
Chapter 1

Biology and Evolutionary Games

Mark Broom and Vlastimil Křivan

Abstract This chapter surveys some evolutionary games used in biological
sciences. These include the Hawk-Dove game, the Prisoner’s Dilemma, Rock–
Paper–Scissors, the war of attrition, the Habitat Selection game, predator-
prey games, and signalling games.
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1.1 Introduction

Evolutionarily game theory (EGT) as conceived by Maynard Smith and Price
(1973) was motivated by evolution. Several authors (e. g., Wynne-Edwards,
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Biology Center, Czech Academy of Sciences,
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1962; Lorenz, 1963) at that time argued that animal behavior patterns were
“for the good of the species” and that natural selection acts at the group level.
This point of view was at odds with the Darwinian viewpoint where natural
selection operates on the individual level. In particular, adaptive mechanisms
that maximize a group benefit do not necessarily maximize individual ben-
efit. This led Maynard Smith and Price (1973) to develop a mathematical
model of animal behavior, called the Hawk–Dove game, that clearly shows
the difference between group selection and individual selection. We thus start
this chapter with the Hawk–Dove game.

Today, evolutionary game theory is one of the milestones of evolution-
ary ecology as it put the concept of Darwinian evolution on solid mathe-
matical grounds. Evolutionary game theory has spread quickly in behavioral
and evolutionary biology with many influential models that change the way
that scientists look at evolution today. As evolutionary game theory is non-
cooperative, where each individual maximizes its own fitness, it seemed that
it cannot explain cooperative or altruistic behavior that was easy to explain
on the grounds of the group selection argument. Perhaps the most influential
model in this respect is the Prisoner’s Dilemma (Poundstone, 1992), where
the evolutionarily stable strategy leads to a collective payoff that is lower
than the maximal payoff the two individuals can achieve if they were cooper-
ating. Several models within evolutionary game theory have been developed
that show how mutual cooperation can evolve. We discuss some of these
models in Section 1.3. A popular game played by human players across the
world, which can also be used to model some biological populations, is the
Rock–Paper–Scissors game (RPS; Section 1.4). All of these games are single
species matrix games, so that their payoffs are linear, with a finite number of
strategies. An example of a game that cannot be described by a matrix and
that has a continuum of strategies is the war of attrition in Section 1.5.1 (or
alternatively the Sir Philip Sidney game mentioned in Section 1.10). A game
with non-linear payoffs which examines an important biological phenomenon
is the sex-ratio game in Section 1.5.2.

Although evolutionary game theory started with consideration of a sin-
gle species, it was soon extended to two interacting species. This extension
was not straightforward, because the crucial mechanism of a (single-species)
EGT, that is negative frequency dependence that stabilizes phenotype fre-
quencies at an equilibrium, is missing if individuals of one species interact
with individuals of another species. These games are asymmetric, because
the two contestants are in different roles (such asymmetric games also occur
within a single species). Such games that can be described by two matrices
are called bimatrix games. Representative examples include the Battle of the
Sexes (Section 1.6.1) and the owner-intruder game (Section 1.6.2). Animal
spatial distribution that is evolutionarily stable is called the Ideal Free Dis-
tribution (Section 1.7). We discuss first the IFD for a single species and then
for two species. The resulting model is described by four matrices, so it is
no longer a bimatrix game. The IFD, as an outcome of animal dispersal, is
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related to the question of under which conditions animal dispersal can evolve
(Section 1.8). Section 1.9 focuses on foraging games. We discuss two models
that use EGT. The first model, that uses decision trees, is used to derive the
diet selection model of optimal foraging. This model asks what the optimal
diet of a generalist predator is in an environment that has two (or more) prey
species. We show that this problem can be solved using the so called agent
normal form of an extensive game. We then consider a game between prey
that try to avoid their predators and predators that aim to capture prey. The
last game we consider in some detail is a signalling game of mate quality, that
was developed to help explain the presence of costly ornaments, such as the
peacock’s tail.

We conclude with a brief section discussing a few other areas where evolu-
tionary game theory has been applied. However, a large variety of models that
use EGT have been developed in the literature, and it is virtually impossible
to survey all of them.

1.2 The Hawk-Dove game: Selection at the individual
level vs. selection at the population level

One of the first evolutionary games was introduced to understand evolution of
aggressiveness among animals (Maynard Smith and Price, 1973). Although
many species have strong weapons (e.g., teeth or horns), it is a puzzling
observation that in many cases the antagonistic encounters do not result in a
fight. In fact, such encounters often result in a complicated series of behaviors,
but without causing serious injuries. For example, in contests between two
male red deer, the contestants first approach each other and provided one
does not withdraw, the contest escalates to a roaring contest and then to
the so called parallel walk. Only if this does not lead to the withdrawal of
one deer, does a fight follow. It was observed (Maynard Smith, 1982) that
out of 50 encounters, only 14 resulted in a fight. The obvious question is why
animals do not always end up in a fight? As it is good for an individual to get
the resource (in the case of the deer, the resources are females for mating),
Darwinian selection seems to suggest that individuals should fight whenever
possible. One possible answer why this is not the case is that such a behavior
is for the good of the species, because any species following this aggressive
strategy would die out quickly. If so, then we should accept that the unit
of selection is not an individual, and abandon H. Spencer’s “survival of the
fittest” (Spencer, 1864).

The Hawk-Dove model explains animal contest behavior from the Dar-
winian point of view. The model considers interactions between two individ-
uals from the same population that meet in a pairwise contest. Each indi-
vidual uses one of the two strategies called Hawk and Dove. An individual
playing Hawk is ready to fight when meeting an opponent while an individual
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playing Dove does not escalate the conflict. The game is characterized by two
positive parameters where V denotes the value of the contested resource and
C is the cost of the fight measured as the damage one individual can cause to
his opponent. The payoffs for the row player describe the increase/decrease
in the player’s fitness after an encounter with an opponent. The game matrix
is

(

Hawk Dove

Hawk V−C
2 V

Dove 0 V
2

)

and the model predicts that when the cost of the fight is lower than is the re-
ward obtained by getting the resource, C < V , all individuals should play the
Hawk strategy that is the strict Nash equilibrium (NE) (thus an evolution-
arily stable strategy (ESS) ) of the game. When the cost of a fight is larger
than the reward obtained by getting the resource, C > V , then p = V/C
(0 < p < 1) is the corresponding monomorphic ESS. In other words, each
individual will play Hawk when encountering an opponent with probability
p and Dove with probability 1− p. Thus, the model predicts that aggressive-
ness in the population decreases with the cost of fighting. In other words,
the species that possess strong weapons (e.g., antlers in deers) should solve
conflicts with very little fighting.

Can individuals obtain a higher fitness when using a different strategy?
In a monomorphic population where all individuals use a mixed strategy
0 < p < 1, the individual fitness and the average fitness in the population
are the same and equal to

E(p, p) =
V

2
−

C

2
p2.

This fitness is maximized for p = 0, i.e., when the level of aggressiveness in the
population is zero, all individuals play the Dove strategy, and individual fit-
ness equals V/2. Thus, if selection operated on a population or a species level,
all individuals should be phenotypically Doves who never fight. However, the
strategy p = 0 cannot be an equilibrium from an evolutionary point of view,
because in a Dove only population, Hawks will always have a higher fitness
(V ) than Doves (V/2), and will invade. In other words, the Dove strategy
is not resistant to invasion by Hawkish individuals. Thus, securing all indi-
viduals to play the strategy D, that is beneficial from the population point
of view, requires some higher organizational level that promotes cooperation
between animals (Dugatkin and Reeve, 1998, see also Section 1.3).

