

D3.1: Cooperation Incentives and Trust

Management Pre-Prototype Software

Report

Deliverable Number D3.1

Lead Beneficiary UniGe

Nature/Dissemination Level CO

Working Group/Task WP3/Task3.1

Editor UniGe (Carlos Ballester)

List of Authors UniGe (Carlos Ballester, Jean-Marc Seigneur), ULHT

(Christian Pereira, Paulo Mendes, Rute Sofia, Waldir

Moreira), UniUrb (Alessandro Bogliolo, Lorenz Cuno

Klopfenstein, Saverio Delpriori, Gioele Luchetti),

Level7 (Paolo Di Francesco, Marzia Mammina).

Date (Project Month and dd.mm.yy) Month 22, 30.06.2012

QAT Reviewer Paolo di Francesco (LEVEL7)

D3.1: Support report

2/48

All rights Reserved: @ULOOP Consortium, 2010-2013.

D3.1Support report

3/48

Executive Summary

This document provides a description of the software package that is to be delivered on M21 as

deliverable D3.1 of the EU FP7 ICT project ULOOP (User-centric Wireless Local Loop, grant Number

257418). The deliverable D3.1 falls into the category of “Others” and is composed of software, as well

as this report.

This report provides a guideline to the specification for the ULOOP block Trust Management and

Cooperation Incentives, providing details on the design and implementation status of this ULOOP

component.

D3.1: Support report

4/48

History

Version Date Author Description

0.1

1.0

2.0

final

08/05/2012

12/06/2012

26/06/2012

30/06/2012

Carlos Ballester

Carlos Ballester

Carlos Ballester

Carlos Ballester

First draft of the document.

Second draft of the document

Third draft of the document

Final version of the document

D3.1Support report

5/48

Table of Contents

Executive Summary .. 3

Table of Contents .. 5

List of Figures .. 6

List of Tables ... 6

Acronyms ... 7

Acknowledgements ... 8

1. Introduction .. 9

1.1 Document Scope and Purpose ... 9

2. Architecture Definition and Specification ... 9

2.1 Unique Crypto-ID Generation and Use ... 13

2.1.1 Computational/Algorithmic Aspects ... 13

2.1.2 Specification .. 14

2.2 Unique Crypto-ID Validation .. 16

2.2.1 Specification .. 17

2.3 Dispositional Trust Setup .. 20

2.3.1 Computational/Algorithmic Aspects ... 20

2.3.2 Specification .. 20

2.4 Social Trust Computation .. 21

2.4.1 Computational/Algorithmic Aspects ... 23

2.4.2 Specification .. 25

2.5 Cooperation Manager .. 28

2.5.1 Computational/Algorithmic Aspects ... 29

2.5.2 Specification .. 31

2.6 Virtual Currency and Reward Manager ... 35

2.6.1 Specification .. 35

2.7 Token Computation ... 37

2.7.1 Computational Aspects.. 37

2.7.2 Specification .. 38

3. Software Implementation Aspects ... 39

4. Guidelines/Next Steps ... 40

References .. 48

Annex A – Packages, Classes and Methods Description ... 49

D3.1: Support report

6/48

List of Figures

Figure 1: High-level Architecture, Trust Management and Cooperation Incentives Block.......................... 10

Figure 2: ULOOP Trust Management and Cooperation Incentives Global Operation flow-chart. 11

Figure 3: Crypto-ID generation and use flowchart .. 14

Figure 4: Unique Crypto-ID validation, ULOOP node side flowchart. ... 17

Figure 5: Unique Crypto-ID validation, server side flowchart. ... 18

Figure 6: Dispositional Trust setup flowchart. ... 20

Figure 7: Social trust association examples. ... 22

Figure 8: representation of indirect and direct recommendations. .. 24

Figure 9: Social Trust Computation flowchart. .. 26

Figure 10: Example of communication for requests/recommendations on trust. 28

Figure 11: Distribution function for credits assignment ... 30

Figure 12: Cooperation Manager flowchart. .. 33

Figure 13: Credit transfer sequence diagram. ... 36

Figure 14: representation of equation 3 when credits and trust level vary. .. 38

Figure 15: Main ULOOP class diagram .. 40

List of Tables

Table 1: Mapping of crypto-id generation and use Flow-Chart, major operations. 15

Table 2: Mapping of crypto-id validation Flow-Chart, major operations. ... 19

Table 3: Mapping of dispositional trust setup Flow-Chart, major operations. ... 21

Table 4: Mapping of social trust computation Flow-Chart, major operations .. 26

Table 5: Mapping of cooperation manager Flow-Chart, major operations. ... 34

Table 6: Mapping of reward manager Flow-Chart, major operations.. 36

Table 7: Methods of TokenComputation. .. 39

Table 8: List of TODOs as listed in the java code in the SVN ... 41

D3.1Support report

7/48

Acronyms

Acronym Meaning

ULOOP User Centric Local Loop

D[XX] Deliverable numbered XX

OSNs Online Social Networks

PET Privacy Enhancing Technologies

DT Dispositional Trust

EDGE Enhanced Data Rates for GSM Evolution

3G 3
rd

 Generation Mobile Communications

CAC Call Admission Control

D3.1: Support report

8/48

Acknowledgements

Acknowledgements to all partners for their significant contribution.

D3.1Support report

9/48

1. Introduction

This document provides a description of the software package that is an integrated part of deliverable

D3.1 of the ULOOP project.

1.1 Document Scope and Purpose

Deliverable D3.1 presents a pre-prototype of the software being devised in Task 3.1 of the ULOOP.

This report aims to be a guideline for the high-level specification architecture and software

specification for the pre-prototype software release. The goal is to provide a better insight on how

Task 3.1 has been de-composed in main blocks and sub-blocks, how those blocks operate and how

they interact between them: to achieve such goal this report details architectural aspects and sub-

block operation and procedures, and explains how they fit in the main ULOOP picture.

The document is organized as follows. Section 2 describes the main architectural definition of the trust

management and cooperation incentives block, including the global flow-chart for this task. In section

3, we describe the pre-prototype implementation achieved so far, including design choices and

limitations. Section 4 provides a set of recommendations to be observed for the first software version.

2. Architecture Definition and Specification

<UniGe: Jean-Marc, Carlos, ULHT : Paulo, Rute>

In ULOOP, trust management and cooperation incentives are related to the understanding of how to

define and build circles of trust on-the-fly. Such circles of trust aim of sustaining an environment for

allowing devices to share resources to support the dynamic behaviour of user-centric networks. Trust

management is based on reputation mechanisms able to identify end-user misbehaviour and to

address social aspects, e.g., the different levels of trust users may have in different communities (e.g.,

family, affiliation). In situations where the created network of trust is not enough to allow resources to

be shared, ULOOP devices are able to use a cooperation incentive scheme that allows a node to gain

credits in an amount directly proportional to the amount of shared resources: such credits can then be

used to gain access to other resources.

Another key aspect relates to the development and validation of a set of methods and techniques that

make it possible to optimize network resources in regards to social behaviour, i.e., exploiting shared

interests or On-line Social Networks (OSN) information to create/optimize/add trust to ULOOP

communities.

D3.1: Support report

10/48

Hence, trust management and cooperation incentives aspects are split into three main blocks: i) Trust

management; ii) Cooperation Incentives; iii) Identity management. These major blocks are illustrated

in Figure 1.

Figure 1: High-level Architecture, Trust Management and Cooperation Incentives Block.

As illustrated, we have further split each of the blocks into sub-blocks, which correspond to different

object-oriented modules. From a ULOOP software suite perspective and as has been explained in

D2.3 [1] and D3 [2], there are modules which are activated if a ULOOP element plays the role of a

regular node, or of a gateway.

To provide a perspective on how the global trust and cooperation framework works on ULOOP, and

for the remainder of the document, we shall consider the role of a requestee (providing resources) or

of a requester (requesting access to a set of resources, such as Internet connectivity) in trust and

cooperation negotiation. A requestee in ULOOP can only be a ULOOP gateway. While the

requester role can be assumed by both a node and a gateway: nodes perform trust negotiation

towards gateways; gateways perform trust negotiation among themselves. The global flow-chart, for

trust management and cooperation incentives, is illustrated in Figure 2.

D3.1Support report

11/48

Figure 2: ULOOP Trust Management and Cooperation Incentives Global Operation flow-chart.

D3.1: Support report

12/48

As illustrated in Figure 2, a node has three well defined states:

• boot-up

• activation of periodic activities

• data transfer

The boot-up phase is executed in any ULOOP node, be it a requestee or a requester, since it aims to

establish the initial set of conditions for the participation in a ULOOP community. A boot-up steps to be

executed, after download of ULOOP software, the initial setup which comprises:

• Creation of the virtual identity crypto-id. As has been explained in D3 (refer to section 2.1.4.1

Virtual Identity), in ULOOP the notion of crypto-id has been considered to assist the process of

computing and managing the set of trust associations among any pair of ULOOP devices. The

goal is to mitigate the impact of impersonation and non-repudiation, while insuring the right level

of privacy, e.g. by relying on Privacy Enhanced Technologies (PET). Hence, a crypto-id identifies

a unique interconnection of a user and a device. We have opted for the implementation of the

unique crypto-id concept that has been presented in D3, section 2.1.4.1.1, and shall further

address the current implementation on sections 2.1 and 2.2.

• Setting up dispositional trust. As also defined in D3, dispositional trust (DT) is the general

willingness of a given user to trust others, which we have considered to be a value between 0 and

1 that a person will use to configure the ULOOP service. The DT setup is done in the boot-up

phase and it may or may not remain the same during the node’s lifetime. For the first

implementation of ULOOP, we consider a single set-up, without changes during the trust

negotiation aspect. Adaptation is an aspect that we expect to address during year 3 of

ULOOP.

• Initial assignment of credits: At this stage, the ULOOP device has no trust level in the system and

its trust on others (as given by the dispositional trust) may prevent such node from interacting

with others. Thus, to overcome such issue, a certain amount of credits are assigned to the node.

This will motivate the user to interact in the system while its trust level improves (i.e., increases)

according to its interaction. The credit assignment process considers the node’s dispositional

trust level and the amount of credits reflects the nodes interaction in the system.

After a boot-up phase, executed only once, we proceed by activating two periodic activities of the

Cooperation Manager and of the Reward Manager: the Cooperation Manager manages credits to

motivate volunteer cooperation, and the Reward Manager manages credits when a gateway is only

willing to cooperate if rewarded by its actions.

After the phase were periodic activities are started, an ULOOP device enters the data transfer phase,

which encompasses all the activities performed when data needs to be exchanged between nodes

and gateways. Trust management itself starts each time a node attempts to perform regular MAC

D3.1Support report

13/48

authentication, i.e., each time a ULOOP node is in the vicinity of some gateways. Due to regular

scanning and overhearing, ULOOP nodes get ULOOP beacons (extension of regular Wi-Fi beacons)

that allow them to understand if there are available gateways around. Before MAC authentication, it is

necessary for a node to trust some gateways. Hence each node relies on the social trust level that it

has toward neighbour gateways: if such value does not exist, the node will compute it based on a

social trust computation function (c.f. section 2.4). The computed trust level will be used by a

requester (node) to select the most trustful potential requestee (gateway), with which the requester will

initiate a cooperation section: the cooperation session may include the establishment of a reward. If

the cooperation section is established with success (in case of volunteer cooperation or if credits

allocated by requester are above the threshold established by a requestee that wants to be rewarded),

the requester will start the resource management procedure. Otherwise the requester will look for

another trustful gateway with whom it will try to establish a cooperation session.

The next subsections address each of the sub-blocks in detail.

2.1 Unique Crypto-ID Generation and Use

<UniGe: Jean-Marc, Carlos; ULHT: Paulo>

This section provides a detailed description of a Crypto-ID generation scheme that can be used by

ULOOP nodes in order to generate their own crypto-id to further validate it afterwards.

2.1.1 Computational/Algorithmic Aspects

In ULOOP, the crypto-id of a new node that is introduced into the system is calculated using the

following formula displayed in Equation 1.

������ − �	 = ��256	(����)

Equation 1

, where:

SHA256(x): cryptographic hash function producing a message digest of 256 bits over x.

Pkey: is the public key of the user.

D3.1: Support report

14/48

2.1.2 Specification

Figure 3: Crypto-ID generation and use flowchart

Figure 3 shows the flowchart to generate a unique crypto-ID based on a set of information extracted

from the user’s device, namely a public key. Such information will be used to generate a unique

crypto-ID based on a hash function, taken over the previous piece of information, which is

implemented in any ULOOP node or gateway. The local generated crypto-ID will need to be verified

by an authorized entity in order to allow the ULOOP node/gateway to gain full access to the ULOOP

community. While such verification does not happen, the ULOOP device gets a minimum trust level

in the community, allowing it to use a predefined set of minimum resources.

In ULOOP, owners (users) are likely to be responsible for more than one active device. One would

be a primary device, and the remainder equipment share the same crypto-ID generated by the first

personal device, as well as the reputation level and trust associations associated to the unique

D3.1Support report

15/48

crypto-ID. This is possible by using secure in range wireless or wired communications.

Synchronizing the reputation levels and trust associations among personal devices will allow the

user to always make use of the earned reputation level, trust associations and credits that resulted

from the usage of the unique crypto-ID in another personal device. Synchronization of trust

information can be done by using prior-art on file and data synchronization.

The validation of the unique crypto-ID can be done by making use of any opportunity to access the

Internet (limited Internet access should be allowed by the minimum trust level). This may create

some problem in extreme cases, in which Internet access is not possible for a long time. However,

such scenarios are more related to delay-tolerant networks than to ULOOP. In the latter case it is

expected trust management and cooperation incentives to create the conditions to make Internet

access more pervasive than today.

Table 1: Mapping of crypto-id generation and use Flow-Chart, major operations.

Flowchart

reference

Function method/descriptor Description Path to Code

1 setNickname(askUserWantedNi

ckname());

createLocalKeyPair();

Establishes a first set of needed

parameters for the crypto-id

generation

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//simul

ation/Requester.java

2 public CryptoId(PublicKey

publicKey)

Computes the node’s crypto-id TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/CryptoId.java

3 getKeyConfigurationBundlefrom

DeviceInRange(

String cryptoId,

ChallengeResponse

challengeResponse)

Retrieves the keyPair from another

node owned by the same user.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//simul

ation/Requester.java

4 autoSetupBasedOnConfiguratio

nBundle(

ConfigurationBundle

configBundle)

Copies the appropriate values from

another node owned by the same

user.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//simul

ation/Requester.java

5 Sets the node in quarantine (low

trust level) until validated

6 validateNickname(String

wantedNickname, String

phone_number_to_send_sms,

CipherParameters publicKey)

Validates and binds the choosen

nickname with the crypto-id

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/crypto_id_validat

D3.1: Support report

16/48

ion/IdValidator.java

2.2 Unique Crypto-ID Validation

<Level7: Paolo, Marzia>

This section provides a detailed description of a Crypto-ID validation scheme that can be used by

ULOOP nodes that have cellular interfaces with data capacity (e.g. EDGE, 3G), besides the required

Wi-Fi interface. The described scheme is an example of a Crypto-ID validation scheme based on SMS

messages for the market of Wi-Fi equipped cell-phones that will be used by the demonstrator being

prepared by Level7.

For ULOOP nodes without a cellular interface (e.g. some tablets, laptops), the ULOOP proposal for

the validation of Crypto-ID could be based on the use of smart id cards, as they are extensively being

introduced by many governments when issuing new id cards and they contain certificates which prove

the identity of the citizen, or on the use of credit cards, by charging a refundable small amount of

money (typically in the range 0.1 - 1 monetary units, be it U.S. dollars, euros or any other currency) in

order to verify the identity of the user. One of these options, or perhaps any other that might be

deemed suitable, will be chosen and will be described in the D3.4 deliverable.

D3.1Support report

17/48

2.2.1 Specification

Figure 4: Unique Crypto-ID validation, ULOOP node side flowchart.

D3.1: Support report

18/48

Figure 5: Unique Crypto-ID validation, server side flowchart.

When a node joins ULOOP for the first time, a crypto-id (public-private key pair) is generated. After

that the user can request a ULOOP partner (Identity Validator) the validation of such crypto-id, so that

the end-user can prove with cryptographic strength that he/she really owns the secret linked to the

crypto-id. This would require some steps for the authentication and verification of the user’s identity in

the real world. For example, the Italian law requires each user to own of a mobile phone number

(which is related to the user’s real world identity) combined with a one-time verification of the

authenticity of the identification.

Figure 4 shows the crypto-id validation from client side (ULOOP node), while Figure 5 shows the

validation from server side (Identity Management System). Some user data is required for the

validation: first name, last name and mobile phone number in order to be able to perform the SMS

validation. Moreover the user is asked to choose a nickname that will be linked to the crypto-id.

Verification near the Identity Management System will ensure the uniqueness of the nickname. The

D3.1Support report

19/48

Identity Management System, owned by the Identity Validator, proves the ownership of the provided

mobile phone number sending a SMS with a secret to that mobile phone number.

The ULOOP node intercepts incoming SMS messages (with a predefined format) and when

recognizes the message sent by the Identity Management System, it sends back the secret received

in the SMS via http together with the chosen nickname and other additional information.

If the Identity Management System recognizes that the replied data and secret are the same stored for

that Crypto-Id in its database, then the validation can be considered completed and the confirmation is

sent to the node together with an X.509 [3] certificate. The purpose of the X.509 certificate is to bind

the public key of the node to a particular distinguished name or to an alternative name such as an e-

mail address, or in ULOOP case, a nickname. The node marks the Crypto-Id as validated and stores

the X.509 certificate.

Table 2: Mapping of crypto-id validation Flow-Chart, major operations.

Flowchart

reference

Function method/descriptor Description Path to Code

1 lockingNicknameRequest(wante

dNickname)

If wanted nickname is new in the

Validator db, the nickname is locked

until the validation procedure is

completed

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/crypto_id_validat

ion/IdValidator.java

3 createValidChallenge() Create a challenge TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/crypto_id_validat

ion/IdValidator.java

4 compareChallengeAndRespons

e(String challenge, SessionID

sessionID,String nickname,

ChallengeResponse response)

Compare on server side the

challenge created for the nickname

with the one sent back by the

devide.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/crypto_id_validat

ion/IdValidator.java

5 sendSMS2user(phone_number,

challengeToGuess, sessionID)

Send to the device the SMS

containing the challenge

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//crypt

o_id/crypto_id_validat

ion/level7/SMS_Serv

er.java

D3.1: Support report

20/48

2.3 Dispositional Trust Setup

<UniGe: Carlos, Jean-Marc>

Dispositional Trust (DT) is defined in ULOOP as the general willingness of a given user to trust others.

