
binding score was reported as the average calculated over 10 con-
formers for each ssDNA sequence. The score values were calculated
using Chemgauss4 scoring function, thus lower values represented
higher ssDNA–ligand affinity. The Chemgauss4, the new scoring func-
tion from OpenEye software is a modification of the Chemgauss3 that
has improved hydrogen bonding and metal chelator functions. This
scoring function was particularly suitable for the focus of this work
based on the comparison between unpaired DNA bases in binding the
VOCs, particularly via electrostatic interactions (hydrogen bond, van
der Waals forces).

The molecular docking functions used screened compounds that
potentially interacted with the binding site predominantly through non-
covalent interactions, particularly hydrogen bonds. Therefore, only the
hpDNA loops having unpaired bases were virtually screened. Fig. 1
reports the binding score trend of tetramer, pentamer and hexamer
hpDNA loop libraries for the four chemical classes tested. The binding
score was reported as the average calculated over 10 conformers for
each ssDNA sequence. The score values were calculated using chem-
gauss4 scoring function, thus lower values represented higher
ssDNA–ligand affinity. The oligonucleotides virtual binding score trend
was correlated to the oligonucleotide size for all chemical classes, with
values increasing of about 25% from tetramer to hexamer. All oligo-
nucleotides had common trend with best binding scores for alcohols
followed by esters, aldehydes and ketones. In all libraries, alcohols were
2 times higher than ketones. The minimum-maximum dynamic range

Fig. 1. Binding score trend of tetramer, pentamer and hexamer hpDNA loop libraries for the four chemical classes tested. The data were sorted in ascending order of
score, thus not necessarily a correspondence must exist between the positions of the ssDNA in each curve.
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for each chemical class was quite narrow for tetramers becoming re-
levant only for the hexamer DNA library (-3.07 kcal/mol). In all cases,
average and median were very close to each other demonstrating a
good symmetry in normal distribution.

Structural analysis was carried out to study the occurrence of the
four DNA bases in each oligonucleotide position. The 5% top ranked
structures of the tetramer, pentamer and hexamer unpaired DNA were
tested versus the four chemical classes. The structural data exhibited a
very high level of similarity in DNA bases distribution. Top ranked
tetramer and pentamer DNA had higher amount of adenine and thy-
mine, however, in the hexamer DNA the occurrence of both purines was
higher than pyrimidines.

Due to the small combinations generated by only four different DNA
bases, the binding difference within the DNA library was likely due to
the steric/conformational effects. Increasing the DNA in size enhanced
the internal flexibility of specific DNA regions and the target accessi-
bility to the binding box conformational space.

Fig. 2 reports the specific positions of the DNA bases contributing
cooperatively to target binding. Top binding scores were obtained when
DNA docked VOCs with a saddle shaped binding pocket, allowing oli-
gonucleotide to bury the entire ligand in its surface. On the other hand,
inefficient binding was found when DNA docked VOCs with a planar
interaction. This confirms that the degree of freedom to move around
the DNA backbone of the single bases was the major effect to explain
the binding score data; this is particularly true for hexamer DNA where
the probability of synergic cooperation is higher.

The results of the virtual screening were used to select some oli-
gonucleotides with different affinities for the VOCs in order to evaluate
their potential applicability in gas analysis by using QCM sensors.

Since the final aim is the use of the sensors as array (as electronic
nose), the loops for the experimental data were selected taking into
account not the absolute “best” binding scores but the minimum cross
reactivity. This was done looking at the largest differences among the
chemical classes.

The selection was finalized to maximize the recognition properties
of DNA motif between chemical classes. Thus, two tetramers, two
pentamers and three hexamer DNA were finally chosen. Table 1 reports
the binding score of the DNA versus the VOCs selected in experimental
part. The binding score average obtained by the simulations of the
ssDNA versus the chemical classes (14 alcohols, 13 aldehydes, 18 esters
and 5 ketones) was also reported in order to emphasise the differences
between chemical class, average and single compounds of the same
class.