On the contrary, at the evolutionarily stable equilibrium p∗ = V/C, indi-
vidual fitness

E(p∗, p∗) =
V

2

(

1−
V

C

)

is always lower than V/2. However, the ESS strategy cannot be invaded by
any other single mutant strategy.
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Darwinism assumes that selection operates at the level of an individual,
which is then consistent with non-cooperative game theory. However, this is
not the only possibility. Some biologists (e.g., Gilpin, 1975) postulated that
selection operates on a larger unit, a group (e.g., a population, a species
etc.), maximizing the benefit of this unit. This approach was termed group
selection. Alternatively, Dawkins (1976) suggested that selection operates on
a gene level. The Hawk-Dove game allows us to show clearly the difference
between the group and Darwinian selections.

Group selection vs. individual selection also nicely illustrates the so called
tragedy of the commons (Hardin, 1968) (based on an example given by the
English economist William Forster Lloyd) that predicts deterioration of the
environment, measured by the fitness, in an unconstrained situation where
each individual maximizes its profit. For example, when a common resource
(e.g., fish) is over-harvested, the whole fishery collapses. To maintain a sus-
tainable yield, regulation is needed that prevents over-exploitation (i.e., which
does not allow Hawks that would over-exploit the resource to enter). Effec-
tively, such a regulatory body keeps p at zero (or close to it), to maximize
the benefits for all fishermen. Without such a regulatory body, Hawks would
invade and necessarily decrease the profit for all. In fact, as the cost C in-
creases (due to scarcity of resources), fitness at the ESS decreases and when
C equals V , fitness is zero.

1.2.1 Replicator dynamics for the Hawk-Dove game

In the previous section we have assumed that all individuals play the same
strategy, either pure, or mixed. If the strategy is mixed, each individual ran-
domly chooses one of its elementary strategies on any given encounter ac-
cording to some given probability. In this monomorphic interpretation of the
game the population mean strategy coincides with the individual strategy.
Now we will consider a distinct situation where n phenotypes exist in the
population. In this polymorphic setting we say that a population is in state
p ∈ ∆n (where ∆n = {p ∈ R

n | pi ≥ 0, p1 + · · · + pn = 1} is a probability
simplex) if pi is the proportion of the population using strategy i. As opposed
to the monomorphic case, in this polymorphic interpretation the individual
strategies and the mean population strategy are different, because the mean
strategy characterizes the population, not a single individual.

The ESS definition does not provide us with a mechanistic description of
phenotype frequency dynamics that would converge to an ESS. One of the
frequency dynamics often used in evolutionary game theory is the replicator
dynamics (Taylor and Jonker, 1978). Replicator dynamics assume that the
population growth rate of each phenotype is given by its fitness and they
focus on changes in phenotypic frequencies in the population (see Volume I,
Chapter Evolutionary games). Let us consider the replicator equation for the
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Hawk-Dove game. Let x be the frequency of Hawks in the population. The
fitness of a Hawk is

E(H,x) =
V − C

2
x+ V (1− x)

and, similarly, the fitness of a Dove is

E(D, x) = (1− x)
V

2
.

Then the average fitness in the population is

E(x, x) = xE(H,x) + (1− x)E(D, x) =
V − Cx2

2

and the replicator equation is

dx

dt
= x (E(H,x)− E(x, x)) =

1

2
x(1 − x)(V − Cx).

Assuming C > V, we remark that the interior distribution equilibrium of this
equation, x = V/C, corresponds to the mixed ESS for the underlying game.
In this example phenotypes correspond to elementary strategies of the game.
It may be that phenotypes also correspond to mixed strategies.

1.3 The Prisoner’s Dilemma and the evolution of
cooperation

The Prisoner’s Dilemma (see Flood, 1952; Poundstone, 1992) is perhaps the
most famous game in all of game theory, with applications from areas includ-
ing economics, biology and psychology. Two players play a game where they
can Defect or Cooperate, yielding the payoff matrix

(

Cooperate Defect

Cooperate R S
Defect T P

)

.

These abbreviations are derived from Reward (reward for cooperating),
Temptation (temptation for defecting when the other player cooperates),
Sucker (paying the cost of cooperation when the other player defects), and
Punishment (paying the cost of defecting). The rewards satisfy the conditions
T > R > P > S. Thus while Cooperate is Pareto efficient (in the sense that
it is impossible to make any of the two players better off without making the
other player worse off), Defect row dominates Cooperate and so is the unique
ESS, even though mutual cooperation would yield the greater payoff. Real
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human (and animal) populations, however, involve a lot of cooperation; how
is that enforced?

There are many mechanisms for enabling cooperation, see for example
Nowak (2006). These can be divided into six types as follows:

1. Kin selection, that occurs when the donor and recipient of some apparently
altruistic act are genetic relatives.

2. Direct reciprocity, requiring repeated encounters between two individuals.
3. Indirect reciprocity, based upon reputation. An altruistic individual gains

a good reputation, which means in turn that others are more willing to
help that individual.

4. Punishment, as a way to enforce cooperation.
5. Network reciprocity, where there is not random mixing in the population

and cooperators are more likely to interact with other cooperators.
6. Multi-level selection, alternatively called group selection, where evolution

occurs on more than one level.

We discuss some of these concepts below.

1.3.1 Direct reciprocity

Direct reciprocity requires repeated interaction, and can be modelled by the
Iterated Prisoner’s Dilemma (IPD). The IPD involves playing the Prisoner’s
Dilemma over a (usually large) number of rounds, and thus being able to
condition choices in later rounds on what the other player played before. This
game was popularised by Axelrod (1981, 1984) who held two tournaments
where individuals could submit computer programs to play the IPD. The
winner of both tournaments was the simplest program submitted, called Tit
for Tat (TFT), which simply cooperates on the first move and then copies
its opponent’s previous move.

TFT here has three important properties: it is nice so it never defects first;
it is retaliatory so it meets defection with a defection next move; it is forgiving
so even after previous defections, it meets cooperation with cooperation next
move. TFT effectively has a memory of one place, and it was shown in Axelrod
and Hamilton (1981) that TFT can resist invasion by any strategy that is not
nice if it can resist both Always Defect ALLD and Alternative ALT, which
defects (cooperates) on odd (even) moves. However, this does not mean that
TFT is an ESS, because nice strategies can invade by drift as they receive
identical payoffs to TFT in a TFT population (Bendorf and Swistak, 1995).
We note that TFT is not the only strategy that can promote cooperation
in the IPD; others include tit for two tats (TF2T which defects only after
two successive defections of its opponent), Grim (which defects on all moves
after its opponent’s first defection) and win stay/lose shift (which changes its
choice if and only if its opponent defected on the previous move).
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Games between TFT, ALLD and ALT against TFT have the following
sequence of moves:

TFT CCCCCC . . .
TFT CCCCCC . . .

ALLD DDDDDD . . .
TFT CDDDDD . . .

ALT DCDCDC . . .
TFT CDCDCD . . .

(1.1)

We assume that the number of rounds is not fixed, and that there is always the
possibility of a later round (otherwise the game can be solved by backwards
induction, yielding ALLD as the unique NE strategy). At each stage there is
a further round with probability w (as in the second computer tournament),
the payoffs are then

E(TFT, TFT ) = R +Rw +Rw2 + . . . =
R

1− w
, (1.2)

E(ALLD, TFT ) = T + Pw + Pw2 + . . . = T +
Pw

1− w
, (1.3)

E(ALT, TFT ) = T + Sw + Tw2 + Sw3 + . . . =
T + Sw

1− w2
. (1.4)

Thus TFT resists invasion if and only if

R

1− w
> max

(

T +
Pw

1− w
,
T + Sw

1− w2

)

i.e., if and only if

w > max

(

T −R

T − P
,
T −R

R− S

)

, (1.5)

i.e., when the probability of another contest is sufficiently large (Axelrod,
1981, 1984). We thus see that for cooperation to evolve here, the extra condi-
tion 2R > S+T is required, since otherwise the right hand side of inequality
(1.5) would be at least 1.