As such, in a first implementation of DT this value will be set up manually by the owner of a ULOOP

node. The DT setup is done in the boot-up phase as explained in Section 2 and it may or may not

remain the same during the node’s lifetime. However, as it might provide a better protection of the

ULOOP owner, depending on the surrounding environment of the node and other external factors, an

adaptation process may be carried out to readjust DT automatically or after asking the user in order to

protect the node’s integrity. For the first implementation of ULOOP, we consider a single set-up,

without changes during the trust negotiation aspect. Adaptation is an aspect that we expect to address

during year 3 of ULOOP.

2.3.1 Computational/Algorithmic Aspects

As for this pre-prototype version we are only considering a single set-up of the dispositional trust

value, without any means of adaptation over the time, hence the computational and algorithmic

aspects of dispositional trust are very simple and straightforward. Dispositional trust is an integer value

in the range 0 – 1 as described in Equation 2.

	�����	 ∈ 	 �0, 1"

Equation 2

2.3.2 Specification

Figure 6: Dispositional Trust setup flowchart.

D3.1Support report

21/48

The dispositional trust module allows the user to configure a personal device with his/her disposition

to trust other devices. If the user has multiple personal, he/she only has to set his/her dispositional

trust for one device: the others will get that information from the first one when in direct contact. For

the first device, the owner is prompted to set its DT, e.g. being able to select from a list of predefined

values, which range from 0 to 1, being 0 “paranoid”, which means that a priori the node will not trust

anyone, and being 1 “blind trust”, which means that the node will trust no matter what.

If the device is not the first one being configured, the user is presented with two options: i) to clone

the dispositional trust level assigned to other devices that are already in ULOOP and that she/he

owns, as described in D3 section 2.1.4.1.1 for the usage of unique crypto-IDs in different personal

devices: ii) to assign a new DT level for the node being introduced, as explained in the previous

paragraph. These two cases are depicted in Figure 6.

Table 3: Mapping of dispositional trust setup Flow-Chart, major operations.

Flowchart

reference

Function method/descriptor Description Path to Code

1 setDispositionalTrust(configBun

dle.getDispositionalTrust()

.getDispositionalTrustValue());

Retrieve the DT value from any

other node the user owns and clone

it to the new node.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//simul

ation/Requester.java

2 Present options Present the user with the adequate

options in order to select which DT

value to set

Done in Android, no

GUI in the initial Java

OModel.

3 setDispositionalTrust(askUserIni

tialDispositionalTrust()

.getDispositionalTrustValue());

Set the DT level selected by the

user or cloned from another node

owned by the user.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src//simul

ation/Requester.java

2.4 Social Trust Computation

<ULHT: Rute Sofia >

As described previously in D2.3 and D3, the distributed trust scheme of ULOOP builds trust circles

based on social trust modeling. ULOOP considers the use of computational trust management as a

complementary approach to security where a level of trust in the requesting entity is automatically

computed based on different types of evidence.

D3.1: Support report

22/48

Nodes are associated to other nodes by means of trust associations, as illustrated in Figure 7. A trust

association
k

ijT is the k-th directed association between nodes i and j , and is related to the

respective owner's interests and social networking perspective. A trust association holds a cost which

we name as trust level. The trust level provides a measure of previous trust behavior, of Quality of

Experience (QoE) of nodes, etc. Hence, two nodes may in fact hold more than one trust association

among them, as represented in Figure 1, where nodes A and B hold three different trust

associations: A has two trust association to node B,
1

ABT , which relates to the exchange of data

owned by A (where A is the originator), and
2

ABT , which relates to the exchange of information which

A is relaying (A is not the source). B has one trust association to A,
1

BAT with a cost of zero which e.g.

could mean that B still does not trust A to relay his data. As shown in Figure 7 the different trust

associations have a specific cost, and the computation of such cost is based upon the nodes

expectations and beliefs.

Figure 7: Social trust association examples.

The weight of a specific trust association considers local and external influences. Examples of local

influences are the degree of connectivity and reputation level of node B. External influences are

influences that do not relate to the nature of each node but to external networking conditions (e.g. too

much overhearing probability around node B).

For example, if Alice has the choice to connect to two nearby ULOOP gateways, Charles’ gateway

and Bob’s gateway but she has never interacted with Bob’s gateway before. Bob’s ULOOP gateway is

the gateway that would give her the quality of service she requires. Fortunately, she has already

interacted with Charles’ gateway. As she has no direct observation of Bob’s gateway, therefore, she

asks Charles for a recommendation. Charles has already used Bob’s gateway and sends his

recommendation to Alice. A third type of evidence used in ULOOP concerns reputation, which is the

aggregation of different recommendations from different recommenders that are not exactly known.

That reputation value may come from the aggregation of evidence external to ULOOP, for example,

from the mining of existing online social networks. In ULOOP, social trust computation relies on the

following properties:

D3.1Support report

23/48

1. Trust is based on a social behavior of the owners of nodes and is therefore environment-

dependent as well as disposition-based.

2. Trust is not transitive. A node A may trust a node B with a level of x (xTAB =), and this one

may trust a node C with a level of xy ≥ , but it is up to A to compute its trust level towards C.

3. Trust is asymmetric. The trust level between a node A and B is not necessarily the same

between B and A.

4. Trust computation is based upon current and past experience of a node.

5. Trust is dynamic. Trust associations are bound to frequent changes depending on the nodes

own perception of trust within communities.

2.4.1 Computational/Algorithmic Aspects

The purpose of our scheme is to allow the dynamic propagation of a circle of trust in a way that is

robust to malicious usage and attacks. Hence a first step is to provide each node with an initial level

[0,1]∈iD of dispositional trust. Dispositional trust corresponds to a node's own disposition to trust

others initially, where 0 corresponds to the minimum possible level for no trust (does not trust

anybody) to blind trust (trusts any stranger). We expect
iD to evolve throughout a node's lifetime.

Since some nodes are carried by Internet end-users, their networking composition, surrounding

environment and organization can rapidly change. As such, the dispositional trust level on a given

node might not be appropriated in all circumstances and should be able to be adapted and changed

over time, in order to protect the node's integrity.

To explain our function we consider three nodes: node i , the node that is about to compute a trust

level towards a node z , and node j representing a node in the same community as node i . Node i

has a dispositional trust level [0,1]∈iD . Figure 8 provides an example for the different types of

recommendations that are the basis to compute the cost of a trust association between two nodes i

and a , where the arrows represent an already established trust association.

When i decides to compute its own perspective of a trust association to node a it triggers requests to

obtain recommendations about a . For this specific example, this means that its direct nodes j and

kl provide their own perspective (recommendation) about node a . Such recommendation may be

direct as occurs for the case of node j who has a direct trust association to node a , jat , or indirect,

as occurs with node l i.e., node l has an indirect trust association to node a through node k , being

the indirect recommendation written down as lat′ . Direct trust associations are more relevant than

indirect recommendations as this is based on direct experience.

D3.1: Support report

24/48

Hence, a direct recommendation received by node i represents an answer from a node j in the

community, and contains the computed cost of one or several trust associations between j and the

target node.

An indirect recommendation received by node i represents an answer from a node j in the

community which contains the computed cost of one or several trust associations between j and the

target node, but j is not yet in the trust table of i . For the specific case illustrated in Figure 8,

 kalkla ttt *=′ .

Figure 8: representation of indirect and direct recommendations.

The proposed trust computation function is provided in Equation 3. It considers both direct and indirect

recommendation values, as well as the owner's own beliefs - dispositional trust. Moreover, the more

stable acquaintances are, the more trusted their recommendations become.

 ′

−+
∑∑

p

t

k

t
Dt

jz

p

jjz

k

j

iiz

0=0=
*1)(**= αα

Equation 3

, where

:k number of direct recommendations.

:p number of indirect recommendations.

j : node providing trust recommendation, zjijNjnj ≠≠∈≤ ∧∧, .

:z target node

i : node requesting recommendations

:n total of nodes in the community.

As provided by Equation 3, the value of the dispositional trust parameter is crucial to compute a trust

weight towards another node. Assuming such value is zero, then recommendations provided are of no

D3.1Support report

25/48

use to the established trust level. We highlight, however, that the dispositional trust parameter is an

element that may change with time, even though such adaptation is not part of this specific work. On

the other hand, if the dispositional trust value is high (e.g. one), then the trust level becomes

dependent on the recommendations provided. Alfa is a parameter that allows us to give more weight

to the direct recommendations.

Assuming 2 nodes i and j at the range of each other but without any established trust association,

then trust propagation can be based on the multiplication of the trust level perspective of each of

nodes i and j , in regards to the path between them, as well as in combination to their own

dispositional trust, as shown in Equation 4:

[0,1]***= ∈ikjkjijiik ttDtDt

Equation 4

2.4.2 Specification

We provide in Figure 9 the flow chart for trust computation, which is a process that runs periodically

since the moment ULOOP nodes boot. Therefore, after boot up (1) the nodes check for their

dispositional trust D (2) and activate a trust table (3). The trust table is a structure where each row is a

tuple with the following structure: <Node Id, trust level, ageing>. When activated, the node provides

each of its neighbors with an equal trust level of D. In other words, in environments where relations

were not yet established, ULOOP nodes trust equally all nodes around. Then, periodically, the node

emits and hears recommendations (5) – in Figure 10 we provide in an example for the way

communication is processed to get/emit such recommendations.

Each time recommendations are obtained the respective entry in the trust table is updated. Hence, the

table is kept up to date.

Requests for social trust computation come from the trust manager, cooperation manager and are

provided via a look up to the trust table.

D3.1: Support report

26/48

Figure 9: Social Trust Computation flowchart.

Table 4: Mapping of social trust computation Flow-Chart, major operations

Flow-chart

reference

Function/Method

Descriptor

Description Path

(1) public void

runUloopClientOn

(Requester

uloopNode)

Initiates a ULOOP node TrustManagementAndCooperatio

nIncentives/Common/JavaOOMo

del/trunk/src//simulation/User.java

(2) Public int

getDispositionalTr

ust()

Retrieves the value of the

Dispositional Trust of a node.

This method relates to class

DispositionalTrust,

TrustManagementAndCooperatio

nIncentives/Common/JavaOOMo

del/trunk/src//dispositional_trust/D

ispositionalTrust.java

(3) Public void

Trusttable()

Initiates a new trusttable. This

is the constructor of class

TrustTable, called from main()

TrustManagementAndCooperatio

nIncentives/Common/JavaOOMo

del/trunk/src//social_trust_comput

ation/TrustTable.java

(4) public float

computeSocialTru

Computes trust levels based

on input sent by neighboring

TrustManagementAndCooperatio

nIncentives/Common/JavaOOMo

D3.1Support report

27/48

st(cryptoId

NodeID, int tl)

nodes del/trunk/src//social_trust_comput

ation/SocialTrustComputation.jav

a

(5) public void

sendBeacon(Mes

sage message)

Global function to ULOOP

which triggers the need to

send a beacon, by passing a

specific set of data to hostapd

TrustManagementAndCooperatio

nIncentives/Common/JavaOOMo

del/trunk/src//simulation/Node.jav

a

Concerning requests and recommendations for social trust computation, we provide an example of a

potential sequence chart in Figure 10, where 2 ULOOP nodes (N1, N2) are in the vicinities of two

ULOOP gateways G1 and G2. Node N1 is a new node (no trust relationship established yet), and

node N2 has a trust association to G1. Moreover, G1 and G2 are known and trusted by each other.

Based on the ULOOP frame format (a regular MAC where the payload carries additional information)

N1 broadcasts a frame requesting recommendations for G1, G2, and N2. G2 replies with its

recommendation about G1 (trust level of G2 towards G1). G1 replies with a recommendation for both

N2 and G2. While N2 replies with its trust level towards G1.

Each time N1 gets this recommendation, it computes the respective trust level based on the formula

provided in Equation 3. The trust table is a structure global to the trust management process.

D3.1: Support report

28/48

Figure 10: Example of communication for requests/recommendations on trust.

2.5 Cooperation Manager

<ULHT: Paulo, Rute, Waldir, Christian>

This section provides a detailed description of the operation of the Cooperation Manager, which has

three components for credit assignment, credit computation, and cooperation evaluation. The

cooperation manager aims to control the setup of a cooperation session between a requester and a

requestee based on their trust level and a set of credits used by the requester to provide the

requestee extra incentives for cooperation. The requestee operates in a volunteer or retailer mode

(the device can switch between operating modes at any time). In the latter state, the cooperation is

N1 G1
G2

N2

UFrameTLG1, TLG2, TLN2?)

UFrame (TLG2�G1)

UFrame (TLG1�N2, TLG1�G2)

UFrame (TLN2�G1)

D3.1Support report

29/48

further controlled by the Reward Manager, which will allow the requestee to accept or refuse the

cooperation based on the amount of credits offered by the requester.

To manage each cooperation section, the Cooperation Manager controls a cooperation credit set,

which will work in coordination with the wallet controlled by the Reward manager (c.f. section 2.6), as

follows:

• An ULOOP device has a cooperation credit set and a reward wallet. The former is used to

setup cooperation sessions. The latter can be used in a monetization process. The

amount of credits in a reward wallet is always lower or equal to the ones in the

cooperation credit set (they will be the same is the device is always operating as a

retailer).

• When a device boots-up, credits are assigned to the cooperation credit set by the

cooperation manager (the reward wallet is still empty)

• When a gateway is operating as a requestee and receives some credits from a requester,

the Cooperation Manager places the credits in its cooperation credit set. If the requestee

is operating in a retail mode, credits are also placed in the reward wallet by the Reward

Manager.

2.5.1 Computational/Algorithmic Aspects

The next two sub-sections provide a description of the components for credit assignment and credit

computation, which will be included in the first ULOOP prototype. The component that will execute the

cooperation evaluation is not described in this document, since its development is schedule for the

third year of the ULOOP project.

2.5.1.1 Credit Assignment

The initial number of credits that will be assigned at the beginning of the cooperation process done by

Equation 5 will depend of the node trust level (which most likely will be equal to the dispositional trust).

Equation 5

Where:

• Cmin and Cmax are the threshold established for the amount of credits an ULOOP device can

have

• tL is the trust level Requester-Requestee

D3.1: Support report

30/48

• µ is the location of the center of the Gaussian distribution’s peak

• σ is the deviation standard. This variable controls the width of the “bell”

Figure 11: Distribution function for credits assignment

The assignment of an initial set of credits follows a Gaussian distribution behavior with mean equal to

the maximum number of credits allowed by the system, as shown in Figure 11. This proposal is based

on the following ideas:

• When a node has a high trust level (probably because the output of most of its past

interactions has been positive), the impact of having credits will be low, since the node will

communicate solely based on its trust level. Hence, in this case the node does not become

greedy and will be assigned a minimum number of credits.

• When a node has a low trust level (probably because the output of most of its interactions has

been negative or has not had enough interactions yet), the impact of having credits will be low,

since the node does not have enough trust to initiate a communication, independently of the

number of credits that it has. Moreover, it is appropriate to assign fewer credits because the

node behavior “is suspicious”. This is a way to prevent possible attacks.

• When a node has an average trust level, it is a good idea to assign more credits encouraging

the node to participate in the community.

When a node has just joined a ULOOP community, it will not have a trust level readily available. Thus,

as mentioned before, its trust on other nodes (i.e., dispositional trust) is considered to determine the

amount of credits the node will be getting.

D3.1Support report

31/48

2.5.1.2 Credit Computation

The cooperation process refers to encouraging nodes in engaging in this process. In this sense,

credits are the most appropriate resource to stimulate the participation and interaction between nodes

with an average trust level.

This function will compute the amount of credits that a requester is willing to provide to a requestee as

a cooperation incentive. If the provided credit amount is enough to convince the requestee in engaging

in the cooperation, the process continues and the association between requester-requestee can be

possible.

The amount of cooperation credits sent to the requestee by the requester will be calculated as a

function of the number of credits that the requester owns at that specific moment. When the requester

is using cooperation credits for the first time, it will start by sending ¼ of the initial credits assigned,

hoping that this amount is enough to encourage the requestee in engaging in cooperation.

If the cooperation is accepted, the requester will keep track of the amount sent to the requestee as

reference for future cooperations (with the same requestee or even others). This amount of sent

cooperation credits refers to a specific service (with same service type and same service level)

required by the requester. Thus, the requester computes an average considering the current amount

of sent cooperation credits and past ones (i.e., based on cumulative moving average) that it has given

for the same service in previous interactions. And this average will serve as reference for sending

credits in future cooperation opportunities.

If the cooperation is not accepted, the requester will increase the amount of cooperation credits by 1/8

in an attempt to re-negotiate the cooperation process the same requestee or a newly found one.

2.5.2 Specification

As shown in Figure 12 the operation of the cooperation manager is divided into three phase: an initial

assignment of credits when the node enters a ULOOP community; the initiation of a periodic activity

for the evaluation of all cooperation sessions; the control of a cooperation process, including the

computation of the amount of credits to assign to a new cooperation.

As seen in Figure 12 the control of a cooperation process depend on the role of the ULOOP device as

a requester or a requestee.

If the ULOOP device is a requester it will first compute the amount of credits that it wants to assign to

the requestee in order to set up a cooperation session. The credits are sent to the requestee in the

form of a Token computed by a generic function Comp-Token (c.f section 2.6). The requester sends

the token (together with the trust level that it has on the requestee) to the requestee in an ULOOP

Beacon (UBeacon). Another UBeacon is used to get from the requestee the result of the cooperation

request, which includes information about the trust level that the requestee has on the requester. If the

D3.1: Support report

32/48

requestee agreed on the cooperation (amount of credits) the Cooperation Manager at the requester

will return the value of the cooperation Token. Otherwise, the cooperation manager returns zero.

If the ULOOP device is a requestee it will first extract the information about the credits from the Token,

which it got from the requester via an UBeacon. The first condition to be checked is the viability of the

cooperation in terms of credits. If the requestee is operating in a retailer mode, the Reward Manager is

called to decide about the validity of the requested cooperation. The validation of the cooperation in

terms of credits ends up with the requestee adding the received credits to its set of cooperation

credits: this operation is always done when the requestee is operating in a volunteer mode, and in a

retailer mode, after a positive reply from the reward manager.

If the cooperation is validated in terms of its credits the next validation is in terms of the resources

needed to execute the cooperation.

The validation of the cooperation in terms of resources is done by the CAC functionality, which will use

the cooperation Token to decide about the amount of resources that should be allocated to this

cooperation. If resources are made available, the requestee will compute its trust level towards the

requester, and will send that information to the requester via an UBeacon. Otherwise the requester will

get a null value, corresponding to a rejected cooperation.

D3.1Support report

33/48

Figure 12: Cooperation Manager flowchart.

