Conference paper Open Access

What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness

Matsangidou, Maria; Otterbacher, Jahna


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3333361</identifier>
  <creators>
    <creator>
      <creatorName>Matsangidou, Maria</creatorName>
      <givenName>Maria</givenName>
      <familyName>Matsangidou</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3804-5565</nameIdentifier>
      <affiliation>Research Centre on Interactive Media, Smart Systems and Emerging Technologies</affiliation>
    </creator>
    <creator>
      <creatorName>Otterbacher, Jahna</creatorName>
      <givenName>Jahna</givenName>
      <familyName>Otterbacher</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7655-7118</nameIdentifier>
      <affiliation>Open University of Cyprus &amp; RISE</affiliation>
    </creator>
  </creators>
  <titles>
    <title>What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>algorithmic bias, attractiveness, image recognition, stereotypes</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-07-12</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3333361</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3333360</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/cycat</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/rise-teaming-cyprus</relatedIdentifier>
  </relatedIdentifiers>
  <version>pre-print</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Image recognition algorithms that automatically tag or moderate content are crucial in many applications but are increasingly opaque. Given transparency concerns, we focus on understanding how algorithms tag people images and their inferences on&lt;em&gt;attractiveness&lt;/em&gt;. Theoretically, attractiveness has an evolutionary basis, guiding mating behaviors, although it also drives social behaviors. We test image-tagging APIs as to whether they encode biases surrounding attractiveness. We use the Chicago Face Database, containing images of diverse individuals, along with subjective norming data and objective facial measurements. The algorithms encode biases surrounding attractiveness, perpetuating the stereotype that &amp;ldquo;what is beautiful is good.&amp;rdquo; Furthermore, women are often misinterpreted as men. We discuss the algorithms&amp;rsquo; reductionist nature, and their potential to infringe on users&amp;rsquo; autonomy and well-being, as well as the ethical and legal considerations for developers. Future services should monitor algorithms&amp;rsquo; behaviors given their prevalence in the information ecosystem and influence on media.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/739578/">739578</awardNumber>
      <awardTitle>Research Center on Interactive Media, Smart System and Emerging Technologies</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/810105/">810105</awardNumber>
      <awardTitle>Cyprus Center for Algorithmic Transparency</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
72
94
views
downloads
All versions This version
Views 7272
Downloads 9494
Data volume 170.7 MB170.7 MB
Unique views 6868
Unique downloads 9292

Share

Cite as