Whilst TFT proved successful at promoting cooperation above, what if
errors occur, so that an intention to cooperate becomes a defection (or is
perceived as such)? After a single mistake a pair of interacting TFT players
will be locked in an alternating cycle of Defect versus Cooperation, and then
mutual defection after a second mistake when C was intended. Under such
circumstances TF2T can maintain cooperation, whereas TFT cannot. In fact
a better strategy (in the sense that it maintains cooperation when playing
against itself but resists invasion from defecting strategies) is GTFT (gener-
ous tit for tat; see Komorita et al, 1968), which combines pure cooperation
with TFT by cooperating after a cooperation, but meeting a defection with
a defection with probability
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min

(

1−
T −R

R− S
,
R− P

T − P

)

.

1.3.2 Kin selection and Hamilton’s rule

In most evolutionary game theoretical models, the aim of each individual is
to maximise its own fitness, irrespective of the fitness of other individuals.
However, if individuals are related, then the fitnesses of others should be
taken into account.

Let us consider two interacting individuals, with coefficient of relatedness
r, which is the probability that they share a copy of a given allele. For example
father and son will have r = 1/2. One individual acts as a potential donor, the
other as a recipient, which receives a benefit b from the donor at the donor’s
cost c. The donating individual pays the full cost, but also indirectly receives
the benefit b multiplied by the above factor r. Thus donation is worthwhile
provided that

rb > c i.e. r >
c

b

which is known as Hamilton’s rule (Hamilton, 1964).
Note that this condition is analagous to the condition for cooperation to

resist invasion in the IPD above, where a commonly used special class of the
PD matrix has payoffs representing cooperation as making a donation and
defecting as not. Then TFT resists invasion when w > c/b.

1.3.3 Indirect reciprocity and punishment

The IPD is an example of Direct reciprocity. Suppose now we have a pop-
ulation of individuals who play many contests, but these are not in long
sequences against a single “opponent” as above? If faced with a series of
single shot games, how can cooperation be achieved?

Such situations are often investigated by the use of public goods games
involving experiments with groups of real people, as in the work of Fehr
and Gachter (2002). In these experiments individuals play a series of games,
each game involving a new group. In each game there were four individuals,
each of them receiving an initial endowment of 20 dollars, and each had
to choose a level of investment into a common pool. Any money that was
invested increased by a factor of 1.6 and was then shared between the four
individuals, meaning that the return for each dollar invested was 40 cents
to each of the players. In particular the individual making the investment
of one dollar only receives 40 cents, and so makes a loss of 60 cents. Thus,
like the Prisoner’s Dilemma, it is clear that the best strategy is to make
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no investment, but simply to share rewards from the investments of other
players. In these experiments investment levels began reasonably high, but
slowly declined, as players saw others cheat.

In later experiments, each game was played over two rounds, an invest-
ment round and a punishment round, where players were allowed to punish
others. In particular every dollar “invested” in punishment levied a fine of
three dollars on the target of the punishment. This led to investments which
increased from their initial level, as punishment brought cheating individuals
into line. It should be noted that in a population of individuals many, but not
all of whom, punish, optimal play for individuals in this case should not be to
punish, but to be a second-order free rider who invests but does not punish,
and therefore saves the punishment fee. Such a population would collapse
down to no investment after some number of rounds. Thus it is clear that the
people in the experiments were not behaving completely rationally.

Thus we could develop the game to have repeated rounds of punishment.
An aggressive punishing strategy would then in round 1, punish all defectors;
in round 2, punish all cooperators who did not punish defectors in round 1; in
round 3, punish all cooperators who did not punish in round 2 as above, and
so on. Thus such players not only punish cheats, but anyone who does not
play exactly as they do. Imagine a group of m individuals with k cooperators
(who invest and punish), ℓ defectors and m− k− ℓ− 1 investors (who do not
punish). This game, with this available set of strategies, requires two rounds
of punishment as described above. The rewards to our focal individual in this
case will be

R =











(m−ℓ)cV
m − kP if an investor,

(m−ℓ)cV
m − (m− k − 1) if a cooperator,

(m−ℓ−1)cV
m + V − kP if a defector,

where V is the initial level of resources of each individual, c < m is the return
on investment (every dollar becomes 1 + c dollars), and P is the punishment
multiple (every dollar invested in punishment generates a fine of P dollars).
The optimal play for our focal individual is

Defect if V
(

1− c
m

)

> kP − (m− k − 1),
Cooperate otherwise.

Thus defect is always stable and invest and punish is stable if V (1− c/m) <
(m− 1)P .

We note that there are still issues on how such punishment can emerge in
the first place (Sigmund, 2007).
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1.4 The Rock–Paper–Scissors game

The Rock–Paper–Scissors game is a three strategy matrix game, which people
commonly play recreationally. In human competition the game dates back at
least to 17th century China. There is a lot of potential psychology involved
in playing the game, and there are numerous tournaments involving it. The
important feature of the game is that Rock beats Scissors, Scissors beats
Paper and Paper beats Rock. The payoff matrix is





Rock Scissors Paper

Rock 0 a3 −b2
Scissors −b3 0 a1
Paper a2 −b1 0



,

where all a’s and b’s are positive. For the conventional game played between
people ai = bi = 1 for i = 1, 2, 3.

There is a unique internal NE of the above game given by the vector

p =
1

K
(a1a3 + b1b2 + a1b1, a1a2 + b2b3 + a2b2, a2a3 + b1b3 + a3b3),

where the constant K is just the sum of the three terms to ensure that
p is a probability vector. In addition, p is a globally asymptotically stable
equilibrium of the replicator dynamics if and only if a1a2a3 > b1b2b3. It is an
ESS if and only if a1 − b1, a2 − b2 and a3 − b3 are all positive, and the largest
of their square roots is smaller than the sum of the other two square roots
(Hofbauer and Sigmund, 1998). Thus if p is an ESS of the RPS game, then
it is globally asymptotically stable under the replicator dynamics. However,
since the converse is not true, the RPS game provides an example illustrating
that whilst all internal ESSs are global attractors of the replicator dynamics,
not all global attractors are ESSs.

We note that the case when a1a2a3 = b1b2b3 (including the conventional
game with ai = bi = 1) leads to closed orbits of the replicator dynamics,
and a stable (but not asymptotically stable) internal equilbrium. This is an
example of a non-generic game, where minor perturbations of the parameter
values can lead to large changes in the nature of the game solution.

This game is a good representation for a number of real populations.
The most well known of these is among the common side-blotched lizard
Uta stansburiana. This lizard has three types of distinctive throat coloura-
tion, which correspond to very different types of behaviour. Males with or-
ange throats are very aggressive and have large territories which they defend
against intruders. Males with dark blue throats are less aggressive, and hold
smaller territories. Males with yellow stripes do not have a territory at all,
but bear a strong resemblance to females and use a sneaky mating strategy.
It was observed in Sinervo and Lively (1996) that if the Blue strategy is the
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most prevalent Orange can invade, if Yellow is prevalent Blue can invade and
if Orange is prevalent then Yellow can invade.

An alternative real scenario is that of Escherichia coli bacteria, involving
three strains of bacteria (Kerr et al, 2002). One strain produces the antibiotic
colicin. This strain is immune to it, as is a second strain, but the third is not.
When only the first two strains are present, the second strain outcompetes
the first, since it forgoes the cost of colicin production. Similarly the third
outcompetes the second, as it forgoes costly immunity, which without the
first strain is unnecessary. Finally, the first strain outcompetes the third, as
the latter has no immunity to the colicin.