Table 5 provides a mapping of the flowchart to the major operations executed by the Cooperation

Manager.

D3.1: Support report

34/48

Table 5: Mapping of cooperation manager Flow-Chart, major operations.

Flowchart

reference

Function method/descriptor Description Path to Code

1 Double creditsAssignment

(TrustTable trusttable, CryptoID

NodeID, double Cmin, double

Cmax)

This function calculates the initial

number of cooperation credits that

will be assigned at the boot-up

process.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/coop

eration_manager/Cre

ditsAssignment.java

2 Void cooperationEvaluation () This function evaluates the

cooperation process that has

happened between ULOOP nodes.

It results in the increase/decrease of

credit value.

TBD

3 Double

computeCooperationCredits(Stri

ng serviceType, int

serviceLevel)

This function calculates the amount

of cooperation credits that will be

sent to the requestee. These credits

will be used by the Requester to

encourage the Requestee in

engaging in cooperation.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/coop

eration_manager/Coo

perationManager.java

6 Double getCredits(double token) This function will be used by the

Requestee to obtain the number of

credits (from the received token)

involved in the cooperation process

and to decide if this amount is

enough to cooperate.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/coop

eration_manager/Coo

perationManager.java

7 updateCoopCredits(Double

cooperationCredits)

This function will be called when it is

necessary to update the

cooperation credits (requestee side)

by adding the credits that were

received and accepted in the

cooperation negotiation. Through

this function we can obtain the

amount of credits that has been

earned by the requestee with a

given cooperation.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/coop

eration_manager/Coo

perationManager.java

D3.1Support report

35/48

2.6 Virtual Currency and Reward Manager

<UniUrb: Alessandro, >

The virtual currency system provides the necessary primitives needed in order to send monetary

cooperation incentives to ULOOP gateways operating in retailer mode and to gather currency needed

for untrusted nodes to ensure cooperation. Credits can be converted to fiat money (monetized).

The Reward manager component is responsible for the control of a rewarding system when the

requestee operates in retailer mode. The Reward Manager allows the requestee to accept or refuse

the cooperation by comparing the amount of credits offered by the requester, with the amount of credit

that the requestee assigns as a cost to the requested cooperation.

The control of credits is done based on a reward wallet, which has always an amount of credits equal

or lower than the cooperation credit set controlled by the Cooperation Manager (they have the same

amount of credits if the ULOOP device is always operating in a retailer mode). The credits in the

reward wallet may be used as a virtual currency.

The Reward Manager is also responsible for the transfer (payment) of credits between requester and

requestee related to the rewarding process, including ways to monetize the credits used as virtual

currency.

2.6.1 Specification

Currently, as of 2.5, the Cooperation Manager receives a cooperation request inside a ULOOP

Beacon. The initial message includes the service request, the trust level of the requestee (from the

requester’s point of view) and an amount of tokens which encode the amount of credits the requester

is willing to pay in order to compensate the cooperation effort of the requestee.

Credit transfers are assumed to be immediate, if the cooperation request is accepted. If the request is

refused, the credits are assumed not to be transferred. On acceptance, the credits are transferred to

the Cooperation Manager (and kept inside the Cooperation Credit Set) and optionally also transferred

to the Wallet (if the node is operating in retailer mode).

Those operations are atomic and synchronous.

In order to guarantee the legitimate nature of the credit transfer, a central authority (Bank) can be

made available. The bank keeps track of the status of all wallets of registered ULOOP nodes. Credit

transfers between nodes can be then confirmed by the bank (this process is needed to ensure there is

no double spending of credits and that the requester’s wallet contains the transferred amount of

credits). Credit transfers are allowed also without an authority, but they cannot be confirmed reliably.

Figure 13 illustrates the full credit transfer system between a requester and a requestee, with optional

synchronization via central authority (Bank), if Internet connectivity is available.

D3.1: Support report

36/48

Figure 13: Credit transfer sequence diagram.

The payer assumes that payment succeeds by default, while the payee might wish to confirm payment

via authority. Unconfirmed payments, by default, have immediate effect. The Credit Transfer system

keeps track of incoming and outgoing credit transfers and waits for acknowledgement by the Bank. If

the credit transfer fails while asking for confirmation, the requestee assumes the credits to be lost and

appropriate action is taken to notify the illegal behaviour of the requester (influencing its trust on other

nodes).

Table 6: Mapping of reward manager Flow-Chart, major operations.

Flowchart

reference

Function method/descriptor Description Path to Code

NA RewardManager.creditsEvaluati

on(credits)

This function evaluates whether to

accept a payment or to refuse it (as

incentive to a cooperation request).

Acceptance is based on trust and

transferred credits by the requester.

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/virtual

_currency_and_rewar

d/RewardManager.jav

a

NA RewardManager.sync() This functions performs periodic

synchronization with the Bank (if

available) to confirm pending credit

TrustManagementAn

dCooperationIncentiv

es/Common/JavaOO

Model/trunk/src/virtual

D3.1Support report

37/48

transfers. _currency_and_rewar

d/RewardManager.jav

a

2.7 Token Computation

<ULHT: Rute Sofia>

In ULOOP, resource assignment and selection of gateways is performed based on two main

parameters: trust level (computed by the class SocialTrustComputation) and credits (managed by the

class CooperationManager). In order to assist the interfacing towards other classes, ULOOP therefore

considers a unique and virtual currency in the form of a token: a token is a unit of resources.

For instance, assuming a user at a specific instant in time can benefit of n tokens, then it can be

assumed that there is a specific correspondence to bandwidth, or to connectivity time, or to any other

form of networking or service resource.

The Trust management and Cooperation Incentives block is responsible for generating tokens. Then,

the responsibility of adequately mapping tokens to resources is delegated to each of the other

ULOOP technical blocks.

2.7.1 Computational Aspects

To generate tokens, ULOOP relies on a utility function that has as input both a trust level and a set of

credits that the node is willing to spend to get a specific service. This function must increase with an

increase in the trust level and also with an increase in credits. However, we expect it also to vary

slowly. Moreover, in ULOOP tokens are dependent also on the trust level. For instance, if a node has

a low trust level from the perspective of a source node (requestee), then, even if this node has a high

credit level, the resulting token value should progress slowly. When a node has a good trust level,

then if it uses a high level of credits, the resulting tokens should also not increase linearly, as this

would make the node greedy.

So the basic line of thought for the token function provided in Equation 6 is that when a specific trust

level is “low” (below some threshold which ULOOP adjusts), credits are more relevant to generate an

adequate number of tokens, than when the trust level is higher than the threshold specified.

Moreover, the trust level varies between [0,1], while credits vary between 0 and infinity. ULOOP is

currently assessing (via simulations) different variations of the function proposed as there is not yet

D3.1: Support report

38/48

consensus from the consortium concerning the function to rely upon. However, for the sake of

implementation, we consider in the code the function provided in Equation 6
1
.

#$(%, &) = #'(%, &) ∗ √*

Equation 6

Where:

�+(,, -) ∈ �0,1": ��/0�	+121+	�3	4�51	,	��67�50	-�0,1"; 9	 ∈ �0, ∞"

For the sake of representation of the function behavior, we provide in Figure 14 a graph that shows

how tokens vary with the trust level and with credits, based on the proposed function.

Figure 14: representation of equation 3 when credits and trust level vary.

2.7.2 Specification

The computation of tokens is performed via the java class TokenComputation. The token computation

is performed upon request via the TrustManager entity. On the context of the trust management, token

computation is performed once the node (Requester) is accepted by a gateway (Requestee), i.e.,

once the MAC authentication process ends, and the resource management process starts.

1 Equation 6 is one of the potential embodiments for the token utility function. The consortium is currently

evaluating several possibilities. The equation provided is the one that has been implemented in the prototype

released. It will be replaced by the function selected by the consortium.

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10111213141516171819202122

tl

c

tk

D3.1Support report

39/48

Table 7: Methods of TokenComputation.

Function/Method Descriptor Description Path

public float

computeTokens(CryptoId

requestee, Double credits)

Computes tokens to be

provided for a service

exchange, based upon the trust

level of the node towards the

requestee and also based upon

the number of credits the

requestee is willing to spend on

a specific service

TrustManagementAndCooperati

onIncentives/Common/JavaOO

Model/trunk/src/token_computat

ion/TokenComputation.java

3. Software Implementation Aspects

<UniGe: Carlos, Jean-Marc>

This section provides input concerning software design, choices that we have considered for the

current release and aspects to be addressed for the next release.

Currently, the pre-prototype implementation in Task 3.1 has been carried out fully in Java, following an

object oriented modelling approach. Each of the sub-blocks previously described in Section 2 has

been represented by an independent package in the Java project in Eclipse, each of them containing

one or more Java classes, in order to implement the main objects and methods needed for ULOOP to

work.

Figure 15 shows the main class diagram of ULOOP’s architecture implementation, containing the main

relevant classes and methods to ULOOP. Some classes have been minimized and their methods

omitted for the sake of the figure’s clarity.

D3.1: Support report

40/48

Figure 15: Main ULOOP class diagram

The full description of the classes and methods within the classes shown in Figure 15 can be found in

Annex A – Packages, Classes and Methods Description.

4. Guidelines/Next Steps

The main guidelines or next steps to be taken until the release of D3.4 (M24) are:

- To complete the applications in an Android platform, accordingly to the prototype plan of Task

3.4.

- Choosing/adopting some new solutions for the current implementation (i.e. how to validate

crypto-ids in a node without cellular interface, etc…).

D3.1Support report

41/48

- Refining the current software in order to ensure a better functioning and integration between

sub-blocks.

Also, all the TODOs present in the java code are presented in Table 8.

Table 8: List of TODOs as listed in the java code in the SVN

Description Resource Path Location

TODO a timeout may

occur if no device with

this cryptoid is on or

other reasons

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 415

TODO add real

keystore to IdValidator

IdValidator.java /uloopjavaoomodelv2/s

rc/crypto_id/crypto_id_

validation

line 112

TODO add strong

secure signature

Requestee.java /uloopjavaoomodelv2/s

rc/simulation

line 115

TODO add strong

secure signature

Requestee.java /uloopjavaoomodelv2/s

rc/simulation

line 155

TODO add strong

secure signature

Requestee.java /uloopjavaoomodelv2/s

rc/simulation

line 170

TODO add the

functions to flash the

QRCode

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 496

TODO At the moment

a requestee replies to

any service request

whose service is

present in the list of

services but it should

be tailored to the

services that it can do

and based on a

number of other

conditions (requester

enough trusted,

enough resources...)

Requestee.java /uloopjavaoomodelv2/s

rc/simulation

line 274

TODO At the moment Requester.java /uloopjavaoomodelv2/s line 848

D3.1: Support report

42/48

we assuming that all id

validators are equal,

trust each other and

only one id validation is

sufficient

rc/simulation

TODO change back to

real implementation

from CMS to compute

the concatenation of

hashes

IdHelper.java /uloopjavaoomodelv2/s

rc/crypto_id

line 51

TODO create form to

ask the user pass

nonce to retrieve the

secrets

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 399

TODO credits should

be extracted from the

wallet? (This is not

clear.)

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 86

TODO currently we

can envision

tokencomputation to

occur during:

cooperation

negotiation and later,

during resource

negotiation. right now,

we are assuming that

after the negotiation,

there is a global

variable credits, which

the node keeps and

therefore, we pass that

value if that does not

occur, then we may

need a specific method

to get

TokenComputation.jav

a

/uloopjavaoomodelv2/s

rc/token_computation

line 34

D3.1Support report

43/48

creditsc=cooperationcr

edits.getCredits();

c=computeCooperation

Credits(0, 0);

TODO decreasing the

wallet credits or

cooperation credits of

the requestee in case

of no cooperation does

not seem on the

diagrams

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 186

TODO decreasing the

wallet credits or

cooperation credits of

the requester does not

seem on the diagrams

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 199

TODO display form to

ask for a validated

nickname

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 445

TODO display form to

ask for a validated

nickname

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 545

TODO display form to

ask for a validated

nickname

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 556

TODO display form to

ask for the CryptoId of

another node either

typed by hand or

flashed or NFCed

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 467

TODO display form to

ask the user to type

the crypto-id by hand

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 475

TODO display form to

ask user if a QRCdoe

is provided

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 534

D3.1: Support report

44/48

TODO display form to

ask user if has already

another node

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 456

TODO display form to

flash the QRCode

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 469

TODO display forms to

the user to know if she

has already a

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 817

TODO EMA

parameter, we need to

tune it better

SocialTrustComputatio

n.java

/uloopjavaoomodelv2/s

rc/social_trust_comput

ation

line 43

TODO for June 30th,

this is a simpler version

of the function we are

not accounting for

direct/indirect

recommendations we

shall do that by

keeping state on the

truth table about

weighted average of

both the trustlevel due

to direct and to indirect

recommendations

SocialTrustComputatio

n.java

/uloopjavaoomodelv2/s

rc/social_trust_comput

ation

line 54

TODO form to ask the

user her initial

dispositional trust value

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 589

TODO form to ask the

user her wanted not

validated nickname

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 578

TODO get real MAC

addresses

Node.java /uloopjavaoomodelv2/s

rc/simulation

line 34

TODO implement

credit transfer order

Wallet.java /uloopjavaoomodelv2/s

rc/virtual_currency_and

_reward

line 49

TODO implement Requester.java /uloopjavaoomodelv2/s line 912

D3.1Support report

45/48

isWithinRadius rc/simulation

TODO implement more

secure signature

generation

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 730

TODO implement

receive account

creation ack

Wallet.java /uloopjavaoomodelv2/s

rc/virtual_currency_and

_reward

line 104

TODO implement

receive credit transfer

ack crypto

Wallet.java /uloopjavaoomodelv2/s

rc/virtual_currency_and

_reward

line 75

TODO implement

receive payment

Wallet.java /uloopjavaoomodelv2/s

rc/virtual_currency_and

_reward

line 58

TODO implement

secure check of

message signature

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 900

TODO implement

secure check of

signature

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 888

TODO implement

SHA-256 public key +

SHA-256 MAC address

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 741

TODO implement the

form asking the user

the already validated

nickname

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 567

TODO Maybe do other

ResourceManagement

stuff based on Paulo's

end of diagram

ResourceMNG(T) T

being the token

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 649

TODO Maybe do other

ResourceManagement

stuff based on Paulo's

end of diagram

ResourceManager.java /uloopjavaoomodelv2/s

rc/resource_managem

ent

line 24

D3.1: Support report

46/48

ResourceMNG(T) T

being the token

TODO Maybe do other

ResourceManagement

stuff based on Paulo's

end of diagram

ResourceMNG(T) T

being the token

ResourceManager.java /uloopjavaoomodelv2/s

rc/resource_managem

ent

line 33

TODO Maybe has to

send the token again

or

resourceManager.proc

essTokenAsRequester

(token);

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 650

TODO maybe try to

use CMS/PKCS7

messages instead

MainSim.java /uloopjavaoomodelv2/s

rc/test

line 86

TODO Not sure credits

can be transfered

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 435

TODO not sure the

credits should be

transfered now

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 150

TODO not sure why

periodically evaluating

cooperation should be

priority 2 as it is a

mandatory feateure to

change the trust values

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 209

TODO Not sure why

the trust value of the

requestee is sent back

to the requester

because it discloses

more information than

it seems needed

Requestee.java /uloopjavaoomodelv2/s

rc/simulation

line 159

TODO Not sure why Requestee.java /uloopjavaoomodelv2/s line 174

D3.1Support report

47/48

the trust value of the

requestee is sent back

to the requester

because it discloses

more information than

it seems needed

rc/simulation

TODO Not sure why

the trust value of the

requester is sent back

to the requestee

because it discloses

more information than

it seems needed

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 787

TODO refine how it is

computed based on

the token for the

moment it always

returns the credits

proposed by the

requester

CooperationManager.j

ava

/uloopjavaoomodelv2/s

rc/cooperation_manag

er

line 128

TODO retrieve the

value from the node's

database

DispositionalTrust.java /uloopjavaoomodelv2/s

rc/dispositional_trust

line 67

TODO set the

dispositional trust value

in the node's database

DispositionalTrust.java /uloopjavaoomodelv2/s

rc/dispositional_trust

line 84

TODO Should check if

there are always

enough resources as

this version always

returns true

CallAdmissionControl.j

ava

/uloopjavaoomodelv2/s

rc/resource_managem

ent

line 22

TODO should warn the

user if the nickname

she specified does not

exist and stop

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 825

TODO substitute node TokenComputation.jav /uloopjavaoomodelv2/s line 32

D3.1: Support report

48/48

by the adequate

object. Node is the

current node

a rc/token_computation

TODO to implement

getting the key pair

from device in range

Requester.java /uloopjavaoomodelv2/s

rc/simulation

line 278

TODO try not return

always true in case of

asking if the proposed

credits are enough for

the wallet

RewardManager.java /uloopjavaoomodelv2/s

rc/virtual_currency_and

_reward

line 37

References

[1] Rute Sofia (Editor, ULHT), ULOOP Consortium, D2.3: ULOOP Overall Specification. EU FP7

IST ULOOP project (grant number 257418) deliverable, September 2011.

[2] Rute Sofia (Editor, ULHT), ULOOP Consortium, D3: ULOOP High Level Architecture

Specification. EU FP7 IST ULOOP project (grant number 257418) deliverable, December 2011.

[3] R. Housley et al., Network Working Group, RFC 2459: Internet X.509 Public Key Infrastructure

Certificate and CRL Profile, http://www.ietf.org/rfc/rfc2459.txt, January 1999.

D3.1 Annex A: Packages, Classes and

Methods

Deliverable Number D3.1

Lead Beneficiary UniGe

Nature/Dissemination Level CO

Working Group/Task WP3/Task3.1

Editor UniGe (Carlos Ballester)

List of Authors UniGe (Carlos Ballester, Jean-Marc Seigneur), ULHT

(Christian Pereira, Paulo Mendes, Rute Sofia, Waldir

Moreira), UniUrb (Alessandro Bogliolo, Lorenz Cuno

Klopfenstein, Saverio Delpriori, Gioele Luchetti),

Level7 (Paolo Di Francesco, Marzia Mammina).

Date (Project Month and dd.mm.yy) Month 22, 30.06.2012

QAT Reviewer Paolo di Francesco (LEVEL7)

 D3.1 Annex A

2

All rights Reserved: @ULOOP Consortium, 2010-2013.