The selected oligonucleotides have the same trend of the entire DNA
library with better interaction for alcohols followed by esters, alde-
hydes, and ketones showing always the lowest interactions. According

to the binding score data, all the DNA sequences exhibited similar trend
for alcohols except for ethanol; binding scores varied significantly for
the interaction with esters and aldehydes and, in the case of one hex-
amer, also for ketones. Three of the seven oligonucleotides selected for
the experimental part, CCAG, TAAGT and CTGCAA, were oligonu-
cleotides supposed to be poor candidates in binding VOCs. These oli-
gonucleotides were selected to test the matching between in-silico and
experimental data.

The oligonucleotide TTCT showed a good interaction particularly
for aldehydes and ethyl octanoate. The other tetramer CCAG exhibited
a clear difference in binding alcohols and the other VOCs selected in
experimental part. The pentamer TAAGT was selected because of the
very low interaction with all the molecules compared to its counterpart
CCCGA that had almost two-fold more interaction energy for each of
the VOC.

A clear difference in affinity scores was observed using the hex-
americ DNA. As reported also considering the entire DNA library, in-
creasing the number of bases, there was a considerable increase of
docking scores. The hexamer ATAATC showed better binding score
than the other oligonucleotide receptors for most of the ligands and, in
particular, for ethyl octanoate and both aldehydes (nonanal and oc-
tanal). This hexamer and CATGTC exhibited the same pattern in
docking the alcohols, aldehydes and esters, showing a significant dif-
ference among small compounds, as ethanol and ethyl acetate, and the
other molecules. All oligonucleotides exhibited affinity properties in-
versely correlated to the molecular weight except the hexamer CTGCAA
that had good affinity only for ethanol and half interaction energy for
all the other VOCs when compared to the other two hexamer DNA.

It should be noted that the same stem DNA sequence was used for
the realization of the hpDNAs in order to evaluate the contribution of
the loop. Thus, some oligonucleotides, particularly in hexamer DNA,
were discarded due to stem-loop intramolecular base pairing.

3.2. AuNPs-DNA functionalization and QCM sensors modification

The selected sequences were extended with the same double helix
stem of four base pair DNA attaching to the 5’ end the sequence GAAG
and to the 3’ end the sequence CTTC. Each secondary structure was
analyzed using the Mfold Web Server (www.unafold.rna.albany.edu) to
check the stem-loop intramolecular base pairing. All selected DNA had
unpaired loop in standard conditions.

The AuNP functionalization with hpDNA was followed by UV–Vis
spectroscopy. The amount of hpDNA for the AuNPs functionalization
was selected testing different concentrations of hpDNA (0.136, 0.271,
0.678 and 1.355 μM.).

The UV–VIS spectra after AuNPs functionalization with hpDNA are

Fig. 2. Electrostatic molecular surfaces of the ssDNA CTGCAA, with a planar interaction surface (binding score -2.26 Kcal/mol) (A), and ATAATC with a saddle
shaped binding pocket (binding score -6.28 Kcal/mol) (B) in complex with ethyl octanoate (highlighted in green).
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reported in supplementary material (Fig. 2S). Similar absorption
spectra were obtained in the 350–800 nm range for bare AuNPs and all
the different amounts of hpDNA-AuNPs tested demonstrating that the
functionalization did not cause AuNPs aggregation. Similar results were
obtained using all DNA loops.

The UV–Vis spectra of the hpDNA-AuNPs resuspended in the same
volume of water after centrifugation showed that centrifugation was
essential to remove chemicals excess after nanoparticles functionaliza-
tion. The spectra (Fig. S2B) showed that the AuNPs were stabilized by
the negatively charged DNA that acted as electrostatic repulsing cap-
ping agent among the AuNPs as reported in the literature (Baldock and
Hutchison, 2016; Xu et al., 2016). Moreover, the nanoparticles func-
tionalization with hpDNA was confirmed by the presence of a sharp
peak at 260 nm indicating the presence of DNA. Unmodified AuNPs
were not easily resuspended in water, showing an irreversible ag-
gregation due to the centrifugation step. The spectra of the supernatant
(Fig. 2S C) gave an indirect indication of the maximum amount of
hpDNA necessary to saturate the binding sites of AuNPs. In fact, the
peak at 260 nm, gave indication of unbound hp-DNA. The latter in-
creased significantly for hpDNA concentrations higher than 0.678 μM,
indicating saturation of the binding sites. Therefore this concentration
was chosen for the functionalization of all the AuNPs.