1.5 Non-matrix games

We have seen that matrix games involve a finite number of strategies with a
payoff function that is linear in the strategy of both the focal player and that
of the population. This leads to a number of important simplifying results
(see Volume I, Chapter Evolutionary games). All of the ESSs of a matrix
can be found in a straightforward way using the procedure of Haigh (1975).
Further, adding a constant to all entries in a column of a payoff matrix leaves
the collection of ESSs (and the trajectories of the replicator dynamics) of the
matrix unchanged. Haigh’s procedure can potentially be shortened, using
the important Bishop-Cannings Theorem (Bishop and Cannings, 1976), a
consequence of which is that if p1 is an ESS, no strategy p2 whose support
is either a superset or a subset of the support of p1 can be an ESS.

However, there are a number of ways that games can involve nonlinear
payoff functions. Firstly, playing the field games yield payoffs that are linear
in the focal player but not in the population (for examples see Sections 1.7.1,
1.9.1). Another way this can happen is to have individual games of the matrix
type, but where opponents are not selected with equal probability from the
population, for instance if there is some spatial element. Thirdly, the payoffs
can be nonlinear in both components. Here strategies do not refer to a prob-
abilistic mix of pure strategies, but a unique trait, such as the height of a tree
as in Kokko (2007) or a volume of sperm, see e.g., Ball and Parker (2007).
This happens in particular in the context of adaptive dynamics (see Volume
I, Chapter Evolutionary games).

Alternatively a non-matrix game can involve linear payoffs, but this time
with a continuum of strategies (we note that the cases with nonlinear payoffs
above can also involve such a continuum, especially the third type). A classical
example of this is the war of attrition (Maynard Smith, 1974).
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1.5.1 The war of attrition

We consider a Hawk-Dove game, where both individuals play Dove, but that
instead of the reward being allocated instantly, they become involved in a
potentially long displaying contest where a winner will be decided by one
player conceding, and there is a cost proportional to the length of the contest.
An individual’s strategy is thus the length of time it is prepared to wait. Pure
strategies are all values of t on the non-negative part of the real line, and
mixed strategies are corresponding probability distributions. These kinds of
contests are for example observed in dung flies (Parker and Thompson, 1980).

Choosing the cost to be simply the length of time spent, the payoff for a
game between two pure strategies St (wait until time t) and Ss (wait until
time s) for the player that uses strategy St is

E(St, Ss) =











V − s t > s,

V/2− t t = s,

−t t < s.

and the corresponding payoff from a game involving two mixed strategists
playing the probability distributions f(t) and g(s) to the f(t) player is

∫

∞

0

∫

∞

0

f(t)g(s)E(St, Ss)dtds.

It is clear that no pure strategy can be an ESS, since Ss is invaded by
St (i.e., E(St, Ss) > E(Ss, Ss)) for any t > s, or any positive t < s − V/2.
There is a unique ESS which is found by first considering (analogous to the
Bishop-Cannings Theorem; see Volume I, Chapter Evolutionary games) a
probability distribution p(s) that gives equal payoffs to all pure strategies
that could be played by an opponent. This is required, since otherwise some
potential invading strategies could do better than others, and since p(s) is
simply a weighted average of such strategies, it would then be invaded by
at least one type of opponent. Payoff of a pure strategy St played against a
mixed strategy Sp(s) given by a probability distribution p(s) over the time
interval is

E(St, Sp(s)) =

∫ t

0

(V − s)p(s)ds+

∫

∞

t

(−t)p(s)ds. (1.6)

Differentiating equation (1.6) with respect to t (assuming that such a deriva-
tive exists) gives

(V − t)p(t)−

∫

∞

t

p(s)ds+ tp(t) = 0. (1.7)
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If P (t) is the associated distribution function, so that p(t) = P ′(t) for all
t ≥ 0, then equation (1.7) becomes

V P ′(t) + P (t)− 1 = 0

and we obtain

p(t) =
1

V
exp

(

−
t

V

)

. (1.8)

It should be noted that we have glossed over certain issues in the above, for
example consideration of strategies without full support or with atoms of
probability. This is discussed in more detail in Broom and Rychtář (2013).
The above solution was shown to be an ESS in Bishop and Cannings (1976).

1.5.2 The sex-ratio game

Why is it that the sex ratio in most animals is close to a half? This was the
first problem to be considered using evolutionary game theory (Hamilton,
1967), and its consideration, including the essential nature of the solution,
dates right back to Darwin (1871). To maximize the overall birth rate of the
species, in most animals there should be far more females than males, given
that females usually make a much more significant investment in bringing
up offspring than males. This, as mentioned before, is the wrong perspective,
and we need to consider the problem from the viewpoint of the individual.

Suppose that in a given population, an individual female will have a fixed
number of offspring, but that she can allocate the proportion of these that
are male. This proportion is thus the strategy of our individual. As each
female (irrespective of its strategy) has the same number of offsprings, this
number does not help us in deciding which strategy is the best. The effect of
a given strategy can be measured as the number of grandchildren of the focal
female. Assume that the number of individuals in a large population in the
next generation is N1 and in the following generation is N2. Further assume
that all other females in the population play the strategy m, and that our
focal individual plays strategy p.

As N1 is large, the total number of males in the next generation is mN1

and so the total number of females is (1 − m)N1. We shall assume that all
females (males) are equally likely to be the mother (father) of any particu-
lar member of the following generation of N2 individuals. This means that a
female offspring will be the mother of N2/((1−m)N1) of the following gener-
ation of N2 individuals, and a male offspring will be the father of N2/(mN1)
of these individuals. Thus our focal individual will have the following number
of grandchildren
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E(p,m) = p
N2

mN1
+ (1 − p)

N2

(1−m)N1
=

N2

N1

(

p

m
+

1− p

1−m

)

. (1.9)

To find the best p, we maximise E(p,m). For m < 0.5 the best response is
p = 1, and for m > 0.5 we obtain p = 0. Thus m = 0.5 is the interior NE at
which all values of p obtain the same payoff. This NE satisfies the stability
condition in that E(0.5,m′) − E(m′,m′) > 0 for all m′ 6= 0.5 (Broom and
Rychtář, 2013).

Thus from the individual perspective, it is best to have half your offspring
as male. In real populations it is often the case that relatively few males are
the parents of many individuals, for instance in social groups often only the
dominant male fathers offspring. Sometimes other males are actually excluded
from the group; lion prides generally consist of a number of females, but only
one or two males, for example. From a group perspective these extra males
perform no function, but there is a chance that any male will become the
father of many.

1.6 Asymmetric games

The games we have considered above all involve populations of identical in-
dividuals. What if individuals are not identical? Maynard Smith and Parker
(1976) considered two main types of difference between individuals. The first
type was correlated asymmetries where there were real differences between
them, for instance in strength or need for resources, which would mean their
probability of success, cost levels, valuation of rewards, set of available strate-
gies etc. may be different, i.e.the payoffs “correlate” with the type of the
player. An example of such games are the predator-prey games of Section
1.9.2, or the Battle of the Sexes below in Section 1.6.1.

The second type, uncorrelated asymmetries, occurred when the individuals
were physically identical, but nevertheless occupied different roles, for exam-
ple one was the owner of a territory and the other was an intruder, which we
shall see in Section 1.6.2. For uncorrelated asymmetries, even though individ-
uals do not have different payoff matrices, it is possible to base their strategy
upon the role that they occupy. As we shall see, this completely changes the
character of the solutions that we obtain.

We note that the allocation of distinct roles can apply to games in general,
for example there has been significant work on the asymmetric war of attrition
(see e.g. Maynard Smith and Parker, 1976; Hammerstein and Parker, 1982),
involving cases with both correlated and uncorrelated asymmetries.

The ESS was defined for a single population only and the stability condi-
tion of the original definition cannot be easily extended for bimatrix games.
This is because bimatrix games assume that individuals of one species in-
teract with individuals of the other species only, so there is no frequency
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dependent mechanism that could prevent mutants of one population from
invading residents of that population at the two species NE. In fact, it was
shown (Selten, 1980) that requiring the stability condition of the ESS defini-
tion to hold in bimatrix games restricts the ESSs to strict NEs, i.e., to pairs
of pure strategies. Two key assumptions behind Selten’s Theorem are that
the probability that an individual occupies a given role is not affected by the
strategies that it employs, and that payoffs within a given role are linear,
as in matrix games. If either of these assumptions are violated then mixed
strategy ESSs can result (see e.g. Webb et al, 1999; Broom and Rychtář,
2013).

