Software Open Access

Exploiting Different Combinations of Complementary Sensor's data for Fingerprint-based Indoor Positioning in Industrial Environments: Supplementary Materials

Joaquín Torres-Sospedra; Adriano Moreira; German M. Mendoza-Silva; Maria João Nicolau; Miguel Matey-Sanz; Ivo Silva; Joaquín Huerta; Cristiano Pendão


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Wi-Fi Fingerprinting</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Ensembles</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Indoor Positioning System</subfield>
  </datafield>
  <controlfield tag="005">20200501114822.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work has been supported by COMPETE (POCI-01-0145-FEDER-007043); FCT-Fundação para a Ciência e Tecnologia (UID/CEC/00319/2019); Portugal Incentive System for Research and Technological Development in the scope of the projects in co-promotion nº 002814/2015 (iFACTORY 2015-2018);  REPNIN+ (TEC2017-90808-REDT); Universitat Jaume I (PREDOC/2016/55)

For any further question please contact:
	Joaquín Torres-Sospedra (jtorres@uji.es)
	Adriano Moreira (adriano@dsi.uminho.pt)</subfield>
  </datafield>
  <controlfield tag="001">3333466</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Algoritmi Research Centre, University of Minho, Guimarães, Portugal</subfield>
    <subfield code="a">Adriano Moreira</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain</subfield>
    <subfield code="a">German M. Mendoza-Silva</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Algoritmi Research Centre, University of Minho, Guimarães, Portugal</subfield>
    <subfield code="a">Maria João Nicolau</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain</subfield>
    <subfield code="a">Miguel Matey-Sanz</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Algoritmi Research Centre, University of Minho, Guimarães, Portugal</subfield>
    <subfield code="a">Ivo Silva</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain</subfield>
    <subfield code="a">Joaquín Huerta</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Algoritmi Research Centre, University of Minho, Guimarães, Portugal</subfield>
    <subfield code="a">Cristiano Pendão</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">44240941</subfield>
    <subfield code="z">md5:dda2597a4653016324eca0f31be78c52</subfield>
    <subfield code="u">https://zenodo.org/record/3333466/files/ZENODO_3333466_v1.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="p">user-ipin</subfield>
    <subfield code="o">oai:zenodo.org:3333466</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain</subfield>
    <subfield code="0">(orcid)0000-0003-4338-4334</subfield>
    <subfield code="a">Joaquín Torres-Sospedra</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Exploiting Different Combinations of Complementary Sensor's data for Fingerprint-based Indoor Positioning in Industrial Environments: Supplementary Materials</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipin</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Wi-Fi fingerprinting is a popular technique for smartphone-based indoor positioning. However, well-known RF propagation issues create signal fluctuations that translate into large positioning errors. Large errors limit the usage of Wi-Fi fingerprinting in industrial environments, where the reliability of position estimates is a key requirement. One successful approach to deal with signal fluctuations is to average the signals collected simultaneously through independent Wi-Fi interfaces. Another successful approach is to average the estimates provided by models built on independent radio maps. This package includes the data sets and software (MatLab) required to select the best model based on both approaches through a simulated environment.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Citation Request&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Torres-Sospedra, J.; Moreira, A.; Mendoza-Silva, G. M.; Nicolau, M. J.; Matey-Sanz, M.; Silva, I.; Huerta, J.; and Pend&amp;atilde;o, C.&amp;nbsp;Exploiting Different Combinations of Complementary Sensor&amp;#39;s data for Fingerprint-based Indoor Positioning in Industrial Environments&amp;nbsp;Proceedings of the Tenth International Conference on Indoor Positioning and Indoor Navigation (IPIN),&amp;nbsp;2019.&lt;/li&gt;
	&lt;li&gt;Torres-Sospedra, J.; Moreira, A.; Mendoza-Silva, G. M.; Nicolau, M. J.;Matey-Sanz, M.; Silva, I.; Huerta, J.; and Pend&amp;atilde;o, C.&amp;nbsp;Exploiting Different Combinations of Complementary Sensor&amp;#39;s data for&amp;nbsp;Fingerprint-based Indoor Positioning in Industrial Environments: Supplementary Materials, Zenodo 2019. http://dx.doi.org/10.5281/zenodo.3333466&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3333465</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3333466</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
97
26
views
downloads
All versions This version
Views 9797
Downloads 2626
Data volume 1.2 GB1.2 GB
Unique views 8989
Unique downloads 2424

Share

Cite as