After functionalization, the 20 MHz QCM sensors surfaces were
modified by drop-casting of 2.5 μL of hpDNA-AuNP suspension on each
side of the crystal and let drying at room temperature. This procedure
was repeated to assess the maximum loadable amount. Every 2.5 μL
addition of hpDNA-AuNP suspension on each side of the sensor led to a
variation of approximately 2.5 kHz for all the sensors realized de-
monstrating the reproducibility of the deposition procedure. After four
times (20 μL total volume) QMC crystals frequency crashed and no
variation was detectable. Thus, a total amount of 20 μL of hpDNA-AuNP

suspension was selected for further work, leading to a variation of 10
kHz in all cases.

3.3. QCM sensors response to VOCs

QCMs frequency shifts (ΔF) were used to calculate the relative ex-
perimental binding constants of the eight VOCs and to assess the cor-
relation between the virtual screening and real binding data. For this
reason, pure VOCs were tested by using N2 as carrier gas directly in the
measuring chamber.

The relative binding affinities of the complex hpDNA VOC were
calculated by adding to the gas-tight lab bottle different amount of li-
quid pure VOCs. After complete evaporation of the analyte (achieved
incubating at 45 °C for 10 min), this was sent to the sensors measuring
chamber using N2 as carrier. The VOC binding to the sensor surface was
estimated by recording the frequency shift. A quantitative evaluation of
the mass captured by the QCM sensors was achieved through the os-
cillation constant (Kq = −4.8 Hz/ng). Using the estimated nanograms
it was possible to calculate the moles bound by the sensor. Fig. 3 shows,
as an example, the frequency shifts measured with the sensor modified
with CTGCAA as loop, for different amounts of 1-pentanol. The piezo-
electric sensorgram was similar for all hpDNA-AuNP and VOCs,
showing a rapid decrease of the signal after the stop-cocks opening,
followed by a slower raise up to the steady state.

The steady state was reached between 100 and 200 s after the start
of the measurement. The adsorption kinetics was similar for all the
VOCs tested. The frequency shift (ΔF), taken as analytical signal, was
recorded for all cases before desorption.

The bound compound was determined assuming 1:1 complexation
stoichiometry. Using the Scatchard model, the ratio between bound and
free compound versus the bound was plotted and the relative binding
affinity was calculated by linear regression fitting. The results are re-
ported in Table 2.

Despite their different structure both tetramer DNA loops had very
similar binding affinity for all VOCs. The tetramer TTCT exhibited slight
better affinity for aldehydes leading to a significant correlation with
simulated results. On the contrary, there was no correlation for the
other DNA tetramer loop looking at 1-pentanol and ethyl octanoate,
respectively. These two molecules and 3-methylbutan-1-ol were bound
by the pentamer CCCGA with an affinity of one order of magnitude
higher than both the DNA tetramers. The other DNA pentamer loop,
TAAGT, had the lowest binding affinity for all molecules. The correla-
tion coefficient of this pentamer DNA was only 0.37 because of the lack
of correlation for alcohols. Affinity was high in-silico and low for the
experimental data.

The DNA loop size played an important role in the observed ex-
perimental behavior improving the binding affinities, as revealed by the
DNA hexamer loop binding data. Both hpDNA having as loop ATAATC

Table 1
Binding score average (Kcal/mol) of the tetramer, pentamer and hexamer DNA versus the VOCs tested in experimental part. In italic-bold, the binding score obtained
by the simulations of the ssDNA versus the chemical classes (14 alcohols, 13 aldehydes, 18 esters and 5 ketones). The average and standard deviation was calculated
over 10 conformers.