There are interior NE in bimatrix games that deserve to be called “stable”,
albeit in a weaker sense than was used in the (single-species) ESS definition.
For example some of the NEs are stable with respect to some evolutionary
dynamics (e.g., with respect to the replicator dynamics, or the best response
dynamics). A static concept that captures such stability that proved useful
for bimatrix games is the Nash–Pareto equilibrium (Hofbauer and Sigmund,
1998). The Nash-Pareto equilibrium is a NE which satisfies an additional
condition that says that it is impossible for both players to increase their
fitness by deviating from this equilibrium. For two-species games that cannot
be described by a bimatrix (e.g., see Section 1.7.4), this concept of 2-species
evolutionary stability was generalized by Cressman (2003) (see Volume I,
Chapter Evolutionary games) who defined a 2-species ESS (p∗, q∗) as a NE
such that, if the population distributions of the two species are slightly per-
turbed then an individual in at least one species does better by playing its
ESS strategy than by playing the slightly perturbed strategy of this species.
We illustrate these concepts in the next section.

1.6.1 The Battle of the Sexes

A classical example of an asymmetric game is the Battle of the Sexes

(Dawkins, 1976), where a population contains females with two strategies,
coy and fast, and males with two strategies, faithful and philanderer. A coy
female needs a period of courtship, whereas a fast female will mate with
a male as soon as they meet. Faithful males are willing to engage in long
courtships, and after mating will care for the offspring. A philanderer male
will not engage in courtship, and so cannot mate with a coy female, and also
leaves immediately after mating with a fast female.

Clearly in this case, any particular individual always occupies a given role
(i.e.male or female) and cannot switch roles as is the case in the Owner-
Intruder game in Section 1.6.2 below. Thus, males and females each have
their own payoff matrix which are often represented as a bimatrix. The payoff
bimatrix for the Battle of the Sexes is:
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(

Male\Female Coy Fast

Faithful (B − CR

2 − CC , B − CR

2 − CC) (B − CR

2 , B − CR

2 )
Philanderer (0, 0) (B,B − CR)

)

.

(1.10)
Here B is the fitness gained by having an offspring, CR is the (potentially
shared) cost of raising the offspring and CC is the cost of engaging in a
courtship. All three of these terms are clearly positive. The above bimatrix
is written in the form (A1, A

T
2 ), where matrix A1 is the payoff matrix for

males (player 1) and matrix A2 is the payoff matrix for females (player 2),
respectively.

For such games, to define a two-species NE, we study position of the two
equal payoff lines, one for each sex. The equal payoff line for males (see the
horizontal dashed line in Figure 1.1) is defined to be those (p,q) ∈ ∆2 ×∆2

for which the payoff when playing Faithful equals the payoff when playing
the Philanderer strategy, i.e.,

(1, 0)A1q
T = (0, 1)A1q

T

which yields q1 = CR

2(B−CC) . Similarly, along the equal payoff line for females

(see the vertical dashed line in Figure 1.1) the payoff when playing strategy
Coy must equal the payoff when playing strategy Fast, i.e.,

(1, 0)A2p
T = (0, 1)A2p

T .

If the two equal payoff lines do not intersect in the unit square, no completely
mixed strategy (both for males and females) is a NE (Figure 1.1 A,B). In fact,
there is a unique ESS (Philanderer, Coy), i.e., with no mating, for sufficiently
small B (Figure 1.1A), B < min(CR/2 + CC , CR) (clearly not appropriate
for a real population), a unique ESS (Philanderer, Fast) for sufficiently high
B (Figure 1.1B), when B > CR. For intermediate B satisfying CR/2+CC <
B < CR there is a 2-species weak ESS

p =

(

B − CR

B − CC − CR
,

CC

CC + CR −B

)

, q =

(

CR

2(B − CC)
, 1−

CR

2(B − CC)

)

,

where at least the fitness of one species increases toward this equilibrium,
except when p1 = B−CR

B−CC−CR
or q1 = CR

2(B−CC) (Figure 1.1C). In all three

cases of Figure 1.1, the NE is a Nash-Pareto pair, because it is impossible
for both players to simultaneously deviate from the Nash equilibrium and
increase their payoffs. In panels A and B both arrows point in direction of
the NE. In panel C at least one arrow is pointing to the NE (p,q) if both
players deviate from that equilibrium. However, this interior NE is not a 2-
species ESS since, when only one player (e.g., player one) deviates, sometimes
no arrow points in the direction of (p,q). This happens on the equal payoff
lines (dashed lines). For example, let us consider points on the vertical dashed
line above the NE. Here vertical arrows are zero vectors and horizontal arrows
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point away from p. Excluding points on the vertical and horizontal line from
the definition of a 2-species ESS leads to a 2-species weak ESS.

A

p1

q1

10

1
B

p1

q1

10

1
C

p1

q1

10

1

Fig. 1.1 The ESS for the Battle of the Sexes game. Panel A assumes small B and the
only ESS is (p1, q1) = (0, 1) =(Philanderer, Coy). Panel B assumes large B and the only
ESS is (p1, q1) = (0, 0) =(Philanderer, Fast). For intermediate values of B (panel C) there
is an interior NE. The dashed lines are the two equal payoff lines for males (horizontal line)
and females (vertical line). The direction in which the male and female payoffs increase are
shown by arrows (e.g., a horizontal arrow to the right means the first strategy (Faithful)
has the higher payoff for males whereas a downward arrow means the second strategy
(Fast) has the higher payoff for females). We observe that in panel C these arrows are
such that at least the payoff of one player increases toward the Nash–Pareto pair, with the
exception of the points that lie on the equal payoff lines. This qualifies the interior NE as
a 2-species weak ESS.

1.6.2 The owner intruder game

The owner intruder game is an extension of the Hawk-Dove game, where
player 1 (the owner) and player 2 (the intruder) have distinct roles (i.e., they
cannot be interchanged as is the case of symmetric games). In particular an
individual can play either of Hawk or Dove in either of the two roles. This
leads to the bimatrix representation of the Hawk-Dove game below, which
cannot be collapsed down to the single 2×2 matrix from Section 1.2, because
the strategy that an individual plays may be conditional upon the role that
it occupies (in Section 1.2 there are no such distinct roles). The bimatrix of
the game is

(

Owner\Intruder Hawk Dove

Hawk (V −C
2 , V−C

2 ) (V, 0)
Dove (0, V ) (V/2, V/2)

)

.

Provided we assume that each individual has the same chance to be an
owner or an intruder, the game can be symmetrized with the payoffs to the
symmetrized game given in the following payoff matrix,
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Hawk Dove Bourgeois Anti-Bourgeois

Hawk (V − C)/2 V (3V − C)/4 (3V − C)/4
Dove 0 V/2 V/4 V/4
Bourgeois (V − C)/4 3V/4 V/2 (2V − C)/4
Anti-Bourgeois (V − C)/4 3V/4 (2V − C)/4 V/2









where

Hawk − play Hawk when both owner and intruder,
Dove − play Dove when both owner and intruder,
Bourgeois − play Hawk when owner and Dove when intruder,
Anti-Bourgeois − play Dove when owner and Hawk when intruder.

It is straightforward to show that if V ≥ C then Hawk is the unique ESS
(Figure 1.2A), and that if V < C then Bourgeois and Anti-Bourgeois (al-
ternatively called Marauder) are the only ESSs (Figure 1.2B). As we see,
there are only pure strategy solutions, as opposed to the case of the Hawk
Dove game, which had a mixed ESS V/C for V < C, because the interior
NE in Figure 1.2B is not a Nash–Pareto pair as in the upper left and lower
right regions both arrows are pointing away from the NE. Thus, if both play-
ers simultaneously deviate from the Nash equilibrium their payoffs increase.
Consequently, this NE is not a 2-species (weak) ESS.