D3.1 Annex A

3

Namespace Index

Packages
Here are the packages with brief descriptions (if available):

cooperation_manager ... 9

crypto_id .. 10

crypto_id.crypto_id_validation ... 11

crypto_id.crypto_id_validation.level7 ... 12

dispositional_trust .. 13

monetization .. 14

overall_implementation .. 15

overall_implementation.send_receive_beacons .. 16

resource_management .. 17

simulation .. 18

social_trust_computation ... 19

test .. 20

token_computation ... 21

virtual_currency_and_reward ... 22

 D3.1 Annex A

4

Class Index

Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:

virtual_currency_and_reward.Bank ... 27

resource_management.CallAdmissionControl ... 29

crypto_id.crypto_id_validation.level7.ChallengeResponse ... 30

overall_implementation.ConfigurationBundle ... 32

cooperation_manager.CooperationManager .. 34

virtual_currency_and_reward.Credit ... 42

cooperation_manager.CreditsAssignment ... 43

overall_implementation.CreditsForService.. 44

crypto_id.CryptoId ... 50

dispositional_trust.DispositionalTrust ... 52

dispositional_trust.DispositionalTrustDBHelper ... 55

crypto_id.IdHelper ... 57

crypto_id.crypto_id_validation.IdValidator ... 59

simulation.Location ... 63

test.MainSim .. 65

virtual_currency_and_reward.MarketBroker ... 66

overall_implementation.send_receive_beacons.Message .. 67

overall_implementation.send_receive_beacons.CooperationServiceRequestReply 40

overall_implementation.send_receive_beacons.KeyRequest ... 62

overall_implementation.send_receive_beacons.ServiceRequest .. 99

overall_implementation.send_receive_beacons.ServiceRequestReply ... 103

overall_implementation.send_receive_beacons.CooperationServiceRequest 38

overall_implementation.send_receive_beacons.TokenMessage ... 116

virtual_currency_and_reward.AccountCreationAck .. 23

virtual_currency_and_reward.AccountCreationRequest .. 25

virtual_currency_and_reward.CreditTransferAck .. 46

virtual_currency_and_reward.CreditTransferOrder .. 48

virtual_currency_and_reward.WalletStatusRequest ... 130

virtual_currency_and_reward.WalletStatusResponse ... 132

virtual_currency_and_reward.WalletSynchronizationRequest ... 135

virtual_currency_and_reward.Mint .. 70

crypto_id.crypto_id_validation.level7.MobilePhoneNumber .. 71

monetization.MonetizationManager .. 73

crypto_id.NicknameCertificates... 74

simulation.Node ... 76

simulation.Requester... 85

simulation.Requestee ... 81

crypto_id.NodeId ... 78

simulation.QRCode .. 80

resource_management.ResourceManager .. 92

D3.1 Annex A

5

virtual_currency_and_reward.RewardManager ... 93

overall_implementation.Service .. 95

overall_implementation.ServiceLevel ... 97

overall_implementation.send_receive_beacons.ServiceRequestReplies ... 101

crypto_id.crypto_id_validation.level7.SessionID .. 105

overall_implementation.Signature ... 106

crypto_id.crypto_id_validation.level7.SMS_Server .. 108

crypto_id.crypto_id_validation.level7.SMS_Server_Listener ... 110

social_trust_computation.SocialTrustComputation ... 112

overall_implementation.Token .. 114

token_computation.TokenComputation ... 115

social_trust_computation.TrustTable ... 118

social_trust_computation.TrustTableEntry .. 120

overall_implementation.TrustValue... 123

simulation.User .. 124

virtual_currency_and_reward.Wallet ... 127

simulation.WiFiNeighborhood .. 137

 D3.1 Annex A

6

Class Index

Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

virtual_currency_and_reward.AccountCreationAck (Message representing the confirmation of a created

account) .. 23

virtual_currency_and_reward.AccountCreationRequest (Message representing the request to create a new

account) .. 25

virtual_currency_and_reward.Bank (The Class Bank) ... 27

resource_management.CallAdmissionControl (The Class CallAdmissionControl) 29

crypto_id.crypto_id_validation.level7.ChallengeResponse (The Class ChallengeResponse) 30

overall_implementation.ConfigurationBundle (The Class ConfigurationBundle) 32

cooperation_manager.CooperationManager (Cooperation Manager class) 34

overall_implementation.send_receive_beacons.CooperationServiceRequest (A request sent to the selected

Requestee who had issued ServiceRequestReply if the Requester as selected it with the best trust value)

 ... 38

overall_implementation.send_receive_beacons.CooperationServiceRequestReply (The Class

CooperationServiceRequestReply) .. 40

virtual_currency_and_reward.Credit (The Class Credit) ... 42

cooperation_manager.CreditsAssignment (This function calculates the initial number of credits that will

be assigned at the beginning of the cooperation process) ... 43

overall_implementation.CreditsForService (The Class CreditsForService keeps track on how many credits

were proposed by a requester for a service request) .. 44

virtual_currency_and_reward.CreditTransferAck (The Class CreditTransferAck) 46

virtual_currency_and_reward.CreditTransferOrder (The Class CreditTransferOrder) 48

crypto_id.CryptoId (The Class CryptoId) .. 50

dispositional_trust.DispositionalTrust (The Class DispositionalTrust) .. 52

dispositional_trust.DispositionalTrustDBHelper (The Class DispositionalTrustDBHelper) 55

crypto_id.IdHelper (The Class IdHelper provides a few helper methods to compute the different id types in

ULOOP) ... 57

crypto_id.crypto_id_validation.IdValidator (The Class IdValidator) .. 59

overall_implementation.send_receive_beacons.KeyRequest (The Class KeyRequest) 62

simulation.Location (The Class Location) ... 63

test.MainSim (The Class MainSim) ... 65

virtual_currency_and_reward.MarketBroker (The Class MarketBroker) 66

overall_implementation.send_receive_beacons.Message (The Class Message) 67

virtual_currency_and_reward.Mint (The Class Mint) .. 70

crypto_id.crypto_id_validation.level7.MobilePhoneNumber (The Class MobilePhoneNumber) 71

monetization.MonetizationManager (The Class MonetizationManager) 73

crypto_id.NicknameCertificates (The Class NicknameCertificates) .. 74

simulation.Node (The Class Node) ... 76

crypto_id.NodeId (The Class NodeId) ... 78

simulation.QRCode (The Class QRCode) ... 80

simulation.Requestee (The Class Requestee) .. 81

simulation.Requester (The Class Requester) .. 85

resource_management.ResourceManager (The Class ResourceManager) 92

virtual_currency_and_reward.RewardManager (The Class RewardManager) 93

overall_implementation.Service (The Class Service) ... 95

overall_implementation.ServiceLevel (The Class ServiceLevel) ... 97

D3.1 Annex A

7

overall_implementation.send_receive_beacons.ServiceRequest (The Class ServiceRequest) 99

overall_implementation.send_receive_beacons.ServiceRequestReplies (The Class ServiceRequestReplies)

 ... 101

overall_implementation.send_receive_beacons.ServiceRequestReply (The Class ServiceRequestReply)

 ... 103

crypto_id.crypto_id_validation.level7.SessionID (The Class SessionID) 105

overall_implementation.Signature (The Class Signature) ... 106

crypto_id.crypto_id_validation.level7.SMS_Server (The Class SMS_Server) 108

crypto_id.crypto_id_validation.level7.SMS_Server_Listener (The listener interface for receiving

SMS_Server_ events) .. 110

social_trust_computation.SocialTrustComputation (The Class SocialTrustComputation an object of type

TrustTable it is basically the heart of the way trust levels are computed) 112

overall_implementation.Token (The Class Token) .. 114

token_computation.TokenComputation (Provides the tokens to be used in exchange of resources)

 ... 115

overall_implementation.send_receive_beacons.TokenMessage (The Class TokenMessage) 116

social_trust_computation.TrustTable (The Class TrustTable is a linked list of the TrustTableEntry class in

the node, a trusttable object is initiated (main)) ... 118

social_trust_computation.TrustTableEntry (The Class TrustTableEntry) 120

overall_implementation.TrustValue (The Class TrustValue) ... 123

simulation.User (The Class User) ... 124

virtual_currency_and_reward.Wallet (The Class Wallet) ... 127

virtual_currency_and_reward.WalletStatusRequest (The Class WalletStatusRequest) 130

virtual_currency_and_reward.WalletStatusResponse (The Class WalletStatusResponse) 132

virtual_currency_and_reward.WalletSynchronizationRequest (The Class WalletSynchronizationRequest)

 ... 135

simulation.WiFiNeighborhood (The Class WiFiNeighborhood) ... 137

 D3.1 Annex A

8

D3.1 Annex A

9

Namespace Documentation

Package cooperation_manager

Classes

• class CooperationManager

• Cooperation Manager class. class CreditsAssignment

This function calculates the initial number of credits that will be assigned at the beginning of the cooperation process.

 D3.1 Annex A

10

Package crypto_id

Packages

• package crypto_id_validation

Classes

• class CryptoId

• The Class CryptoId. class IdHelper

• The Class IdHelper provides a few helper methods to compute the different id types in ULOOP. class

NicknameCertificates

• The Class NicknameCertificates. class NodeId

The Class NodeId.

D3.1 Annex A

11

Package crypto_id.crypto_id_validation

Packages

• package level7

Classes

• class IdValidator

The Class IdValidator.

 D3.1 Annex A

12

Package crypto_id.crypto_id_validation.level7

Classes

• class ChallengeResponse

• The Class ChallengeResponse. class MobilePhoneNumber

• The Class MobilePhoneNumber. class SessionID

• The Class SessionID. class SMS_Server

• The Class SMS_Server. class SMS_Server_Listener

The listener interface for receiving SMS_Server_ events.

D3.1 Annex A

13

Package dispositional_trust

Classes

• class DispositionalTrust

• The Class DispositionalTrust. class DispositionalTrustDBHelper

The Class DispositionalTrustDBHelper.

 D3.1 Annex A

14

Package monetization

Classes

• class MonetizationManager

The Class MonetizationManager.

D3.1 Annex A

15

Package overall_implementation

Packages

• package send_receive_beacons

Classes

• class ConfigurationBundle

• The Class ConfigurationBundle. class CreditsForService

• The Class CreditsForService keeps track on how many credits were proposed by a requester for a service request.

class Service

• The Class Service. class ServiceLevel

• The Class ServiceLevel. class Signature

• The Class Signature. class Token

• The Class Token. class TrustValue

The Class TrustValue.

 D3.1 Annex A

16

Package overall_implementation.send_receive_beacons

Classes

• class CooperationServiceRequest

• A request sent to the selected Requestee who had issued ServiceRequestReply if the Requester as selected it with

the best trust value. class CooperationServiceRequestReply

• The Class CooperationServiceRequestReply. class KeyRequest

• The Class KeyRequest. class Message

• The Class Message. class ServiceRequest

• The Class ServiceRequest. class ServiceRequestReplies

• The Class ServiceRequestReplies. class ServiceRequestReply

• The Class ServiceRequestReply. class TokenMessage

The Class TokenMessage.

D3.1 Annex A

17

Package resource_management

Classes

• class CallAdmissionControl

• The Class CallAdmissionControl. class ResourceManager

The Class ResourceManager.

 D3.1 Annex A

18

Package simulation

Classes

• class Location

• The Class Location. class Node

• The Class Node. class QRCode

• The Class QRCode. class Requestee

• The Class Requestee. class Requester

• The Class Requester. class User

• The Class User. class WiFiNeighborhood

The Class WiFiNeighborhood.

D3.1 Annex A

19

Package social_trust_computation

Classes

• class SocialTrustComputation

• The Class SocialTrustComputation an object of type TrustTable it is basically the heart of the way trust levels are

computed. class TrustTable

• The Class TrustTable is a linked list of the TrustTableEntry class in the node, a trusttable object is initiated

(main) class TrustTableEntry

The Class TrustTableEntry.

 D3.1 Annex A

20

Package test

Classes

• class MainSim

The Class MainSim.

D3.1 Annex A

21

Package token_computation

Classes

• class TokenComputation

Provides the tokens to be used in exchange of resources.

 D3.1 Annex A

22

Package virtual_currency_and_reward

Classes

• class AccountCreationAck

• Message representing the confirmation of a created account. class AccountCreationRequest

• Message representing the request to create a new account. class Bank

• The Class Bank. class Credit

• The Class Credit. class CreditTransferAck

• The Class CreditTransferAck. class CreditTransferOrder

• The Class CreditTransferOrder. class MarketBroker

• The Class MarketBroker. class Mint

• The Class Mint. class RewardManager

• The Class RewardManager. class Wallet

• The Class Wallet. class WalletStatusRequest

• The Class WalletStatusRequest. class WalletStatusResponse

• The Class WalletStatusResponse. class WalletSynchronizationRequest

The Class WalletSynchronizationRequest.

D3.1 Annex A

23

Class Documentation

virtual_currency_and_reward.AccountCreationAck Class Reference

Message representing the confirmation of a created account.
Inheritance diagram for virtual_currency_and_reward.AccountCreationAck:

Public Member Functions

• AccountCreationAck (CryptoId owner, CryptoId bank, Date timestampCreated)

Instantiates a new account creation ack.

• CryptoId getAccountOwner ()

Gets the account owner.

• CryptoId getBank ()

Gets the bank.

• Date getTimestampCreated ()

Gets the timestamp created.

Detailed Description

Message representing the confirmation of a created account.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.AccountCreationAck.AccountCreationAck (CryptoId owner, CryptoId
bank, Date timestampCreated)

Instantiates a new account creation ack.

Parameters:

owner the owner

bank the bank

timestampCreated the timestamp created

 D3.1 Annex A

24

Member Function Documentation

CryptoId virtual_currency_and_reward.AccountCreationAck.getAccountOwner ()

Gets the account owner.

Returns:

the account owner .property name="Account owner"

CryptoId virtual_currency_and_reward.AccountCreationAck.getBank ()

Gets the bank.

Returns:

the bank .property name="Bank"

Date virtual_currency_and_reward.AccountCreationAck.getTimestampCreated ()

Gets the timestamp created.

Returns:

the timestamp created .property name="Creation timestamp"

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/AccountCreationAck.java

D3.1 Annex A

25

virtual_currency_and_reward.AccountCreationRequest Class
Reference

Message representing the request to create a new account.
Inheritance diagram for virtual_currency_and_reward.AccountCreationRequest:

Public Member Functions

• AccountCreationRequest (CryptoId owner, CryptoId bank, Date timestampIssued)

Instantiates a new account creation request.

• CryptoId getAccountOwner ()

Gets the account owner.

• CryptoId getBank ()

Gets the bank.

• Date getTimestampIssued ()

Gets the timestamp issued.

Detailed Description

Message representing the request to create a new account.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.AccountCreationRequest.AccountCreationRequest (CryptoId owner,
CryptoId bank, Date timestampIssued)

Instantiates a new account creation request.

Parameters:

owner the owner

bank the bank

timestampIssued the timestamp issued

 D3.1 Annex A

26

Member Function Documentation

CryptoId virtual_currency_and_reward.AccountCreationRequest.getAccountOwner ()

Gets the account owner.

Returns:

the account owner .property name="Account owner"

CryptoId virtual_currency_and_reward.AccountCreationRequest.getBank ()

Gets the bank.

Returns:

the bank .property name="Bank"

Date virtual_currency_and_reward.AccountCreationRequest.getTimestampIssued ()

Gets the timestamp issued.

Returns:

the timestamp issued .property name="Issue timestamp"

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/AccountCreationRequest.java

D3.1 Annex A

27

virtual_currency_and_reward.Bank Class Reference

The Class Bank.

Public Member Functions

• void receiveAccountCreationRequest (AccountCreationRequest request)

Receive account creation request.

• void receiveCreditTransferOrder (CreditTransferOrder transferOrder)

Receive credit transfer order.

• void receivedAccountStatusRequest (String accountOwner)

Received account status request.

Detailed Description

The Class Bank.

Author:

UniUrb

Version:

Jun 27, 2012

Member Function Documentation

void virtual_currency_and_reward.Bank.receiveAccountCreationRequest
(AccountCreationRequest request)

Receive account creation request.

Parameters:

request the request

void virtual_currency_and_reward.Bank.receiveCreditTransferOrder (CreditTransferOrder
transferOrder)

Receive credit transfer order.

Parameters:

transferOrder the transfer order

void virtual_currency_and_reward.Bank.receivedAccountStatusRequest (String accountOwner)

Received account status request.

 D3.1 Annex A

28

Parameters:

accountOwner the account owner

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/Bank.java

D3.1 Annex A

29

resource_management.CallAdmissionControl Class Reference

The Class CallAdmissionControl.

Public Member Functions

• boolean enoughResources (double token)

Check if there are enough resources.

Detailed Description

The Class CallAdmissionControl.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 29, 2012

Member Function Documentation

boolean resource_management.CallAdmissionControl.enoughResources (double token)

Check if there are enough resources.

Parameters:

token

Returns:

true if there are enough resources

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/resource_management/Cal

lAdmissionControl.java

 D3.1 Annex A

30

crypto_id.crypto_id_validation.level7.ChallengeResponse Class
Reference

The Class ChallengeResponse.

Public Member Functions

• ChallengeResponse ()

Instantiates a new challenge response.

• String getChallenge ()

Gets the challenge.

• String getResponse ()

Gets the response.

Detailed Description

The Class ChallengeResponse.

Author:

Marzia (Level7)

Paolo (Level7)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.level7.ChallengeResponse.ChallengeResponse ()

Instantiates a new challenge response.

Member Function Documentation

String crypto_id.crypto_id_validation.level7.ChallengeResponse.getChallenge ()

Gets the challenge.

Returns:

the challenge

String crypto_id.crypto_id_validation.level7.ChallengeResponse.getResponse ()

Gets the response.

D3.1 Annex A

31

Returns:

the response

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/level7/ChallengeResponse.java

 D3.1 Annex A

32

overall_implementation.ConfigurationBundle Class Reference

The Class ConfigurationBundle.

Public Member Functions

• KeyPair getKeyPair ()

Gets the key pair.

• NicknameCertificates getNickNameCertificates ()

Gets the nick name certificates.

• DispositionalTrust getDispositionalTrust ()

Gets the dispositional trust.

• int getCredits ()

Gets the credits.

Detailed Description

The Class ConfigurationBundle.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Member Function Documentation

int overall_implementation.ConfigurationBundle.getCredits ()

Gets the credits.

Returns:

the credits

DispositionalTrust overall_implementation.ConfigurationBundle.getDispositionalTrust ()

Gets the dispositional trust.

Returns:

the dispositional trust

KeyPair overall_implementation.ConfigurationBundle.getKeyPair ()

Gets the key pair.

D3.1 Annex A

33

Returns:

the key pair

NicknameCertificates overall_implementation.ConfigurationBundle.getNickNameCertificates ()

Gets the nick name certificates.

Returns:

the nick name certificates

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/C

onfigurationBundle.java

 D3.1 Annex A

34

cooperation_manager.CooperationManager Class Reference

Cooperation Manager class.

