Conference paper Open Access

What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness

Matsangidou, Maria; Otterbacher, Jahna


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">algorithmic bias, attractiveness, image recognition, stereotypes</subfield>
  </datafield>
  <controlfield tag="005">20200120153539.0</controlfield>
  <controlfield tag="001">3333361</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">2-6 September 2019</subfield>
    <subfield code="g">INTERACT 2019</subfield>
    <subfield code="a">17th IFIP TC.13 International Conference on Human-Computer Interaction</subfield>
    <subfield code="c">Paphos, Cyprus</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Open University of Cyprus &amp; RISE</subfield>
    <subfield code="0">(orcid)0000-0002-7655-7118</subfield>
    <subfield code="a">Otterbacher, Jahna</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1816398</subfield>
    <subfield code="z">md5:885b5c0d8ec51f7c5d323a31a69ccc13</subfield>
    <subfield code="u">https://zenodo.org/record/3333361/files/Interact_Full Paper_1082.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cycat</subfield>
    <subfield code="p">user-rise-teaming-cyprus</subfield>
    <subfield code="o">oai:zenodo.org:3333361</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Research Centre on Interactive Media, Smart Systems and Emerging Technologies</subfield>
    <subfield code="0">(orcid)0000-0003-3804-5565</subfield>
    <subfield code="a">Matsangidou, Maria</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cycat</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rise-teaming-cyprus</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739578</subfield>
    <subfield code="a">Research Center on Interactive Media, Smart System and Emerging Technologies</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">810105</subfield>
    <subfield code="a">Cyprus Center for Algorithmic Transparency</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Image recognition algorithms that automatically tag or moderate content are crucial in many applications but are increasingly opaque. Given transparency concerns, we focus on understanding how algorithms tag people images and their inferences on&lt;em&gt;attractiveness&lt;/em&gt;. Theoretically, attractiveness has an evolutionary basis, guiding mating behaviors, although it also drives social behaviors. We test image-tagging APIs as to whether they encode biases surrounding attractiveness. We use the Chicago Face Database, containing images of diverse individuals, along with subjective norming data and objective facial measurements. The algorithms encode biases surrounding attractiveness, perpetuating the stereotype that &amp;ldquo;what is beautiful is good.&amp;rdquo; Furthermore, women are often misinterpreted as men. We discuss the algorithms&amp;rsquo; reductionist nature, and their potential to infringe on users&amp;rsquo; autonomy and well-being, as well as the ethical and legal considerations for developers. Future services should monitor algorithms&amp;rsquo; behaviors given their prevalence in the information ecosystem and influence on media.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3333360</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3333361</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
72
94
views
downloads
All versions This version
Views 7272
Downloads 9494
Data volume 170.7 MB170.7 MB
Unique views 6868
Unique downloads 9292

Share

Cite as