A

p1

q1

10

1
B

p1

q1

10

1

Fig. 1.2 The ESS for the owner intruder game. Panel A assumes V > C and the only

ESS is to be Hawk at both roles (i.e., (p1, q1) = (1, 1) = (Hawk,Hawk)). If V < C

(Panel B), there are two boundary ESSs (black dots) corresponding to the Bourgeois
((p1, q1) = (1, 0) = (Hawk,Dove)) and Anti-Bourgeois ((p1, q1) = (0, 1) = (Dove,Hawk))
strategies. The direction in which the owner and intruder payoffs increase are shown by
arrows (e.g., a horizontal arrow to the right means the Hawk strategy has the higher payoff
for owner whereas a downward arrow means the Dove strategy has the higher payoff for
intruder). The interior NE (the light gray dot at the intersection of the two equal payoff
lines) is not a 2-species ESS as there are regions (the upper-left and lower-right corners)
where both arrows point in directions away from this point.

Important recent work on this model and its ramifications for the part
that respecting ownership plays has been carried out by Mesterton Gibbons,
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Sherratt and co-workers (see Mesterton-Gibbons and Sherratt, 2014; Sherratt
and Mesterton-Gibbons, 2015). In particular, why in real populations is the
Bourgeois respect for ownership strategy so common, and the Anti-Bourgeois
strategy so rare? One explanation offered by Maynard Smith (1982) was “in-
finite regress”. In this argument, immediately after a contest the winner be-
comes the owner of the territory and the loser becomes a potential intruder
which could immediately rechallenge the individual that has just displaced it.
In an Anti-Bourgeois population, this would result in the new owner conced-
ing and the new intruder (the previous owner) once again being the owner;
but then the displaced owner could immediately rechallenge, and the process
would continue indefinitely. It is shown in Mesterton-Gibbons and Sherratt
(2014) that under certain circumstances, but not always, this allows Bour-
geois to be the unique ESS. Sherratt and Mesterton-Gibbons (2015) discuss
many issues, such as uncertainty of ownership, asymmetry of resource value,
continuous contest investment (as in the war of attrition) and potential sig-
nalling of intentions (what they call “secret handshakes”, similar to some of
the signals we discuss in Section 1.10) in detail. There are many reasons that
can make evolution of Anti-Bourgeois unlikely, and it is probably a combina-
tion of these that make it so rare.

1.6.3 Bimatrix replicator dynamics

The single species replicator dynamics such as those for the Hawk-Dove game
(Section 1.2.1) can be extended to two roles as follows (Hofbauer and Sig-
mund, 1998). Note that here this is interpreted as two completely separate
populations, i.e., any individual can only ever occupy one of the roles, and
its offspring occupy that same role. If A = (aij) i=1,...,n

j=1,...,m
and B = (bij)i=1,...,m

j=1,...,n

are the payoff matrices to an individual in role 1 and role two, respectively,
the corresponding replicator dynamics are

d
dtp1i(t) = p1i

(

(Ap2
T )i − p1Ap2

T
)

i = 1, . . . , n;

d
dtp2j(t) = p2j

(

(Bp1
T )j − p2Bp1

T
)

j = 1, . . . ,m;

where p1 ∈ ∆n and p2 ∈ ∆m are the population mixtures of individuals in
role 1 and 2, respectively. For example for the two role, two strategy game,
where without loss of generality we can set a11 = a22 = b11 = b22 = 0 (since
as for matrix games, adding a constant to all of the payoffs an individual gets
against a given strategy does not affect the NEs/ ESSs), we obtain
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dx

dt
= x(1 − x)(a12 − (a12 + a21)y),

dy

dt
= y(1− y)(b12 − (b12 + b21)x),

(1.11)

where x is the frequency of the first strategy players in the role 1 population,
and y is the corresponding frequency for role 2. Hofbauer and Sigmund (1998)
show that orbits converge to the boundary in all cases except if a12a21 > 0,
b12b21 > 0 and a12b12 < 0, which yield closed periodic orbits around the
internal equilibrium. Replicator dynamics for the Battle of the Sexes and the
owner intruder game are shown in Figure 1.3.

Note there are some problems with the interpretation of the dynamics of
two populations in this way, related to the assumption of exponential growth
of populations, since the above dynamics effectively assume that the relative
size of the two populations remains constant (Argasinski, 2006).
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p1

q1

B
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q1
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p1

q1
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q1
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Fig. 1.3 Bimatrix replicator dynamics (1.11) for the Battle of the Sexes game (A–C) and
the owner intruder game (D, E), respectivelly. Panels A–C corresponds to panels given in
Figure 1.1 and panels D and E correspond to those of Figure 1.2. This figure shows that
trajectories of the bimatrix replicator dynamics converge to 2-species ESS as defined in
Sections 1.6.1 and 1.6.2. In particular, the interior NE in panel E is not a 2-species ESS and
it is an unstable equilibrium for the bimatrix replicator dynamics. In panel C the interior
NE is 2-species weak ESS and it is (neutrally) stable for the bimatrix replicator dynamics.
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1.7 The Habitat Selection game

Fretwell and Lucas (1969) introduced the Ideal Free Distribution (IFD) to
describe a distribution of animals in a heterogeneous environment consist-
ing of discrete patches i = 1, . . . , n. The IFD assumes that animals are free
to move between several patches, travel is cost-free, each individual knows
perfectly the quality of all patches and all individuals have the same com-
petitive abilities. Assuming that these patches differ in their basic quality Bi

(i.e., their quality when unoccupied), the IFD model predicts that the best
patch will always be occupied.

Let us assume that patches are arranged in descending order (B1 > · · · >
Bn > 0) and mi is the animal abundance in patch i. Let pi = mi/(m1+ · · ·+
mn) be the proportion of animals in patch i, so that p = (p1, . . . , pn) describes
the spatial distribution of the population. For a monomorphic population, pi
also specifies the individual strategy as the proportion of the lifetime an
average animal spends in patch i. We assume that the payoff in each patch,
Vi(pi), is a decreasing function of animal abundance in that patch, i.e., the
patch payoffs are negatively density dependent. Then, fitness of a mutant
with strategy p̃ = (p̃1, . . . , p̃n) in the resident monomorphic population with
distribution p = (p1, . . . , pn) is

E(p̃,p) =

n
∑

i=1

p̃iVi(pi).

However, we do not need to make the assumption that the population is
monomorphic, because what really matters in calculating E(p̃,p) above is the
animal distribution p. If the population is not monomorphic this distribution
can be different from strategies animals use and we call it the population mean
strategy. Thus, in the Habitat Selection game individuals do not enter pair-
wise conflicts, but they play against the population mean strategy (referred
to as a “playing the field”, or “population” game).