Public Member Functions

• CooperationManager (TokenComputation tokenComputation, RewardManager rewardManager)

Constructor method of the Cooperation Manager class.

• double assignInitialCredits (float trustLevel, double cMin, double cMax)

This function calculates the initial number of credits that will be assigned at the boot-up process.

• double computeCooperationCredits (String serviceType, int serviceLevel, String serviceRequestId)

This function compute the credits that will be sent to the Requester to encourage the Requestee in engaging in

cooperation.

• double getToken (CryptoId cryptoId, double credits)

Token is a function of the credits the Requester is willing to provide to Requestee for the perspective cooperation

and its trust level towards the Requestee.

• double getCredits (double token, String serviceRequestId)

This function will be used by the Requestee to obtain the credits involved in the cooperation process and to decide

if this amount is enough to cooperate.

• boolean enoughCreditsToCooperate (boolean retailer, double credits)

This function will be used in the retailer cooperation case.

• double updateCoopCredits (double newCredits)

This function updates the cooperation credits in the Requestee side.

• boolean enoughIncentivesToCooperate (double token, String serviceRequestId)

This function will evaluate if the incentive sent (Token value) is or is not enough to establish the association.

• void creditsRequesterUpdate (String serviceRequestId)

This function will be called only if the result of the cooperation process (be it voluntary or retailer) is positive.

• void periodicallyEvaluateCooperation ()

Periodically evaluate cooperation.

Detailed Description

Cooperation Manager class.

Author:

Christian Silva (ULHT)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

cooperation_manager.CooperationManager.CooperationManager (TokenComputation
tokenComputation, RewardManager rewardManager)

Constructor method of the Cooperation Manager class.

D3.1 Annex A

35

Member Function Documentation

double cooperation_manager.CooperationManager.assignInitialCredits (float trustLevel, double
cMin, double cMax)

This function calculates the initial number of credits that will be assigned at the boot-up process.

Parameters:

the trust level

cMin a double argument. Minimum credits to assign

cMax a double argument. Maximum credits to assign

Returns:

The initial amount of credits assigned

double cooperation_manager.CooperationManager.computeCooperationCredits (String
serviceType, int serviceLevel, String serviceRequestId)

This function compute the credits that will be sent to the Requester to encourage the Requestee in engaging in

cooperation.

Parameters:

serviceType a String value. It is the service type requested

serviceLevel a integer value. It is the service level requested

Returns:

The credits exchanged in the cooperation process

void cooperation_manager.CooperationManager.creditsRequesterUpdate (String
serviceRequestId)

This function will be called only if the result of the cooperation process (be it voluntary or retailer) is positive.

The cooperation credits (requester side) will be updated by, decreasing the credits that were sent during

the cooperation.

boolean cooperation_manager.CooperationManager.enoughCreditsToCooperate (boolean retailer,
double credits)

This function will be used in the retailer cooperation case.

With this function the Requestee will evaluate if the credits received are or are not enough to continue

with the cooperation process

Parameters:

rewardManager is the reference associated to the RewardManager class

retailer a boolean argument. It is refers to the node status: retailer or voluntary

credits a double argument. Amount of credits received by the Requestee

 D3.1 Annex A

36

Returns:

the boolean value. This function tell us if the credits sent are or are not enough to continue with the

cooperation

boolean cooperation_manager.CooperationManager.enoughIncentivesToCooperate (double token,
String serviceRequestId)

This function will evaluate if the incentive sent (Token value) is or is not enough to establish the association.

Parameters:

token a double argument.

Returns:

the boolean value. This function tells us if the Token value is or is not enough to cooperate

double cooperation_manager.CooperationManager.getCredits (double token, String
serviceRequestId)

This function will be used by the Requestee to obtain the credits involved in the cooperation process and to decide

if this amount is enough to cooperate.

Parameters:

token a double argument. It is the "weight" that the request has.

Returns:

The amount of credits exchanged in the cooperation process

double cooperation_manager.CooperationManager.getToken (CryptoId cryptoId, double credits)

Token is a function of the credits the Requester is willing to provide to Requestee for the perspective cooperation

and its trust level towards the Requestee.

Parameters:

the CryptoId of the trusted

the credits to be provided

Returns:

Token value

void cooperation_manager.CooperationManager.periodicallyEvaluateCooperation ()

Periodically evaluate cooperation.

double cooperation_manager.CooperationManager.updateCoopCredits (double newCredits)

This function updates the cooperation credits in the Requestee side.

Parameters:

credits a double parameter.

D3.1 Annex A

37

Returns:

The amount of credits earned by the Requestee with a given cooperation

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/cooperation_manager/Coo

perationManager.java

 D3.1 Annex A

38

overall_implementation.send_receive_beacons.CooperationServiceRe
quest Class Reference

A request sent to the selected Requestee who had issued ServiceRequestReply if the Requester as selected it with the

best trust value.
Inheritance diagram for

overall_implementation.send_receive_beacons.CooperationServiceRequest:

Public Member Functions

• CooperationServiceRequest (ServiceRequestReply selectedServiceRequestReply, Signature signature,

TrustValue trustValueOfRequesterInRequestee, Token

tokenWillingToBeGivenByTheRequesterToTheRequestee)

Instances a CooperationServiceRequest.

• TrustValue getTrustValueOfRequesterInRequestee ()

Gets the trust value of requester in requestee.

• Token getTokenWillingToBeGivenByTheRequesterToTheRequestee ()

Gets the token willing to be given by the requester to the requestee.

Detailed Description

A request sent to the selected Requestee who had issued ServiceRequestReply if the Requester as selected

it with the best trust value.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.CooperationServiceRequest.CooperationServiceR
equest (ServiceRequestReply selectedServiceRequestReply, Signature signature, TrustValue
trustValueOfRequesterInRequestee, Token
tokenWillingToBeGivenByTheRequesterToTheRequestee)

Instances a CooperationServiceRequest.

D3.1 Annex A

39

Parameters:

selectedServiceReq

uestReply

the selected service request reply

signature the signature

trustValueOfReque

sterInRequestee

the trust value of requester in requestee

tokenWillingToBe

GivenByTheReque

sterToTheRequeste

e

the token willing to be given by the requester to the requestee

Member Function Documentation

Token
overall_implementation.send_receive_beacons.CooperationServiceRequest.getTokenWillingToBe
GivenByTheRequesterToTheRequestee ()

Gets the token willing to be given by the requester to the requestee.

Returns:

the token willing to be given by the requester to the requestee

TrustValue
overall_implementation.send_receive_beacons.CooperationServiceRequest.getTrustValueOfRequ
esterInRequestee ()

Gets the trust value of requester in requestee.

Returns:

the trust value of requester in requestee

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/CooperationServiceRequest.java

 D3.1 Annex A

40

overall_implementation.send_receive_beacons.CooperationServiceRe
questReply Class Reference

The Class CooperationServiceRequestReply.
Inheritance diagram for

overall_implementation.send_receive_beacons.CooperationServiceRequestReply:

Public Member Functions

• CooperationServiceRequestReply (CryptoId sender, CryptoId recipient, Signature signature, TrustValue

trustValueOfRequesteeInRequester, boolean cooperationSuccessReply, String serviceRequestId)

Instantiates a cooperation service request reply.

• boolean isCooperationSuccessReply ()

Checks if is cooperation success reply.

• TrustValue getTrustValueOfRequesteeInRequester ()

Gets the trust value of requestee in requester.

• String getServiceRequestId ()

Gets the service request id.

Detailed Description

The Class CooperationServiceRequestReply.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.CooperationServiceRequestReply.CooperationSer
viceRequestReply (CryptoId sender, CryptoId recipient, Signature signature, TrustValue
trustValueOfRequesteeInRequester, boolean cooperationSuccessReply, String serviceRequestId)

Instantiates a cooperation service request reply.

Parameters:

sender the sender

recipient the recipient

signature the signature

D3.1 Annex A

41

trustValueOfReque

steeInRequester

the trust value of requestee in requester

cooperationSucces

sReply

the cooperation success reply

serviceRequestId the service request id

token the token

Member Function Documentation

String
overall_implementation.send_receive_beacons.CooperationServiceRequestReply.getServiceRequ
estId ()

Gets the service request id.

Returns:

the service request id

TrustValue
overall_implementation.send_receive_beacons.CooperationServiceRequestReply.getTrustValueOf
RequesteeInRequester ()

Gets the trust value of requestee in requester.

Returns:

the trust value of requestee in requester

boolean
overall_implementation.send_receive_beacons.CooperationServiceRequestReply.isCooperationS
uccessReply ()

Checks if is cooperation success reply.

Returns:

true, if is cooperation success reply

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/CooperationServiceRequestReply.java

 D3.1 Annex A

42

virtual_currency_and_reward.Credit Class Reference

The Class Credit.

Public Member Functions

• Credit (double value)

Instantiates a new credit.

• double getValue ()

Gets the value.

Detailed Description

The Class Credit.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.Credit.Credit (double value)

Instantiates a new credit.

Parameters:

value the value

Member Function Documentation

double virtual_currency_and_reward.Credit.getValue ()

Gets the value.

Returns:

the value

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/Credit.java

D3.1 Annex A

43

cooperation_manager.CreditsAssignment Class Reference

This function calculates the initial number of credits that will be assigned at the beginning of the cooperation process.

Detailed Description

This function calculates the initial number of credits that will be assigned at the beginning of the cooperation

process.

The credits to consider are dependent on the trust level following a Gaussian distribution behavior. To more

information for this function:

ULOOP/WorkPackages/WP3/Task3.1/CooperationManager/Coop-Manager-Functions.pdf

Author:

Christian Silva (ULHT)

Version:

Jun 27, 2012

The documentation for this class was generated from the following file:
• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/cooperation_manager/Cre

ditsAssignment.java

 D3.1 Annex A

44

overall_implementation.CreditsForService Class Reference

The Class CreditsForService keeps track on how many credits were proposed by a requester for a service request.

Public Member Functions

• CreditsForService (String serviceRequestId, double credits)

Instantiates a new credits for service.

• String getServiceRequestId ()

Gets the service request id.

• Credit getCredit ()

Gets the credit.

Public Attributes

• String serviceRequestId

The service request id.

• Credit credit

The credit.

Detailed Description

The Class CreditsForService keeps track on how many credits were proposed by a requester for a service

request.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.CreditsForService.CreditsForService (String serviceRequestId, double
credits)

Instantiates a new credits for service.

Parameters:

serviceRequestId the service request id

credits the credits

Member Function Documentation

Credit overall_implementation.CreditsForService.getCredit ()

D3.1 Annex A

45

Gets the credit.

Returns:

the credit

String overall_implementation.CreditsForService.getServiceRequestId ()

Gets the service request id.

Returns:

the service request id

Member Data Documentation

Credit overall_implementation.CreditsForService.credit

The credit.

String overall_implementation.CreditsForService.serviceRequestId

The service request id.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/C

reditsForService.java

 D3.1 Annex A

46

virtual_currency_and_reward.CreditTransferAck Class Reference

The Class CreditTransferAck.
Inheritance diagram for virtual_currency_and_reward.CreditTransferAck:

Public Member Functions

• CreditTransferAck (long orderId, double amount, CryptoId payeeCryptoId, CryptoId payerCryptoId, Date done)

Instantiates a new credit transfer ack.

• CreditTransferAck (long orderId, long negotiationId, double amount, CryptoId payee, CryptoId payer, Date

done)

Instantiates a new credit transfer ack.

Detailed Description

The Class CreditTransferAck.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.CreditTransferAck.CreditTransferAck (long orderId, double amount,
CryptoId payeeCryptoId, CryptoId payerCryptoId, Date done)

Instantiates a new credit transfer ack.

Parameters:

orderId the order id

amount the amount

payeeCryptoId the payee crypto id

payerCryptoId the payer crypto id

done the done

virtual_currency_and_reward.CreditTransferAck.CreditTransferAck (long orderId, long
negotiationId, double amount, CryptoId payee, CryptoId payer, Date done)

Instantiates a new credit transfer ack.

D3.1 Annex A

47

Parameters:

orderId the order id

negotiationId the negotiation id

amount the amount

payee the payee

payer the payer

done the done

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/CreditTransferAck.java

 D3.1 Annex A

48

virtual_currency_and_reward.CreditTransferOrder Class Reference

The Class CreditTransferOrder.
Inheritance diagram for virtual_currency_and_reward.CreditTransferOrder:

Public Member Functions

• CreditTransferOrder (long orderId, double amount, CryptoId payee, CryptoId payer, Date issue)

Instantiates a new credit transfer order.

• CreditTransferOrder (long orderId, long negotiationId, double amount, CryptoId payee, CryptoId payer, Date

issue)

Instantiates a new credit transfer order.

Detailed Description

The Class CreditTransferOrder.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.CreditTransferOrder.CreditTransferOrder (long orderId, double
amount, CryptoId payee, CryptoId payer, Date issue)

Instantiates a new credit transfer order.

Parameters:

orderId the order id

amount the amount

payee the payee

payer the payer

issue the issue

virtual_currency_and_reward.CreditTransferOrder.CreditTransferOrder (long orderId, long
negotiationId, double amount, CryptoId payee, CryptoId payer, Date issue)

Instantiates a new credit transfer order.

D3.1 Annex A

49

Parameters:

orderId the order id

negotiationId the negotiation id

amount the amount

payee the payee

payer the payer

issue the issue

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/CreditTransferOrder.java

 D3.1 Annex A

50

crypto_id.CryptoId Class Reference

The Class CryptoId.

Public Member Functions

• CryptoId (PublicKey publicKey)

Instantiates a new crypto id.

• CryptoId (String userProvidedCryptoId)

Instantiates a new crypto id.

• byte[] getBytes ()

Gets the bytes of the crypto id, which is the hash of the public key.

• void printCryptoId ()

Prints the crypto id.

• boolean isSameCryptoIdAs (CryptoId cryptoId)

Checks this crypto id to another one.

Detailed Description

The Class CryptoId.

Author:

Daniel Romao (CMS)

Nuno Martins (CMS)

Alfredo matos (CMS)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.CryptoId.CryptoId (PublicKey publicKey)

Instantiates a new crypto id.

Parameters:

publicKey the public key

crypto_id.CryptoId.CryptoId (String userProvidedCryptoId)

Instantiates a new crypto id.

Parameters:

the String provided by the user either by hand or QRCode

D3.1 Annex A

51

Member Function Documentation

byte [] crypto_id.CryptoId.getBytes ()

Gets the bytes of the crypto id, which is the hash of the public key.

Returns:

the crypto id

boolean crypto_id.CryptoId.isSameCryptoIdAs (CryptoId cryptoId)

Checks this crypto id to another one.

Parameters:

cryptoId

Returns:

true if same crypto id

void crypto_id.CryptoId.printCryptoId ()

Prints the crypto id.

Shows on the console the hexadecimal values of the CryptoID

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/CryptoId.java

 D3.1 Annex A

52

dispositional_trust.DispositionalTrust Class Reference

The Class DispositionalTrust.

Public Member Functions

• DispositionalTrust ()

Instantiates a new dispositional trust.

• DispositionalTrust (int dispositionalTrustValue)

Instantiates a new dispositional trust.

• int getDispositionalTrustValue ()

Gets the dispositional trust value.

• void setDispositionalTrustValue (int dispositionalTrustValue)

Sets the dispositional trust value.

• void setParanoidDTrustValue ()

Sets the paranoid d trust value.

• void setPartiallyOpenDTrustValue ()

Sets the partially open d trust value.

• void setBlindTrustDTrustValue ()

Sets the blind trust d trust value.

Static Public Attributes

• static final DispositionalTrust PARANOID = new DispositionalTrust(0)

The Constant PARANOID.

• static final DispositionalTrust PARTIALLY_OPEN = new DispositionalTrust(50)

The Constant PARTIALLY_OPEN.

• static final DispositionalTrust BLIND_TRUST = new DispositionalTrust(100)

The Constant BLIND_TRUST.

Detailed Description

The Class DispositionalTrust.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

dispositional_trust.DispositionalTrust.DispositionalTrust ()

Instantiates a new dispositional trust.

D3.1 Annex A

53

dispositional_trust.DispositionalTrust.DispositionalTrust (int dispositionalTrustValue)

Instantiates a new dispositional trust.

Parameters:

dispositionalTrust

Value

the dispositional trust value

Member Function Documentation

int dispositional_trust.DispositionalTrust.getDispositionalTrustValue ()

Gets the dispositional trust value.

Returns:

the dispositional trust value

void dispositional_trust.DispositionalTrust.setBlindTrustDTrustValue ()

Sets the blind trust d trust value.

void dispositional_trust.DispositionalTrust.setDispositionalTrustValue (int
dispositionalTrustValue)

Sets the dispositional trust value.

Parameters:

dispositionalTrust

Value

the new dispositional trust value

void dispositional_trust.DispositionalTrust.setParanoidDTrustValue ()

Sets the paranoid d trust value.

void dispositional_trust.DispositionalTrust.setPartiallyOpenDTrustValue ()

Sets the partially open d trust value.

Member Data Documentation

final DispositionalTrust dispositional_trust.DispositionalTrust.BLIND_TRUST = new
DispositionalTrust(100)[static]

The Constant BLIND_TRUST.

 D3.1 Annex A

54

final DispositionalTrust dispositional_trust.DispositionalTrust.PARANOID = new
DispositionalTrust(0)[static]

The Constant PARANOID.

final DispositionalTrust dispositional_trust.DispositionalTrust.PARTIALLY_OPEN = new
DispositionalTrust(50)[static]

The Constant PARTIALLY_OPEN.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/dispositional_trust/Disposi

tionalTrust.java

D3.1 Annex A

55

dispositional_trust.DispositionalTrustDBHelper Class Reference

The Class DispositionalTrustDBHelper.

Public Member Functions

• DispositionalTrustDBHelper ()

Instantiates a new dispositional trust db helper.

• int getDispositionalTrust ()

Gets the dispositional trust.

• Boolean setDispositionalTrust (int dTrust)

Sets the dispositional trust.

Detailed Description

The Class DispositionalTrustDBHelper.

Warning! Database name, username, password and table and column names are generic, this is not working

until we don't define the "real" db

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

dispositional_trust.DispositionalTrustDBHelper.DispositionalTrustDBHelper ()

Instantiates a new dispositional trust db helper.

Member Function Documentation

int dispositional_trust.DispositionalTrustDBHelper.getDispositionalTrust ()

Gets the dispositional trust.

Returns:

the dispositional trust

Boolean dispositional_trust.DispositionalTrustDBHelper.setDispositionalTrust (int dTrust)

Sets the dispositional trust.

 D3.1 Annex A

56

Parameters:

dTrust the d trust

Returns:

the boolean

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/dispositional_trust/Disposi

tionalTrustDBHelper.java

D3.1 Annex A

57

crypto_id.IdHelper Class Reference

The Class IdHelper provides a few helper methods to compute the different id types in ULOOP.