CCAG TTCT CCCGA TAAGT ATAATC CATGTC CTGCAA

Ethanol −2.72±0.16 −2.41±0.17 −2.77± 0.28 −2.28± 0.23 −3.21± 0.29 −3.09±0.28 −3.24±0.32
3-methylbutan-1-ol −3.23±0.29 −2.77±0.17 −3.26± 0.20 −2.74± 0.19 −4.63± 0.23 −4.12±0.29 −2.72±0.19
1-pentanol −3.30±0.23 −3.22±0.32 −3.53± 0.32 −2.48± 0.20 −5.14± 0.36 −4.21±0.42 −2.82±0.14
Alcohols −2.94±0.15 −3.12±0.16 −3.38±0.30 −2.39±0.12 −5.55±0.28 −4.75±0.38 −3.01±0.21
Octanal −2.39±0.19 −3.07±0.15 −2.62± 0.16 −1.54± 0.08 −5.13± 0.26 −3.71±0.22 −2.40±0.22
Nonanal −2.32±0.16 −3.24±0.26 −2.56± 0.26 −1.53± 0.09 −5.54± 0.44 −4.05±0.36 −2.56±0.26
Aldehydes −2.25±0.18 −2.78±0.28 −2.42±0.22 −1.55±0.14 −4.67±0.23 −3.39±0.17 −2.27±0.14
Ethyl acetate −2.17±0.15 −2.19±0.15 −2.49± 0.22 −1.51± 0.14 −3.64± 0.18 −2.68±0.16 −1.90±0.17
Ethyl octanoate −1.95±0.14 −3.14±0.16 −2.49± 0.17 −1.46± 0.07 −6.28± 0.57 −4.20±0.38 −2.26±0.11
Esters −2.19±0.20 −2.73±0.22 −2.53± 0.23 −1.58± 0.16 −4.60± 0.23 −3.37±0.24 −2.26±0.14
Butane-2,3-dione −2.02±0.14 −2.51±0.15 −1.88± 0.11 −1.44± 0.09 −3.13± 0.28 −2.17±0.17 −1.95±0.14
Ketones −1.84±0.15 −2.17±0.11 −1.94±0.16 −1.24±0.12 −3.55±0.18 −2.43±0.15 −1.81±0.16

Fig. 3. Frequency shifts recorded by the sensor modified with CTGCAA after
introducing in the 100-mL glass bottle different micromolar amounts of 1-
pentanol. In all cases, the relative binding affinity between hpDNA and VOCs
were calculated taking the frequency shift before desorption of the compound
adsorbed on the QCM surface modified with hpDNA-AuNP.
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and CATGTC showed a significant interaction with ligands, which was
approximately two fold higher than the smaller DNA loop. This was in
good agreement with the prediction by virtual screening. Strong in-
teraction with larger molecular weight molecules such as 1-pentanol,
octanal, nonanal and ethyl octanoate was observed. On the other hand,
the binding behavior of the other DNA hexamer, CTGCAA, was in
agreement with the virtual screening results only for alcohols. The
different responses of these DNA hexamers to the VOCs emphasized the
importance of the chemical nature of the DNA loop. Such hetero-
geneous data set demonstrated that the binding affinities did not de-
pend on the presence of the stem that was the same for all hpDNA. It
should be noted that the seven ssDNA were extended with the same
double helix stem of four base pair DNA, that played as spacer. The
hairpin structure was chosen to have unpaired DNA bases in the loop
therefore with more probability to bind the target via electrostatic in-
teractions (hydrogen bond, van der Waals forces). By increasing the
oligomer size, it was supposed that more bases contributed synergisti-
cally in binding the VOCs. From the results obtained was clear that
larger structures gave better results in terms of chemical classes de-
tection and discrimination. However, if compared with peptides from a
previous work (Mascini et al., 2017) detection specificity of oligonu-
cleotides appeared limited. As a consequence, oligonucleotides pro-
posed in this work can be only used for the classification of different
VOCs patterns rather than to track individual VOC.

The inter-relationships between the sequence-specific responses of
hpDNA to VOCs were highlighted considering all sensors measurements
in multivariate analysis format. The data set was represented by the
hpDNA-AuNPs-QCMs frequency shifts obtained using 900 μmoles of
each VOC.

The data were autoscaled and then analyzed making use of un-
supervised PCA. Fig. 4 shows the scores and loading plots of the first

three principal components. The first component represented 46.84% of
the variance, the second 28.19% and the third 17.37% displaying to-
gether a cumulative variance of 92.40%.