Fretwell and Lucas (1969) introduced the concept of the Ideal Free Distri-
bution which is a population distribution p = (p1, . . . , pn) that satisfies two
conditions:

1. There exists a number 1 ≤ k ≤ n such that p1 > 0, . . . , pk > 0 and
pk+1 = · · · = pn = 0

2. V1(p1) = · · · = Vk(pk) = V ∗ and V ∗ ≥ Vi(pi) for i = k + 1, . . . , n.

They proved that provided patch payoffs are negatively density dependent
(i.e., decreasing functions of the number of individuals in a patch), then there
exists a unique IFD which Cressman and Křivan (2006) later showed is an
ESS. In the next section we will discuss two commonly used types of patch
payoff functions.
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1.7.1 Parker’s matching principle

Parker (1978) considered the case where resource input rates ri, i = 1, . . . , n
are constant and resources are consumed immediately when they enter the
patch and so there is no standing crop. This leads to a particularly simple
definition of animal patch payoffs as the ratio of the resource input rate
divided by the number of individuals there, i.e.,

Vi =
ri
mi

=
ri

piM
(1.12)

where M = m1+ · · ·+mn is the overall population abundance. The matching
principle then says that animals distribute themselves so that their abundance
in each patch is proportional to the rate with which resources arrive into
the patch, pi/pj = ri/rj . This is nothing other than the IFD for payoff
functions (1.12). It is interesting to notice that all patches will be occupied
independently of the total population abundance. Indeed, as the consumer
density in the i−th patch decreases, payoff ri/(piM) increases, which attracts
some animals, and there cannot be unoccupied patches. There is an important
difference between this (nonlinear) payoff function (1.12) and the linear payoff
function that we consider in the following section (1.13), because as the local
population abundance in a patch decreases, then (1.12) tends to infinity,
but (1.13) tends to ri. This means that in the first case there cannot be
unoccupied patches (irrespective of their basic patch quality ri) because the
payoffs in occupied patches are finite, but the payoff in unoccupied patches
would be infinite (provided all ri > 0). This argument does not apply in
the case of the logistic payoff (1.13). This concept successfully predicts the
distribution of house flies that arrive at a cow pat where they immediately
mate (Parker, 1978, 1984; Blanckenhorn et al, 2000), or of fish that are fed
at two feeders in a tank (Milinski, 1979, 1988; Berec et al, 2006).

In the next section we consider the situation where resources are not con-
sumed immediately upon entering the system.

1.7.2 Patch payoffs are linear

Here we consider two patches only and we assume that the payoff in habitat
i(= 1, 2) is a linearly decreasing function of population abundance

Vi = ri

(

1−
mi

Ki

)

= ri

(

1−
piM

Ki

)

(1.13)

where mi is the population density in habitat i, ri is the intrinsic per capita
population growth rate in habitat i, and Ki is its carrying capacity. The total
population size in the two habitat environment is denoted by M(= m1+m2)
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and the proportion of the population in habitat i is pi = mi/M . Payoff (1.13)
is often used in population dynamics where it describes the logistic population
growth.

Let us consider an individual which spends proportion p̃1 of its lifetime in
habitat 1 and p̃2 in habitat 2. Provided total population density is fixed at
M , then its fitness in the population with mean strategy p = (p1, p2) is

E(p̃,p) = p̃1V1(p1) + p̃2V2(p2) = p̃ UpT ,

where

U =

(

r1(1−
M
K1

) r1
r2 r2(1 −

M
K2

)

)

is the payoff matrix with two strategies, where strategy i represents staying
in patch i (i = 1, 2). This shows that the Habitat Selection game with a linear
payoff can be written for a fixed population size as a matrix game. If the per
capita intrinsic population growth rate in habitat 1 is higher than that in
habitat 2 (r1 > r2) the IFD is (Křivan and Sirot, 2002)

p1 =







1 if M < K1
r1−r2
r1

r2K1

r2K1 + r1K2
+

K1K2(r1 − r2)

(r2K1 + r1K2)M
otherwise.

(1.14)

When the total population abundance is low, the payoff in habitat 1 is higher
than the payoff in habitat 2 for all possible population distributions because
the competition in patch 1 is low due to low population densities. For higher
population abundances, neither of the two habitats is always better than
the other, and under the IFD payoffs in both habitats must be the same
(V1(p1) = V2(p2)). Once again, it is important to emphasize here that the
IFD concept is different from maximization of the mean animal fitness

W (p,p) = p1V1(p1) + p2V2(p2)

which would lead to

p1 =











1 if M < K1
r1 − r2
2r1

r2K1

r1K2 + r2K1
+

K1K2(r1 − r2)

2(r1K2 + r2K1)M
otherwise.

(1.15)

The two expressions (1.14) and (1.15) are the same if and only if r1 = r2.
Interestingly, by comparing (1.14) and (1.15), we see that maximizing mean
fitness leads to fewer animals than the IFD in the patch with higher basic
quality ri (i.e., in patch 1).
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1.7.3 Some extensions of the Habitat Selection game

The Habitat Selection game as described makes several assumptions that
were relaxed in the literature. One assumption is that patch payoffs are de-
creasing functions of population abundance. This assumption is important
because it guarantees that a unique IFD exists. However, patch payoffs can
also be increasing functions of population abundance. In particular, at low
population densities payoffs can increase as more individuals enter a patch
and competition is initially weak. For example, more individuals in a patch
can increase the probability of finding a mate. This is called the Allee effect.
The IFD for the Allee effect has been studied in the literature (Fretwell and
Lucas, 1969; Morris, 2002; Křivan, 2014; Cressman and Tran, 2015). It has
been shown that for hump shaped patch payoffs, up to three IFDs can ex-
ist for a given overall population abundance. At very low overall population
abundances, only the most profitable patch will be occupied. At intermedi-
ate population densities, there are two IFDs corresponding to pure strategies
where all individuals occupy patch 1 only, or patch 2 only. As population
abundance increases, competition becomes more severe and an interior IFD
appears exactly as in the case of negative density dependent payoff functions.
At high overall population abundances only the interior IFD exists due to
strong competition among individuals. It is interesting to note that as the
population numbers change, there can be sudden (discontinuous) changes in
the population distribution. Such erratic changes in the distribution of deer
mice were observed and analyzed by Morris (2002).

Another complication that leads to multiple IFDs is the cost of dispersal.
Let us consider a positive migration cost c between two patches. An individual
currently in patch 1 will migrate to patch 2 only if the payoff there is such
that V2(p2) − c ≥ V1(p1). Similarly, an individual currently in patch 2 will
migrate to patch 1 only if its payoff does not decrease by doing so, i.e.,
V1(p1) − c ≥ V2(p2). Thus, all distributions (p1, p2) that satisfy these two
inequalities form the set of IFDs (Mariani et al, 2016).

The Habitat selection game was also extended to situations where indi-
viduals perceive space as a continuum (e.g., Cosner, 2005; Cantrell et al,
2007, 2012). The movement by diffusion is then combined, or replaced, by a
movement along the gradient of animal fitness.

1.7.4 Habitat selection for two species

Instead of a single species we now consider two species with population densi-
ties M and N dispersing between two patches. We assume that individuals of
these species compete in each patch both intra- as well as inter-specifically.
Following our single-species Habitat Selection game, we assume that indi-
vidual payoffs are linear functions of species distribution (Křivan and Sirot,
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2002; Křivan et al, 2008)

Vi(p,q) = ri

(

1−
piM

Ki
−

αiqiN

Ki

)

,

Wi(p,q) = si

(

1−
qiN

Li
−

βipiM

Li

)

,

where p = (p1, p2) denotes the distribution of species 1 and q = (q1, q2) the
distribution of species 2. Here, positive parameters αi (respectively βi), are
interspecific competition coefficients, ri (respectively si) are the intrinsic per
capita population growth rates and Ki (respectively Li) are the environmen-
tal carrying capacities. The two-species Habitat Selection game cannot be
represented in a bimatrix form (to represent it in a matrix form we would
need four matrices), because the payoff in patch i for a given species depends
not only on the distribution (strategy) of its competitors, but also on the dis-
tribution of its own conspecifics. The equal payoff line for species one (two) are
those (p,q) ∈ ∆2×∆2 for which V1(p,q) = V2(p,q) (W1(p,q) = W2(p,q)).
Since payoffs are linear functions these are lines in the coordinates p1 and q1,
but as opposed to the case of bimatrix games in Section 1.6.1 and 1.6.2 they
are neither horizontal, nor vertical. If they do not intersect in the unit square,
the two species cannot coexist in both patches at a NE. The most interest-
ing case is when the two equal payoff lines intersect inside the unit square.
Křivan et al (2008) showed that the interior intersection is the 2-species ESS
provided

r1s1K2L2(1− α1β1) + r1s2K2L1(1 − α1β2)+
r2s1K1L2(1 − α2β1) + r2s2K1L1(1 − α2β2) > 0.