Static Public Member Functions

• static final byte[] SHA256Bytes (byte[]key)

SHA 256 bytes.

• static final byte[] generateNodeId (CryptoId cryptoId, byte macAddress[])

Generate node id.

• static final void printBytes (byte[]data)

Prints the bytes.

• static final boolean isSameCryptoId (CryptoId cryptoId1, CryptoId cryptoId2)

Checks if the CryptoIds are the same.

• static final boolean isSameNodeId (NodeId nodeId1, NodeId nodeId2)

Checks if the NodeIds are the same.

Detailed Description

The Class IdHelper provides a few helper methods to compute the different id types in ULOOP.

Author:

Daniel Romao (CMS)

Nuno Martins (CMS)

Alfredo matos (CMS)

Version:

Jun 27, 2012

Member Function Documentation

static final byte [] crypto_id.IdHelper.generateNodeId (CryptoId cryptoId, byte
macAddress[])[static]

Generate node id.

Parameters:

macAddress the network identifier

Returns:

the byte[]

static final boolean crypto_id.IdHelper.isSameCryptoId (CryptoId cryptoId1, CryptoId
cryptoId2)[static]

Checks if the CryptoIds are the same.

 D3.1 Annex A

58

Returns:

true if same crypto-ids

static final boolean crypto_id.IdHelper.isSameNodeId (NodeId nodeId1, NodeId nodeId2)[static]

Checks if the NodeIds are the same.

Returns:

true if same node ids

static final void crypto_id.IdHelper.printBytes (byte[] data)[static]

Prints the bytes.

Support function for hex byte output

 @param data the data

static final byte [] crypto_id.IdHelper.SHA256Bytes (byte[] key)[static]

SHA 256 bytes.

Parameters:

key the key

Returns:

the byte[]

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/IdHelper.java

D3.1 Annex A

59

crypto_id.crypto_id_validation.IdValidator Class Reference

The Class IdValidator.

Public Member Functions

• IdValidator (String name, char[] keyStorePass)

Instantiates a new id validator.

• boolean validateNickname (String wantedNickname, String phoneNumberToSendSms, PublicKey publicKey)

Validate nickname.

• byte[] sign (byte[] data) throws GeneralSecurityException, CMSException, IOException

Sign.

• KeyStore getKeystore (char[] password)

Gets the keystore.

• X509CertificateObject[] getNicknameCertificates (String nickName)

Gets the nickname certificates.

• CryptoId getCryptoId (String nickname)

Gets the associated cryptoId to the nickname.

Static Public Attributes

• static final Hashtable< String,

• NicknameCertificates >

GLOBALLY_USED_NICKNAMES_WITH_PUBLIC_KEYS_AND_CERTIFICATES = new

Hashtable<String, NicknameCertificates>()

The Constant GLOBALLY_USED_NICKNAMES_WITH_PUBLIC_KEYS_AND_CERTIFICATES.

• static final HashMap< String,

• String > WANTED_NICKNAMES = new HashMap<String, String>()

The Constant WANTED_NICKNAMES.

Detailed Description

The Class IdValidator.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.IdValidator.IdValidator (String name, char[] keyStorePass)

Instantiates a new id validator.

 D3.1 Annex A

60

Parameters:

name the name

keyStorePass the key store pass

Member Function Documentation

CryptoId crypto_id.crypto_id_validation.IdValidator.getCryptoId (String nickname)

Gets the associated cryptoId to the nickname.

Parameters:

nickname

Returns:

the CryptoId, null if nickname does not exist

KeyStore crypto_id.crypto_id_validation.IdValidator.getKeystore (char[] password)

Gets the keystore.

Parameters:

password the password

Returns:

the keystore

X509CertificateObject [] crypto_id.crypto_id_validation.IdValidator.getNicknameCertificates (String
nickName)

Gets the nickname certificates.

Parameters:

nickName the nick name

Returns:

the nickname certificates

byte [] crypto_id.crypto_id_validation.IdValidator.sign (byte[] data) throws
GeneralSecurityException, CMSException, IOException

Sign.

Parameters:

data the data

Returns:

the byte[]

Exceptions:

GeneralSecurityEx the general security exception

D3.1 Annex A

61

ception

CMSException the cMS exception

IOException Signals that an I/O exception has occurred.

boolean crypto_id.crypto_id_validation.IdValidator.validateNickname (String wantedNickname,
String phoneNumberToSendSms, PublicKey publicKey)

Validate nickname.

Parameters:

wantedNickname the wanted nickname

phoneNumberToSe

ndSms

the phone number to send sms

publicKey the public key

Returns:

true, if successful

Member Data Documentation

final Hashtable<String, NicknameCertificates>
crypto_id.crypto_id_validation.IdValidator.GLOBALLY_USED_NICKNAMES_WITH_PUBLIC_KEYS_
AND_CERTIFICATES = new Hashtable<String, NicknameCertificates>()[static]

The Constant GLOBALLY_USED_NICKNAMES_WITH_PUBLIC_KEYS_AND_CERTIFICATES.

final HashMap<String, String> crypto_id.crypto_id_validation.IdValidator.WANTED_NICKNAMES =
new HashMap<String, String>()[static]

The Constant WANTED_NICKNAMES.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/IdValidator.java

 D3.1 Annex A

62

overall_implementation.send_receive_beacons.KeyRequest Class
Reference

The Class KeyRequest.
Inheritance diagram for overall_implementation.send_receive_beacons.KeyRequest:

Public Member Functions

• KeyRequest (CryptoId sender, CryptoId recipient, Signature signature)

Instantiates a new key request.

Detailed Description

The Class KeyRequest.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.KeyRequest.KeyRequest (CryptoId sender,
CryptoId recipient, Signature signature)

Instantiates a new key request.

Parameters:

sender the sender

recipient the recipient

signature the signature

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/KeyRequest.java

D3.1 Annex A

63

simulation.Location Class Reference

The Class Location.

Public Member Functions

• Location (double lat, double lon)

Instantiates a new location.

• double getLat ()

Gets the lat.

• double getLon ()

Gets the lon.

Detailed Description

The Class Location.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

simulation.Location.Location (double lat, double lon)

Instantiates a new location.

Parameters:

lat the lat

lon the lon

Member Function Documentation

double simulation.Location.getLat ()

Gets the lat.

Returns:

the lat

double simulation.Location.getLon ()

 D3.1 Annex A

64

Gets the lon.

Returns:

the lon

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/Location.java

D3.1 Annex A

65

test.MainSim Class Reference

The Class MainSim.

Static Public Member Functions

• static void main (String[] args)

The main method.

Detailed Description

The Class MainSim.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Member Function Documentation

static void test.MainSim.main (String[] args)[static]

The main method.

Parameters:

args the arguments

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/test/MainSim.java

 D3.1 Annex A

66

virtual_currency_and_reward.MarketBroker Class Reference

The Class MarketBroker.

Public Member Functions

• void placeOffer (String n, double money)

Place offer.

• void placeOrder (String n, double money)

Place order.

Detailed Description

The Class MarketBroker.

Author:

UniUrb

Version:

Jun 27, 2012

Member Function Documentation

void virtual_currency_and_reward.MarketBroker.placeOffer (String n, double money)

Place offer.

Parameters:

n the n

money the money

void virtual_currency_and_reward.MarketBroker.placeOrder (String n, double money)

Place order.

Parameters:

n the n

money the money

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/MarketBroker.java

D3.1 Annex A

67

overall_implementation.send_receive_beacons.Message Class
Reference

The Class Message.
Inheritance diagram for overall_implementation.send_receive_beacons.Message:

Public Member Functions

• Message (CryptoId sender, CryptoId recipient, Signature signature)

 D3.1 Annex A

68

Instantiates a new message.

• Signature getSignature ()

Gets the signature.

• CryptoId getRecipient ()

Gets the recipient.

• CryptoId getSender ()

Gets the sender.

Detailed Description

The Class Message.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.Message.Message (CryptoId sender, CryptoId
recipient, Signature signature)

Instantiates a new message.

Parameters:

sender the sender

recipient the recipient

signature the signature

Member Function Documentation

CryptoId overall_implementation.send_receive_beacons.Message.getRecipient ()

Gets the recipient.

Returns:

the recipient

CryptoId overall_implementation.send_receive_beacons.Message.getSender ()

Gets the sender.

D3.1 Annex A

69

Returns:

the sender

Signature overall_implementation.send_receive_beacons.Message.getSignature ()

Gets the signature.

Returns:

the signature

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/Message.java

 D3.1 Annex A

70

virtual_currency_and_reward.Mint Class Reference

The Class Mint.

Public Member Functions

• void generateCoin (String nickname)

Generate coin.

• void renewCoin (Credit coin)

Renew coin.

Detailed Description

The Class Mint.

Author:

UniUrb

Version:

Jun 27, 2012

Member Function Documentation

void virtual_currency_and_reward.Mint.generateCoin (String nickname)

Generate coin.

Parameters:

nickname the nickname

void virtual_currency_and_reward.Mint.renewCoin (Credit coin)

Renew coin.

Parameters:

coin the coin

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/Mint.java

D3.1 Annex A

71

crypto_id.crypto_id_validation.level7.MobilePhoneNumber Class
Reference

The Class MobilePhoneNumber.

Public Member Functions

• MobilePhoneNumber (String phone_number)

Instantiates a new mobile phone number.

• boolean isValidPhoneNumber ()

Checks if is valid phone number.

• String getE164PhoneNumber ()

Gets the e164 phone number.

• String getOnlyNumbers ()

Gets the only numbers.

Detailed Description

The Class MobilePhoneNumber.

Author:

Marzia (Level7)

Paolo (Level7)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.level7.MobilePhoneNumber.MobilePhoneNumber (String
phone_number)

Instantiates a new mobile phone number.

Parameters:

phone_number the phone_number

Member Function Documentation

String crypto_id.crypto_id_validation.level7.MobilePhoneNumber.getE164PhoneNumber ()

Gets the e164 phone number.

Returns:

the e164 phone number

 D3.1 Annex A

72

String crypto_id.crypto_id_validation.level7.MobilePhoneNumber.getOnlyNumbers ()

Gets the only numbers.

Returns:

the only numbers

boolean crypto_id.crypto_id_validation.level7.MobilePhoneNumber.isValidPhoneNumber ()

Checks if is valid phone number.

Returns:

true, if is valid phone number

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/level7/MobilePhoneNumber.java

D3.1 Annex A

73

monetization.MonetizationManager Class Reference

The Class MonetizationManager.

Public Member Functions

• void periodicallyManageMonetization ()

Periodically manage monetization.

Detailed Description

The Class MonetizationManager.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Member Function Documentation

void monetization.MonetizationManager.periodicallyManageMonetization ()

Periodically manage monetization.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/monetization/Monetizatio

nManager.java

 D3.1 Annex A

74

crypto_id.NicknameCertificates Class Reference

The Class NicknameCertificates.

Public Member Functions

• NicknameCertificates (String nickname, CryptoId cryptoId, X509CertificateObject firstCertificate)

Instantiates a new nickname certificates.

• X509CertificateObject[] getCertificates ()

Gets the certificates.

• String getNickname ()

Gets the nickname.

• CryptoId getCryptoId ()

Gets the crypto id.

Detailed Description

The Class NicknameCertificates.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.NicknameCertificates.NicknameCertificates (String nickname, CryptoId cryptoId,
X509CertificateObject firstCertificate)

Instantiates a new nickname certificates.

Parameters:

nickname the nickname

cryptoId TODO

firstCertificate the first certificate

Member Function Documentation

X509CertificateObject [] crypto_id.NicknameCertificates.getCertificates ()

Gets the certificates.

D3.1 Annex A

75

Returns:

the certificates

CryptoId crypto_id.NicknameCertificates.getCryptoId ()

Gets the crypto id.

Returns:

the crypto id

String crypto_id.NicknameCertificates.getNickname ()

Gets the nickname.

Returns:

the nickname

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/NicknameCerti

ficates.java

 D3.1 Annex A

76

simulation.Node Class Reference

The Class Node.
Inheritance diagram for simulation.Node:

Public Member Functions

• void moveIntoWiFiNeighborhood (WiFiNeighborhood wifiNeighborhood)

Move into wi fi neighborhood.

• void leaveWiFiNeighborhood (WiFiNeighborhood wifiNeighborhood)

Leave wi fi neighborhood.

• void sendBeacon (Message message)

Send beacon.

Protected Member Functions

• String getMac ()

Gets the mac.

Detailed Description

The Class Node.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Member Function Documentation

String simulation.Node.getMac ()[protected]

Gets the mac.

Returns:

the mac

D3.1 Annex A

77

void simulation.Node.leaveWiFiNeighborhood (WiFiNeighborhood wifiNeighborhood)

Leave wi fi neighborhood.

Parameters:

wifiNeighborhood the wifi neighborhood

void simulation.Node.moveIntoWiFiNeighborhood (WiFiNeighborhood wifiNeighborhood)

Move into wi fi neighborhood.

Parameters:

wifiNeighborhood the wifi neighborhood

void simulation.Node.sendBeacon (Message message)

Send beacon.

Parameters:

message the message

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/Node.java

 D3.1 Annex A

78

crypto_id.NodeId Class Reference

The Class NodeId.

Public Member Functions

• NodeId (CryptoId cryptoId, byte[] macAddress)

Instantiates a new node id.

• byte[] getBytes ()

Gets the bytes of the node id, which is the hash of the public key concatenated with the hase of the MAC address.

• void printNodeId ()

Prints the crypto id.

• boolean isSameNodeIdAs (NodeId nodeId)

Checks this node id to another one.

Detailed Description

The Class NodeId.

Author:

Daniel Romao (CMS)

Nuno Martins (CMS)

Alfredo matos (CMS)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.NodeId.NodeId (CryptoId cryptoId, byte[] macAddress)

Instantiates a new node id.

Parameters:

cryptoId the crypto id

macAddress the MAC address

Member Function Documentation

byte [] crypto_id.NodeId.getBytes ()

Gets the bytes of the node id, which is the hash of the public key concatenated with the hase of the MAC address.

Returns:

the node id

D3.1 Annex A

79

boolean crypto_id.NodeId.isSameNodeIdAs (NodeId nodeId)

Checks this node id to another one.

Parameters:

nodeId

Returns:

true if same node id

void crypto_id.NodeId.printNodeId ()

Prints the crypto id.

Shows on the console the hexadecimal values of the node id

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/NodeId.java

 D3.1 Annex A

80

simulation.QRCode Class Reference

The Class QRCode.

Public Member Functions

• QRCode (Image image)

Instantiates a new qR code.

• String getCryptoId ()

Gets the crypto id.

Detailed Description

The Class QRCode.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

simulation.QRCode.QRCode (Image image)

Instantiates a new qR code.

Parameters:

image the image

Member Function Documentation

String simulation.QRCode.getCryptoId ()

Gets the crypto id.

Returns:

the crypto id

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/QRCode.java

D3.1 Annex A

81

simulation.Requestee Class Reference

The Class Requestee.
Inheritance diagram for simulation.Requestee:

Public Member Functions

• Requestee (Bank defaultBank, IdValidator defaultIdValidator, Vector< Service > serviceTypes, boolean

retailer, TrustValue trustValueThresholdForServiceDelivery)

Instantiates a new requestee.

• boolean isRetailer ()

Checks if is in retailer mode.

• void setRetailer (boolean retailing)

Sets the gateway.

• void receiveBeacon (Message message)

Receives a beacon message and process it.

• String requesteeId ()

Requestee id.

• TrustValue getTrustValueThresholdForServiceDelivery ()

Gets the trust value threshold for service delivery.

• void setTrustValueThresholdForServiceDelivery (TrustValue trustValueThresholdForServiceDelivery)

Sets the trust value threshold for service delivery.

• void addAbleToServeServiceType (Service service)

Adds the able to serve service type.

• void removeAbleToServeServiceType (Service service)

Removes the able to serve service type.

• boolean canServeServiceType (Service service)

Can serve service type.

Additional Inherited Members

Detailed Description

The Class Requestee.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

 D3.1 Annex A

82

Version:

Jun 27, 2012

Constructor & Destructor Documentation

simulation.Requestee.Requestee (Bank defaultBank, IdValidator defaultIdValidator, Vector<
Service > serviceTypes, boolean retailer, TrustValue trustValueThresholdForServiceDelivery)

Instantiates a new requestee.

Parameters:

defaultBank the default bank

defaultIdValidator the default id validator

serviceTypes the service types

retailer the retailer

trustValueThreshol

dForServiceDelive

ry

the trust value threshold for service delivery

Member Function Documentation

void simulation.Requestee.addAbleToServeServiceType (Service service)

Adds the able to serve service type.

Parameters:

service the service

boolean simulation.Requestee.canServeServiceType (Service service)

Can serve service type.

Parameters:

service the service

Returns:

true, if successful

TrustValue simulation.Requestee.getTrustValueThresholdForServiceDelivery ()

Gets the trust value threshold for service delivery.

Returns:

the trust value threshold for service delivery

D3.1 Annex A

83

boolean simulation.Requestee.isRetailer ()

Checks if is in retailer mode.

Returns:

true, if is in retailer mode

void simulation.Requestee.receiveBeacon (Message message)[virtual]

Receives a beacon message and process it.

Parameters:

the message

Reimplemented from simulation.Requester (p.89).

void simulation.Requestee.removeAbleToServeServiceType (Service service)

Removes the able to serve service type.

Parameters:

service the service

String simulation.Requestee.requesteeId ()

Requestee id.

Returns:

the string

void simulation.Requestee.setRetailer (boolean retailing)

Sets the gateway.

Parameters:

retailing the new retailer

void simulation.Requestee.setTrustValueThresholdForServiceDelivery (TrustValue
trustValueThresholdForServiceDelivery)

Sets the trust value threshold for service delivery.

Parameters:

trustValueThreshol

dForServiceDelive

ry

the new trust value threshold for service delivery

 D3.1 Annex A

84

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/Requestee.jav

a

D3.1 Annex A

85

simulation.Requester Class Reference

The Class Requester.
Inheritance diagram for simulation.Requester:

Public Member Functions

• Requester (Bank defaultBank, IdValidator defaultIdValidator)

Instantiates a new requester.

• NodeId getNodeId ()

• void createLocalKeyPair ()

Creates the local key pair.

• void setValidationCertificates (X509CertificateObject[] newCertificates)

Sets the validation certificates.

• int getDispositionalTrust ()

Gets the dispositional trust.

• void setDispositionalTrust (int dispositionalTrust)

Sets the dispositional trust and the trust manager.

• ConfigurationBundle getKeyConfigurationBundlefromDeviceInRange (CryptoId cryptoId, String

oneTimePassword)

Gets the key configuration bundle from device in range.