The score points, representing the new coordinates of the VOCs
were interpreted assuming that close distance in plot plane is a measure
of the similitude between samples. PC 1 separated well both aldehydes
and the ketone butane-2,3-dione from alcohols and esters. PC 2 high-
lighted the differences within alcohol and ester classes grouping the low
molecular weight molecules ethanol and ethyl acetate. PC 3 contributed
to the separation between ethanol and ethyl acetate, the two small
molecules of the group. This separation was influenced by the synergic
contribution of all sensors.

The loadings, representing the contribution of each DNA sensor to
the principal components, contributed mostly to the scores spread on
the PC 2. The PC 2 axis highlighted the differences among sensors. Both
pentamer DNA contributed significantly to the separation of the small
alcohol and ester to the other family members. On the other hand, the
hexamer ATAATC and the tetramer TTCT played an important role in
clustering on the PC 2 the molecules with higher molecular weight
confirming the predictions obtained by virtual data. The other two
hexamers had very similar pattern recognition performance con-
tributing only in spreading the VOCs on PC 1. All sensors contributed to
the spread on the PC 3.

It is important to note that hpDNA-AuNPs-QCM sensors can dis-
criminate molecular classes and separate molecules on the basis of the
molecular weight. The PCA algorithm highlighted that the DNA sensors,
used as array, can be effectively applied to those cases where the dif-
ference between VOC patterns plays a crucial role in classification
purposes.

Table 2
HpDNA-AuNP sensors relative binding affinities vs the VOCs, estimated using piezoelectric response. The correlation coefficient between experimental and simulated
binding is reported in the last row. The standard deviation was calculated using three measurements taken in three different days.

CCAG TTCT CCCGA TAAGT ATAATC CATGTC CTGCAA
Experimental K binding ×103 (Moles–1)

Ethanol 4.3± 0.6 2.3± 0.1 7.4±0.5 0.9± 0.1 6.5± 0.5 8.4±0.8 18.4± 2.8
3-methylbutan-1-ol 6.7± 0.5 6.5± 0.6 23.6± 3.3 7.0± 0.6 91.2± 11.9 70.1± 3.5 21.7± 2.2
1-pentanol 3.3± 0.4 3.1± 0.3 60.3± 7.8 2.0± 0.1 530.6± 58.4 352.8± 17.6 10.3± 1.3
Octanal 2.6± 0.3 6.3± 0.6 4.7±0.3 2.5± 0.1 582.2± 81.5 348.0± 41.8 3.8± 0.3
Nonanal 2.6± 0.2 7.9± 0.6 6.5±0.8 1.9± 0.1 283.1± 14.2 97.9± 8.8 4.8± 0.4
Ethyl acetate 0.9± 0.1 2.4± 0.3 9.8±1.5 3.1± 0.4 19.6± 1.2 17.8± 2.3 0.9± 0.0
Ethyl octanoate 8.8± 0.8 12.8± 0.6 43.1± 4.3 2.5± 0.2 519.2± 41.5 345.8± 17.3 6.9± 0.5
Butane−2,3-dione 1.4± 0.2 3.4± 0.3 2.9±0.3 3.4± 0.4 9.2± 1.1 4.1±0.3 2.5± 0.4
Correlation with Simulated results 0.16 0.63 0.65 0.37 0.83 0.67 0.80

Fig. 4. PCA of the piezoelectric responses of hpDNA-AuNP sensors obtained using 900 μmoles of each VOC. The plot of Scores (A) and the plot of loading (B) of the
first three principal components showed 92.40% of the cumulative variance. Data were autoscaled before PCA.
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4. Conclusions

This work contributes to the growth of the DNA applications in
biotechnological and analytical field. For the first time, the interaction
between hpDNA loops and VOCs were rationally calculated by virtual
assessment and then experimentally tested. A good matching between
in-silico selection and experimental results was found especially with
hexamer hpDNA.

Multivariate data elaboration showed that beyond interesting dif-
ferences between chemical classes, molecules could also be clearly
discriminated based on the molecular weight.

The key parameter for increasing the affinities of sensors versus
VOCs was found to be the size of the DNA loop within the hairpin
structure.

This work represents the starting point for the selection hpDNA used
as molecular binding elements in gas sensors. In near future, taking
advantage of the fast progress in computing, larger ssDNA loops with
more complex shapes can be screened in short times, tailoring the ef-
ficiency and effectiveness of the gas analysis.
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