• void setLocalKeyPair (KeyPair localKeyPair)

Sets the local key pair.

• String getNickname ()

Gets the nickname.

• void setNickname (String nickName)

Sets the nickname.

• String getPhoneNumber ()

Gets the phone number.

• void setPhoneNumber (String phoneNumber)

Sets the phone number.

• boolean isRunForTheFirstTime ()

Checks if is run for the first time.

• boolean hasValidatedNickname ()

Checks for validated nickname.

• boolean hasDirectInternetAccess ()

Checks for direct internet access.

• boolean hasIndirectInternetAccess ()

Checks for indirect internet access.

 D3.1 Annex A

86

• void setHasValidatedNickname ()

Sets the has validated nickname.

• void setHasDirectInternetAccess (boolean hasDirectInternetAccess)

Sets the checks for direct internet access.

• void setHasIndirectInternetAccess (boolean hasIndirectInternetAccess)

Sets the checks for indirect internet access.

• boolean isItClearToSend ()

Checks if is it clear to send.

• void setCredits (int credits)

Sets the credits.

• void receiveBeacon (Message message)

Receive beacon.

• boolean isTheNodeARequester ()

Checks if is the node a requester.

• Token computeToken (Credit credit, TrustValue trustRequesterInRequestee)

Compute token.

• void userAsksToGetInternetAccess ()

User asks to get internet access.

• String requesterId ()

Requester id.

• void run ()

Called when the ULOOP app is started on a device: the first time, the device is configured ULOOP with the new

key pair or a private key moved from a previous ULOOP node owned by the user along with the right crypto-id,

the validation of a crypto-id is also done if needed and wanted by the user; then and next times a few periodic

processes are run: process of incoming service requests, cooperation evaluation...

Public Attributes

• CryptoId cryptoId

The crypto id.

• NodeId nodeId

The node id.

Static Public Attributes

• static KeyPairGenerator RSA_KEYPAIR_GENERATOR

The rsa keypair generator.

Additional Inherited Members

Detailed Description

The Class Requester.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

D3.1 Annex A

87

Constructor & Destructor Documentation

simulation.Requester.Requester (Bank defaultBank, IdValidator defaultIdValidator)

Instantiates a new requester.

Parameters:

defaultBank the default bank

defaultIdValidator the default id validator

Member Function Documentation

Token simulation.Requester.computeToken (Credit credit, TrustValue trustRequesterInRequestee)

Compute token.

Parameters:

credit the credit

trustRequesterInRe

questee

the trust requester in requestee

Returns:

the token

void simulation.Requester.createLocalKeyPair ()

Creates the local key pair.

int simulation.Requester.getDispositionalTrust ()

Gets the dispositional trust.

Returns:

the dispositional trust

ConfigurationBundle simulation.Requester.getKeyConfigurationBundlefromDeviceInRange
(CryptoId cryptoId, String oneTimePassword)

Gets the key configuration bundle from device in range.

Parameters:

cryptoId the crypto id

oneTimePassword the one time password that the user should see on the other device

 D3.1 Annex A

88

Returns:

the key configuration bundlefrom device in range

String simulation.Requester.getNickname ()

Gets the nickname.

Returns:

the nickname

NodeId simulation.Requester.getNodeId ()

String simulation.Requester.getPhoneNumber ()

Gets the phone number.

Returns:

the phone number

boolean simulation.Requester.hasDirectInternetAccess ()

Checks for direct internet access.

Returns:

true, if successful

boolean simulation.Requester.hasIndirectInternetAccess ()

Checks for indirect internet access.

Returns:

true, if successful

boolean simulation.Requester.hasValidatedNickname ()

Checks for validated nickname.

Returns:

true, if successful

boolean simulation.Requester.isItClearToSend ()

Checks if is it clear to send.

Returns:

true, if is it clear to send

D3.1 Annex A

89

boolean simulation.Requester.isRunForTheFirstTime ()

Checks if is run for the first time.

Returns:

true, if is run for the first time

boolean simulation.Requester.isTheNodeARequester ()

Checks if is the node a requester.

Returns:

true, if is the node a requester

void simulation.Requester.receiveBeacon (Message message)[virtual]

Receive beacon.

Parameters:

message the message

Implements simulation.Node (p.76).

Reimplemented in simulation.Requestee (p.83).

String simulation.Requester.requesterId ()

Requester id.

Returns:

the string

void simulation.Requester.run ()

Called when the ULOOP app is started on a device: the first time, the device is configured ULOOP with the new

key pair or a private key moved from a previous ULOOP node owned by the user along with the right crypto-id,

the validation of a crypto-id is also done if needed and wanted by the user; then and next times a few periodic

processes are run: process of incoming service requests, cooperation evaluation...

void simulation.Requester.setCredits (int credits)

Sets the credits.

Parameters:

credits the new credits

void simulation.Requester.setDispositionalTrust (int dispositionalTrust)

Sets the dispositional trust and the trust manager.

 D3.1 Annex A

90

Parameters:

dispositionalTrust the new dispositional trust

void simulation.Requester.setHasDirectInternetAccess (boolean hasDirectInternetAccess)

Sets the checks for direct internet access.

Parameters:

hasDirectInternetA

ccess

the new checks for direct internet access

void simulation.Requester.setHasIndirectInternetAccess (boolean hasIndirectInternetAccess)

Sets the checks for indirect internet access.

Parameters:

hasIndirectInternet

Access

the new checks for indirect internet access

void simulation.Requester.setHasValidatedNickname ()

Sets the has validated nickname.

void simulation.Requester.setLocalKeyPair (KeyPair localKeyPair)

Sets the local key pair.

Parameters:

localKeyPair the new local key pair

void simulation.Requester.setNickname (String nickName)

Sets the nickname.

Parameters:

nickName the new nickname

void simulation.Requester.setPhoneNumber (String phoneNumber)

Sets the phone number.

Parameters:

phoneNumber the new phone number

D3.1 Annex A

91

void simulation.Requester.setValidationCertificates (X509CertificateObject[] newCertificates)

Sets the validation certificates.

Parameters:

newCertificates the new validation certificates

void simulation.Requester.userAsksToGetInternetAccess ()

User asks to get internet access.

Member Data Documentation

CryptoId simulation.Requester.cryptoId

The crypto id.

NodeId simulation.Requester.nodeId

The node id.

KeyPairGenerator simulation.Requester.RSA_KEYPAIR_GENERATOR[static]

The rsa keypair generator.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/Requester.jav

a

 D3.1 Annex A

92

resource_management.ResourceManager Class Reference

The Class ResourceManager.

Public Member Functions

• void processTokenAsRequester (Token token)

Process token as requester.

• void processTokenAsRequestee (Token token)

Process token as requestee.

Detailed Description

The Class ResourceManager.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Member Function Documentation

void resource_management.ResourceManager.processTokenAsRequestee (Token token)

Process token as requestee.

Parameters:

token the token

void resource_management.ResourceManager.processTokenAsRequester (Token token)

Process token as requester.

Parameters:

token the token

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/resource_management/Re

sourceManager.java

D3.1 Annex A

93

virtual_currency_and_reward.RewardManager Class Reference

The Class RewardManager.

Public Member Functions

• RewardManager (Bank centralBank)

Instantiates a new reward manager.

• boolean creditsEvaluation (double credits)

Evaluates whether an amount of credits is deemed acceptable to offer service.

• void sync ()

Perform periodical synchronization with central authority.

• void transferCreditToWallet (double credits)

Transfer credit to wallet.

Detailed Description

The Class RewardManager.

Author:

UniUrb

Version:

Jun 30, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.RewardManager.RewardManager (Bank centralBank)

Instantiates a new reward manager.

Parameters:

centralBank the central bank

Member Function Documentation

boolean virtual_currency_and_reward.RewardManager.creditsEvaluation (double credits)

Evaluates whether an amount of credits is deemed acceptable to offer service.

Parameters:

credits the credits

Returns:

true, if successful

 D3.1 Annex A

94

void virtual_currency_and_reward.RewardManager.sync ()

Perform periodical synchronization with central authority.

void virtual_currency_and_reward.RewardManager.transferCreditToWallet (double credits)

Transfer credit to wallet.

Parameters:

credits the credits

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/RewardManager.java

D3.1 Annex A

95

overall_implementation.Service Class Reference

The Class Service.

Public Member Functions

• Service (String type)

Instantiates a new service.

• String getType ()

Gets the type.

Static Public Attributes

• static final Service GATEWAY_INTERNET_ACCESS = new Service("Gateway Internet Access")

The Constant GATEWAY_INTERNET_ACCESS.

Detailed Description

The Class Service.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.Service.Service (String type)

Instantiates a new service.

Parameters:

type the type

Member Function Documentation

String overall_implementation.Service.getType ()

Gets the type.

Returns:

the type

 D3.1 Annex A

96

Member Data Documentation

final Service overall_implementation.Service.GATEWAY_INTERNET_ACCESS = new
Service("Gateway Internet Access")[static]

The Constant GATEWAY_INTERNET_ACCESS.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/S

ervice.java

D3.1 Annex A

97

overall_implementation.ServiceLevel Class Reference

The Class ServiceLevel.

Public Member Functions

• ServiceLevel (int level)

• int getIntegerValue ()

Get the integer value of the service level.

Static Public Attributes

• static final ServiceLevel DEFAULT_SERVICE_LEVEL = new ServiceLevel(-1)

Detailed Description

The Class ServiceLevel.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.ServiceLevel.ServiceLevel (int level)

Member Function Documentation

int overall_implementation.ServiceLevel.getIntegerValue ()

Get the integer value of the service level.

Returns:

int the integer value of the service level

Member Data Documentation

final ServiceLevel overall_implementation.ServiceLevel.DEFAULT_SERVICE_LEVEL = new
ServiceLevel(-1)[static]

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/S

erviceLevel.java

 D3.1 Annex A

98

D3.1 Annex A

99

overall_implementation.send_receive_beacons.ServiceRequest Class
Reference

The Class ServiceRequest.
Inheritance diagram for overall_implementation.send_receive_beacons.ServiceRequest:

Public Member Functions

• ServiceRequest (CryptoId sender, CryptoId recipient, Signature signature, Service service)

Instantiates a new service request.

• String getId ()

Gets the id.

• Service getService ()

Gets the service.

• Date getCreationDate ()

Gets the creation date.

Static Public Attributes

• static final CryptoId BROADCAST_TO_ALL_POTENTIAL_REQUESTEES_IN_RANGE = new

CryptoId("Broadcast to all potential requestees in range")

The Constant BROADCAST_TO_ALL_POTENTIAL_REQUESTEES_IN_RANGE.

Detailed Description

The Class ServiceRequest.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.ServiceRequest.ServiceRequest (CryptoId sender,
CryptoId recipient, Signature signature, Service service)

Instantiates a new service request.

Parameters:

sender the sender

 D3.1 Annex A

100

recipient the recipient

signature the signature

service the service

Member Function Documentation

Date overall_implementation.send_receive_beacons.ServiceRequest.getCreationDate ()

Gets the creation date.

Returns:

the creation date

String overall_implementation.send_receive_beacons.ServiceRequest.getId ()

Gets the id.

Returns:

the id

Service overall_implementation.send_receive_beacons.ServiceRequest.getService ()

Gets the service.

Returns:

the service

Member Data Documentation

final CryptoId
overall_implementation.send_receive_beacons.ServiceRequest.BROADCAST_TO_ALL_POTENTIA
L_REQUESTEES_IN_RANGE = new CryptoId("Broadcast to all potential requestees in
range")[static]

The Constant BROADCAST_TO_ALL_POTENTIAL_REQUESTEES_IN_RANGE.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/ServiceRequest.java

D3.1 Annex A

101

overall_implementation.send_receive_beacons.ServiceRequestReplie
s Class Reference

The Class ServiceRequestReplies.

Public Member Functions

• ServiceRequestReplies (ServiceRequest serviceRequest)

Instantiates a new service request replies.

• void addServiceRequestReply (ServiceRequestReply serviceRequestReply)

Adds the service request reply.

• boolean isProcessed ()

Checks if is processed.

• void setProcessed (boolean processed)

Sets the processed.

• ServiceRequestReply[] getServiceRequestReplies ()

Gets the service request replies.

Detailed Description

The Class ServiceRequestReplies.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.ServiceRequestReplies.ServiceRequestReplies
(ServiceRequest serviceRequest)

Instantiates a new service request replies.

Parameters:

serviceRequest the service request

Member Function Documentation

void
overall_implementation.send_receive_beacons.ServiceRequestReplies.addServiceRequestReply
(ServiceRequestReply serviceRequestReply)

Adds the service request reply.

 D3.1 Annex A

102

Parameters:

serviceRequestRep

ly

the service request reply

ServiceRequestReply []
overall_implementation.send_receive_beacons.ServiceRequestReplies.getServiceRequestReplies
()

Gets the service request replies.

Returns:

the service request replies

boolean overall_implementation.send_receive_beacons.ServiceRequestReplies.isProcessed ()

Checks if is processed.

Returns:

true, if is processed

void overall_implementation.send_receive_beacons.ServiceRequestReplies.setProcessed
(boolean processed)

Sets the processed.

Parameters:

processed the new processed

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/ServiceRequestReplies.java

D3.1 Annex A

103

overall_implementation.send_receive_beacons.ServiceRequestReply
Class Reference

The Class ServiceRequestReply.
Inheritance diagram for overall_implementation.send_receive_beacons.ServiceRequestReply:

Public Member Functions

• ServiceRequestReply (CryptoId sender, CryptoId recipient, Signature signature, String serviceRequestId)

Instantiates a new service request reply.

• String getServiceRequestId ()

Gets the service request id.

Detailed Description

The Class ServiceRequestReply.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 30, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.ServiceRequestReply.ServiceRequestReply
(CryptoId sender, CryptoId recipient, Signature signature, String serviceRequestId)

Instantiates a new service request reply.

Parameters:

sender the sender

recipient the recipient

signature the signature

serviceRequestId the service request id

 D3.1 Annex A

104

Member Function Documentation

String overall_implementation.send_receive_beacons.ServiceRequestReply.getServiceRequestId
()

Gets the service request id.

Returns:

the service request id

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/ServiceRequestReply.java

D3.1 Annex A

105

crypto_id.crypto_id_validation.level7.SessionID Class Reference

The Class SessionID.

Public Member Functions

• SessionID ()

Instantiates a new session id.

• int getSessionID ()

Gets the session id.

Detailed Description

The Class SessionID.

Author:

Marzia (Level7)

Paolo (Level7)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.level7.SessionID.SessionID ()

Instantiates a new session id.

Member Function Documentation

int crypto_id.crypto_id_validation.level7.SessionID.getSessionID ()

Gets the session id.

Returns:

the session id

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/level7/SessionID.java

 D3.1 Annex A

106

overall_implementation.Signature Class Reference

The Class Signature.

Public Member Functions

• Signature (String content)

Instantiates a new signature.

• String getContent ()

Gets the content.

Static Public Attributes

• static final Signature DUMMY_SIGNATURE = new Signature("Test dummy signature")

The Constant DUMMY_SIGNATURE.

Detailed Description

The Class Signature.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.Signature.Signature (String content)

Instantiates a new signature.

Parameters:

content the content

Member Function Documentation

String overall_implementation.Signature.getContent ()

Gets the content.

Returns:

the content

D3.1 Annex A

107

Member Data Documentation

final Signature overall_implementation.Signature.DUMMY_SIGNATURE = new Signature("Test
dummy signature")[static]

The Constant DUMMY_SIGNATURE.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/Si

gnature.java

 D3.1 Annex A

108

crypto_id.crypto_id_validation.level7.SMS_Server Class Reference

The Class SMS_Server.

Public Member Functions

• SMS_Server ()

Instantiates a new sM s_ server.

• SMS_Server_Listener sendSMS2user (MobilePhoneNumber phoneNumber, String challenge, SessionID

sessionID)

Send sm s2user.

Detailed Description

The Class SMS_Server.

Author:

Marzia (Level7)

Paolo (Level7)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.level7.SMS_Server.SMS_Server ()

Instantiates a new sM s_ server.

Member Function Documentation

SMS_Server_Listener crypto_id.crypto_id_validation.level7.SMS_Server.sendSMS2user
(MobilePhoneNumber phoneNumber, String challenge, SessionID sessionID)

Send sm s2user.

Parameters:

phoneNumber the phone number

challenge the challenge

sessionID the session id

Returns:

the sM s_ server_ listener

D3.1 Annex A

109

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/level7/SMS_Server.java

 D3.1 Annex A

110

crypto_id.crypto_id_validation.level7.SMS_Server_Listener Class
Reference

The listener interface for receiving SMS_Server_ events.

Public Member Functions

• SMS_Server_Listener (SessionID listenID)

Instantiates a new sM s_ server_ listener.

• String getChallengeResponse ()

Gets the challenge response.

Detailed Description

The listener interface for receiving SMS_Server_ events.

The class that is interested in processing a SMS_Server_ event implements this interface, and the object

created with that class is registered with a component using the component's
addSMS_Server_Listener method. When the SMS_Server_ event occurs, that

object's appropriate method is invoked.

Author:

Marzia (Level7)

Paolo (Level7)

Version:

Jun 27, 2012

See also:

SMS_Server_Event

Constructor & Destructor Documentation

crypto_id.crypto_id_validation.level7.SMS_Server_Listener.SMS_Server_Listener (SessionID
listenID)

Instantiates a new sM s_ server_ listener.

Parameters:

listenID the listen id

Member Function Documentation

String crypto_id.crypto_id_validation.level7.SMS_Server_Listener.getChallengeResponse ()

Gets the challenge response.

D3.1 Annex A

111

Returns:

the challenge response

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/crypto_id/crypto_id_valid

ation/level7/SMS_Server_Listener.java

 D3.1 Annex A

112

social_trust_computation.SocialTrustComputation Class Reference

The Class SocialTrustComputation an object of type TrustTable it is basically the heart of the way trust levels are

computed.

Public Member Functions

• SocialTrustComputation (CryptoId localNodeCryptoId, DispositionalTrust

localNodeDispositionalTrustLevel)

Instantiates a new social trust computation.

• float computeSocialTrust (CryptoId nodeID, float trustLevel)

Computes social trust for a specific node and updates its entry in the trusttable It is the core of the trust

computation.

Public Attributes

• TrustTable trustTable

The trust table.

Detailed Description

The Class SocialTrustComputation an object of type TrustTable it is basically the heart of the way trust

levels are computed.

Author:

Rute Sofia (ULHT)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

social_trust_computation.SocialTrustComputation.SocialTrustComputation (CryptoId
localNodeCryptoId, DispositionalTrust localNodeDispositionalTrustLevel)

Instantiates a new social trust computation.

Parameters:

localNodeTrustTa

ble

the local node trust table

Member Function Documentation

float social_trust_computation.SocialTrustComputation.computeSocialTrust (CryptoId nodeID,
float trustLevel)

D3.1 Annex A

113

Computes social trust for a specific node and updates its entry in the trusttable It is the core of the trust

computation.

Parameters:

nodeID the node id

trustLevel the tl

Returns:

the float

Member Data Documentation

TrustTable social_trust_computation.SocialTrustComputation.trustTable

The trust table.

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/social_trust_computation/

SocialTrustComputation.java

 D3.1 Annex A

114

overall_implementation.Token Class Reference

The Class Token.

Public Member Functions

• Token (double value)

• double getValue ()

Detailed Description

The Class Token.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.Token.Token (double value)

Member Function Documentation

double overall_implementation.Token.getValue ()

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/T

oken.java

D3.1 Annex A

115

token_computation.TokenComputation Class Reference

Provides the tokens to be used in exchange of resources.

Public Member Functions

• TokenComputation (TrustTable trustTable)

• float computeTokens (CryptoId dst, double credits)

Detailed Description

Provides the tokens to be used in exchange of resources.

Author:

Rute Sofia (ULHT)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

token_computation.TokenComputation.TokenComputation (TrustTable trustTable)

Member Function Documentation

float token_computation.TokenComputation.computeTokens (CryptoId dst, double credits)

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/token_computation/Token

Computation.java

 D3.1 Annex A

116

overall_implementation.send_receive_beacons.TokenMessage Class
Reference

The Class TokenMessage.
Inheritance diagram for overall_implementation.send_receive_beacons.TokenMessage:

Public Member Functions

• TokenMessage (CryptoId sender, CryptoId recipient, Signature signature, Token token)

Instantiates a new token message.

• Token getToken ()

Gets the token.

Detailed Description

The Class TokenMessage.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.send_receive_beacons.TokenMessage.TokenMessage (CryptoId sender,
CryptoId recipient, Signature signature, Token token)

Instantiates a new token message.

Parameters:

sender the sender

recipient the recipient

signature the signature

token the token

Member Function Documentation

Token overall_implementation.send_receive_beacons.TokenMessage.getToken ()

D3.1 Annex A

117

Gets the token.

Returns:

the token

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/se

nd_receive_beacons/TokenMessage.java

 D3.1 Annex A

118

social_trust_computation.TrustTable Class Reference

The Class TrustTable is a linked list of the TrustTableEntry class in the node, a trusttable object is initiated (main)

Public Member Functions

• TrustTable (CryptoId localNodeCryptoId, float dispositionalTrustLevel)

• void addEntry (TrustTableEntry t)

Adds the trust table entry.

• TrustTableEntry getEntry (CryptoId nodeId)

Gets the entry based on a node's CryptoId.

• float getTrustLevel (CryptoId nodeId)

Gets the trust level based on the node CryptoId.

• boolean updateEntry (TrustTableEntry trustTableEntry)

Update the trust table entry values.

• void showTrustTable ()

Show all entries in the trust table.

• void addTrustEntry (CryptoId nodeCryptoId, float trustLevel)

Adds the trust entry to a trust table.

Detailed Description

The Class TrustTable is a linked list of the TrustTableEntry class in the node, a trusttable object is

initiated (main)

Author:

Rute Sofia (ULHT)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

social_trust_computation.TrustTable.TrustTable (CryptoId localNodeCryptoId, float
dispositionalTrustLevel)

Member Function Documentation

void social_trust_computation.TrustTable.addEntry (TrustTableEntry t)

Adds the trust table entry.

void social_trust_computation.TrustTable.addTrustEntry (CryptoId nodeCryptoId, float trustLevel)

Adds the trust entry to a trust table.

D3.1 Annex A

119

Parameters:

nodeCryptoId the id

trustLevel the t

TrustTableEntry social_trust_computation.TrustTable.getEntry (CryptoId nodeId)

Gets the entry based on a node's CryptoId.

Parameters:

nodeId the node id

Returns:

the trust table entry, null if no trust table entry found

float social_trust_computation.TrustTable.getTrustLevel (CryptoId nodeId)

Gets the trust level based on the node CryptoId.

Parameters:

nodeId the node id

Returns:

the trust level, -1 if no CryptoId not found

void social_trust_computation.TrustTable.showTrustTable ()

Show all entries in the trust table.

boolean social_trust_computation.TrustTable.updateEntry (TrustTableEntry trustTableEntry)

Update the trust table entry values.

Parameters:

t the trust table entry

Returns:

true if successful

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/social_trust_computation/

TrustTable.java

 D3.1 Annex A

120

social_trust_computation.TrustTableEntry Class Reference

The Class TrustTableEntry.

Public Member Functions

• TrustTableEntry (CryptoId nodeId, float trustLevel, int ageing)

Instantiates a new trust table entry.

• float getTrustLevel ()

Gets the trust level.

• CryptoId getNodeId ()

Gets the node id.

• int getAgeing ()

Gets the ageing.

• int getTimeout ()

Gets the timeout.

• void setTrustLevel (float trustLevel)

Sets the trust level.

• void setAgeing (int ageing)

Sets the ageing.

Detailed Description

The Class TrustTableEntry.

Author:

Rute Sofia (ULHT)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

social_trust_computation.TrustTableEntry.TrustTableEntry (CryptoId nodeId, float trustLevel, int
ageing)

Instantiates a new trust table entry.

Parameters:

nodeId the node id

trustLevel the trust level

ageing the ageing

D3.1 Annex A

121

Member Function Documentation

int social_trust_computation.TrustTableEntry.getAgeing ()

Gets the ageing.

Returns:

the ageing

CryptoId social_trust_computation.TrustTableEntry.getNodeId ()

Gets the node id.

Returns:

the node id

int social_trust_computation.TrustTableEntry.getTimeout ()

Gets the timeout.

Returns:

the timeout

float social_trust_computation.TrustTableEntry.getTrustLevel ()

Gets the trust level.

Returns:

the trust level

void social_trust_computation.TrustTableEntry.setAgeing (int ageing)

Sets the ageing.

Parameters:

ageing the new ageing

void social_trust_computation.TrustTableEntry.setTrustLevel (float trustLevel)

Sets the trust level.

Parameters:

trustLevel the new trust level

 D3.1 Annex A

122

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/social_trust_computation/

TrustTableEntry.java

D3.1 Annex A

123

overall_implementation.TrustValue Class Reference

The Class TrustValue.

Public Member Functions

• TrustValue (float value)

• float getValue ()

• boolean higherTrustThan (TrustValue otherTrustValue)

Detailed Description

The Class TrustValue.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

overall_implementation.TrustValue.TrustValue (float value)

Member Function Documentation

float overall_implementation.TrustValue.getValue ()

boolean overall_implementation.TrustValue.higherTrustThan (TrustValue otherTrustValue)

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/overall_implementation/T

rustValue.java

 D3.1 Annex A

124

simulation.User Class Reference

The Class User.

Public Member Functions

• User (String nickname, DispositionalTrust dispositionalTrust, boolean hasAnotherNode)

Instantiates a new user.

• void runUloopClientOn (Requester uloopNode)

Run uloop client on.

• boolean hasAlreadyANickName (boolean answer)

Checks for already a nick name.

• boolean hasAlreadyAnotherUloopNode ()

Checks for already another uloop node.

• boolean wantsToValidateNicknameWithProvider (IdValidator idValidator, boolean validate)

Wants to validate nickname with provider.

• int getDispositionalTrust ()

Gets the dispositional trust.

• String getNickname ()

Gets the nickname.

• void pushesButtonToBeConnectedToTheInternet (Requester requester)

Pushes button to be connected to the internet.

• void movesIntoWiFiNeighborhoodWithDevice (WiFiNeighborhood wifiNetwork, Requester node)

Moves into wi fi neighborhood with device.

Detailed Description

The Class User.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Constructor & Destructor Documentation

simulation.User.User (String nickname, DispositionalTrust dispositionalTrust, boolean
hasAnotherNode)

Instantiates a new user.

Parameters:

nickname the nickname

dispositionalTrust the dispositional trust

D3.1 Annex A

125

hasAnotherNode the has another node

Member Function Documentation

int simulation.User.getDispositionalTrust ()

Gets the dispositional trust.

Returns:

the dispositional trust

String simulation.User.getNickname ()

Gets the nickname.

Returns:

the nickname

boolean simulation.User.hasAlreadyANickName (boolean answer)

Checks for already a nick name.

Parameters:

answer the answer

Returns:

true, if successful

boolean simulation.User.hasAlreadyAnotherUloopNode ()

Checks for already another uloop node.

Returns:

true, if successful

void simulation.User.movesIntoWiFiNeighborhoodWithDevice (WiFiNeighborhood wifiNetwork,
Requester node)

Moves into wi fi neighborhood with device.

Parameters:

wifiNetwork the wifi network

node the node

void simulation.User.pushesButtonToBeConnectedToTheInternet (Requester requester)

 D3.1 Annex A

126

Pushes button to be connected to the internet.

Parameters:

requester the requester

void simulation.User.runUloopClientOn (Requester uloopNode)

Run uloop client on.

Parameters:

uloopNode the uloop node

boolean simulation.User.wantsToValidateNicknameWithProvider (IdValidator idValidator, boolean
validate)

Wants to validate nickname with provider.

Parameters:

idValidator the id validator

validate the validate

Returns:

true, if successful

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/User.java

D3.1 Annex A

127

virtual_currency_and_reward.Wallet Class Reference

The Class Wallet.

Public Member Functions

• Wallet ()

Instantiates a new wallet.

• void payTo (CryptoId payee, double amount)

Pay to.

• void receivePayment (CreditTransferOrder transferOrder)

Receive payment.

• void receiveCreditTransferAck (CreditTransferAck transferAck)

Receive credit transfer ack.

• void issueAccountCreationRequest (CryptoId bankId)

Issue account creation request.

• void receiveAccountCreationAck (AccountCreationAck creationAck)

Receive account creation ack.

• void syncWalletStatus (Bank bank)

Sync wallet status.

• void receiveWalletStatusResponse (WalletStatusResponse response)

Receive wallet status response.

• double getCredits ()

Gets the amount of credits stored inside the wallet.

• void sellCreditsTo (CryptoId broker, double amount)

Sell credits to.

• void buyCreditsFrom (CryptoId broker, double amount)

Buy credits from.

• void addCredits (double amount)

• void decreaseCredits (double amount)

Detailed Description

The Class Wallet.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.Wallet.Wallet ()

Instantiates a new wallet.

 D3.1 Annex A

128

Member Function Documentation

void virtual_currency_and_reward.Wallet.addCredits (double amount)

void virtual_currency_and_reward.Wallet.buyCreditsFrom (CryptoId broker, double amount)

Buy credits from.

Parameters:

broker the broker

amount the amount

void virtual_currency_and_reward.Wallet.decreaseCredits (double amount)

double virtual_currency_and_reward.Wallet.getCredits ()

Gets the amount of credits stored inside the wallet.

Returns:

the amount of credits

void virtual_currency_and_reward.Wallet.issueAccountCreationRequest (CryptoId bankId)

Issue account creation request.

Parameters:

bankId the bank id

void virtual_currency_and_reward.Wallet.payTo (CryptoId payee, double amount)

Pay to.

Parameters:

payee the payee

amount the amount

void virtual_currency_and_reward.Wallet.receiveAccountCreationAck (AccountCreationAck
creationAck)

Receive account creation ack.

Parameters:

creationAck the creation ack

D3.1 Annex A

129

void virtual_currency_and_reward.Wallet.receiveCreditTransferAck (CreditTransferAck
transferAck)

Receive credit transfer ack.

Parameters:

transferAck the transfer ack

void virtual_currency_and_reward.Wallet.receivePayment (CreditTransferOrder transferOrder)

Receive payment.

Parameters:

transferOrder the transfer order

void virtual_currency_and_reward.Wallet.receiveWalletStatusResponse (WalletStatusResponse
response)

Receive wallet status response.

Parameters:

response the response

void virtual_currency_and_reward.Wallet.sellCreditsTo (CryptoId broker, double amount)

Sell credits to.

Parameters:

broker the broker

amount the amount

void virtual_currency_and_reward.Wallet.syncWalletStatus (Bank bank)

Sync wallet status.

Parameters:

bank the bank reference

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/Wallet.java

 D3.1 Annex A

130

virtual_currency_and_reward.WalletStatusRequest Class Reference

The Class WalletStatusRequest.
Inheritance diagram for virtual_currency_and_reward.WalletStatusRequest:

Public Member Functions

• WalletStatusRequest (CryptoId owner, CryptoId bank, Date timestampIssued)

Instantiates a new wallet status request.

• CryptoId getAccountOwner ()

Gets the account owner.

• CryptoId getBank ()

Gets the bank.

• Date getTimestampIssued ()

Gets the timestamp issued.

Detailed Description

The Class WalletStatusRequest.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.WalletStatusRequest.WalletStatusRequest (CryptoId owner, CryptoId
bank, Date timestampIssued)

Instantiates a new wallet status request.

Parameters:

owner the owner

bank the bank

timestampIssued the timestamp issued

D3.1 Annex A

131

Member Function Documentation

CryptoId virtual_currency_and_reward.WalletStatusRequest.getAccountOwner ()

Gets the account owner.

Returns:

the account owner

CryptoId virtual_currency_and_reward.WalletStatusRequest.getBank ()

Gets the bank.

Returns:

the bank

Date virtual_currency_and_reward.WalletStatusRequest.getTimestampIssued ()

Gets the timestamp issued.

Returns:

the timestamp issued

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/WalletStatusRequest.java

 D3.1 Annex A

132

virtual_currency_and_reward.WalletStatusResponse Class Reference

The Class WalletStatusResponse.
Inheritance diagram for virtual_currency_and_reward.WalletStatusResponse:

Public Member Functions

• WalletStatusResponse (CryptoId owner, CryptoId bank, Date timestampResponse, double convertibleCredits,

double unconvertibleCredits, double convertedCredits)

Instantiates a new wallet status response.

• CryptoId getAccountOwner ()

Gets the account owner.

• CryptoId getBank ()

Gets the bank.

• Date getTimestampResponded ()

Gets the timestamp responded.

• double getConvertibleCredits ()

Gets the convertible credits.

• double getUnconvertibleCredits ()

Gets the unconvertible credits.

Detailed Description

The Class WalletStatusResponse.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.WalletStatusResponse.WalletStatusResponse (CryptoId owner,
CryptoId bank, Date timestampResponse, double convertibleCredits, double unconvertibleCredits,
double convertedCredits)

Instantiates a new wallet status response.

Parameters:

owner the owner

bank the bank

D3.1 Annex A

133

timestampRespons

e

the timestamp response

convertibleCredits the convertible credits

unconvertibleCred

its

the unconvertible credits

convertedCredits the converted credits

Member Function Documentation

CryptoId virtual_currency_and_reward.WalletStatusResponse.getAccountOwner ()

Gets the account owner.

Returns:

the account owner

CryptoId virtual_currency_and_reward.WalletStatusResponse.getBank ()

Gets the bank.

Returns:

the bank

double virtual_currency_and_reward.WalletStatusResponse.getConvertibleCredits ()

Gets the convertible credits.

Returns:

the convertible credits

Date virtual_currency_and_reward.WalletStatusResponse.getTimestampResponded ()

Gets the timestamp responded.

Returns:

the timestamp responded

double virtual_currency_and_reward.WalletStatusResponse.getUnconvertibleCredits ()

Gets the unconvertible credits.

Returns:

the unconvertible credits

 D3.1 Annex A

134

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/WalletStatusResponse.java

D3.1 Annex A

135

virtual_currency_and_reward.WalletSynchronizationRequest Class
Reference

The Class WalletSynchronizationRequest.
Inheritance diagram for virtual_currency_and_reward.WalletSynchronizationRequest:

Public Member Functions

• WalletSynchronizationRequest (CryptoId owner, CryptoId bank, Date timestampIssued)

Instantiates a new wallet synchronization request.

• CryptoId getAccountOwner ()

Gets the account owner.

• CryptoId getBank ()

Gets the bank.

• Date getTimestampIssued ()

Gets the timestamp issued.

Detailed Description

The Class WalletSynchronizationRequest.

Author:

UniUrb

Version:

Jun 27, 2012

Constructor & Destructor Documentation

virtual_currency_and_reward.WalletSynchronizationRequest.WalletSynchronizationRequest
(CryptoId owner, CryptoId bank, Date timestampIssued)

Instantiates a new wallet synchronization request.

Parameters:

owner the owner

bank the bank

timestampIssued the timestamp issued

 D3.1 Annex A

136

Member Function Documentation

CryptoId virtual_currency_and_reward.WalletSynchronizationRequest.getAccountOwner ()

Gets the account owner.

Returns:

the account owner

CryptoId virtual_currency_and_reward.WalletSynchronizationRequest.getBank ()

Gets the bank.

Returns:

the bank

Date virtual_currency_and_reward.WalletSynchronizationRequest.getTimestampIssued ()

Gets the timestamp issued.

Returns:

the timestamp issued

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/virtual_currency_and_rew

ard/WalletSynchronizationRequest.java

D3.1 Annex A

137

simulation.WiFiNeighborhood Class Reference

The Class WiFiNeighborhood.

Public Member Functions

• void addNewNodeToWiFiNeighborhood (Node newNode)

Adds the new node to wi fi neighborhood.

• void removeNodeFromWiFiNeighborhood (Node leavingNode)

Removes the node from wi fi neighborhood.

• void broadcastNewMessage (Message newMessage)

Broadcast new message.

Detailed Description

The Class WiFiNeighborhood.

Author:

Jean-Marc Seigneur (UNIGE)

Carlos Ballester Lafuente (UNIGE)

Version:

Jun 27, 2012

Member Function Documentation

void simulation.WiFiNeighborhood.addNewNodeToWiFiNeighborhood (Node newNode)

Adds the new node to wi fi neighborhood.

Parameters:

newNode the new node

void simulation.WiFiNeighborhood.broadcastNewMessage (Message newMessage)

Broadcast new message.

Parameters:

newMessage the new message

void simulation.WiFiNeighborhood.removeNodeFromWiFiNeighborhood (Node leavingNode)

Removes the node from wi fi neighborhood.

 D3.1 Annex A

138

Parameters:

leavingNode the leaving node

The documentation for this class was generated from the following file:

• /Users/jean-marcseigneur/Documents/workspaceindigo/uloopjavaoomodelv2/src/simulation/WiFiNeighbor

hood.java

	D3.1 - Trust Management and Cooperation Incentives Pre-Prototype Software_final_QAT_reviewed
	D3.1 Annex A_final_QAT_reviewed