Geometrically, this condition states that the equal payoff line for species one
has a more negative slope than that for species two. This allows us to extend
the concept of the single-species Habitat Selection game to two species that
compete in two patches. In this case the 2-species IFD is defined as a 2-
species ESS. We remark that the best response dynamics do converge to
such two-species IFD (Křivan et al, 2008).

One of the predictions of the Habitat selection game for two species is
that as competition gets stronger, the two species will spatially segregate
(e.g., Morris, 1999; Křivan and Sirot, 2002). Such spatial segregation was
observed in experiments with two bacterial strains in a microhabitat system
with nutrient poor and nutrient rich patches (Lambert et al, 2011).
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1.8 Dispersal and evolution of dispersal

Organisms often move from one habitat to another, which is referred to as
dispersal. We focus here on dispersal and its relation to the IFD discussed in
the previous section.

Here we consider n habitat patches and a population of individuals that
disperse between them. In what follows we will assume that the patches are
either adjacent (in particular when there are just two patches), or that the
travel time between them is negligible when compared to the time individuals
spend in these patches. There are two basic questions:

1. When is dispersal an adaptive strategy, i.e., when does individual fitness
increase for dispersing animals compared to those who are sedentary?

2. Where should individuals disperse?

To describe changes in population densities we will consider demographic
population growth in each patch and dispersal between patches. Dispersal
is described by the propensity of individuals to disperse (δ ≥ 0) and by a
dispersal matrix D. The entries of this matrix (Dij) describe the transition
probabilities that an individual currently in patch j moves to patch i per
unit of time. We remark that Dii is the probability of staying in patch i. Per
capita population growth rates in patches are given by fi (for example, fi
can be the logistic growth rate Vi (1.13) in Section 1.7.2). The changes in
population numbers are then described by population–dispersal dynamics

dmi

dt
= mifi(mi) + δ

n
∑

j=1

(Dij(m)mj −Dji(m)mi) for i = 1, . . . , n (1.16)

where m = (m1, · · · ,mn) is the vector of population densities in n patches.
Thus, the first term in the above summation describes immigration to patch
i from other patches and the second term describes emigration from patch i
to other patches. In addition, we assume that D is irreducible, i.e., there are
no isolated patches.

The case that corresponds to the passive diffusion between patches assumes
that entries of the dispersal matrix are constant and the matrix is symmet-
ric. It was shown (Takeuchi, 1996) that when functions fi are decreasing with
fi(0) > 0 and fi(Ki) = 0 for some Ki > 0 then model (1.16) has an interior
equilibrium which is globally asymptotically stable. However this does not
answer the question of whether such an equilibrium is evolutionarily stable,
i.e., whether it is resistant to invasion of mutants with the same traits (pa-
rameters) as the resident population, but different propensity to disperse δ.
The answer to this question depends on the entries of the dispersal matrix.
An interior population distribution m∗ = (m∗

1, . . . ,m
∗

n) will be the IFD pro-
vided patch payoffs in all patches are the same, i.e., f1(m

∗

1) = · · · = fn(m
∗

n).
This implies that at the population equilibrium there is no net dispersal, i.e.,



28 Mark Broom and Vlastimil Křivan

δ
n
∑

j=1

(

Dijm
∗

j −Djim
∗

i

)

= 0.

There are two possibilities. Either

n
∑

j=1

(

Dijm
∗

j −Djim
∗

i

)

= 0, (1.17)

or δ = 0. The pattern of equalized immigration and emigration satisfying
(1.17) is called “balanced dispersal” (McPeek and Holt, 1992; Doncaster et al,
1997; Holt and Barfield, 2001). Under balanced dispersal, there is an inverse
relation between local population size and its dispersal rate. In other words,
individuals at good sites are less likely to disperse than those from poor sites.
When dispersal is unbalanced, Hastings (1983) showed that mutants with
lower propensity to disperse will outcompete the residents and no dispersal
(δ = 0) is the only evolutionarily stable strategy.

However, dispersal can be favored even when it is not balanced. Hamilton
and May (1977) showed that unconditional and costly dispersal among very
many patches can be promoted because it reduces competition between rela-
tives. Their model was generalized by Comins et al (1980) who assumed that
because of stochastic effects a proportion e of patches can become empty
at any time step. A proportion p of migrants survives migration and re-
distributes at random (assuming the Poisson distribution) among the patches.
These authors derived analytically the evolutionarily stable dispersal strategy
that is given by a complicated implicit formula (see formula (3) in Comins
et al, 1980). As population abundance increases the evolutionarily stable dis-
persal rate converges to a simpler formula

δ =
e

1− p(1− e)
.

Here the advantage of dispersal results from the possibility of colonizing an
extinct patch.

Evolution of mobility in predator-prey systems was also studied by Xu
et al (2014). These authors showed how interaction strength between mobile
vs. sessile prey and predators influences the evolution of dispersal.

1.9 Foraging games

Foraging games describe interactions between prey, their predators, or both.
These games assume that either predator or prey behave in order to maximize
their fitness. Typically, the prey strategy is to avoid predators while preda-
tors try to track their prey. Several models that focus on various aspects of
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predator-prey interactions were developed in the literature (e.g., Brown and
Vincent, 1987; Brown et al, 1999, 2001; Vincent and Brown, 2005).

An important component of predation is the functional response defined
as the per predator rate of prey consumption (Holling, 1959). It also serves
as a basis for models of optimal foraging (Stephens and Krebs, 1986) that
aim to predict diet selection of predators in environments with multiple prey
types. In this section we start with a model of optimal foraging and we show
how it can be derived using extensive form games (see Volume I, Chapter
Evolutionary games). As an example of a predator-prey game we then discuss
predator-prey distribution in a two-patch environment.

1 2

p1 p2

q1 1− q1 q2 1− q2

e2e1 0 0

τs + h1

p1q1

τs

p1(1 − q1)

τs + h2

p2q2

τs

p2(1 − q2)

Level 1

Level 2

Fig. 1.4 The decision tree for two prey types. The first level gives the prey encounter
distribution. The second level gives the predator activity distribution. The final row of the

diagram gives the probability of each predator activity event and so sums to 1. If prey 1
is the more profitable type, the edge in the decision tree corresponding to not attacking
this type of prey is never followed at optimal foraging (indicated by the dashed edge in the
tree).

1.9.1 Optimal foraging as an agent normal form of an

extensive game

Often it is assumed that a predator’s fitness is proportional to its prey intake
rate and the functional response serves as a proxy of fitness. In the case of
two or more prey types, the multi-prey functional response is the basis of the
diet choice model (Charnov, 1976; Stephens and Krebs, 1986) that predicts
the predator’s optimal diet as a function of prey densities in the environment.
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Here we show how functional responses can be derived using decision trees
of games given in extensive form (Cressman, 2003; Cressman et al, 2014)
(see also Broom et al, 2004, for an example of where this methodology was
used in a model of food stealing). Let us consider a decision tree in Figure
1.4 describing a single predator feeding on two prey types. This decision tree
assumes that a searching predator meets prey type 1 with probability p1 and
prey type 2 with probability p2 during the search time τs. For simplicity we
will assume that p1 + p2 = 1. Upon an encounter with a prey individual, the
predator decides whether to attack the prey (prey type 1 with probability
q1 and prey type 2 with probability q2) or not. When a prey individual is
captured, the energy that the predator receives is denoted by e1 or e2. The
predator’s cost is measured by the time lost. This time consists of the search
time τs and the time needed to handle the prey (h1 for prey type 1 and h2

for prey type 2).
Calculation of functional responses is based on renewal theory which proves

that the long term intake rate of a given prey type can be calculated as the
mean energy intake during one renewal cycle divided by the mean duration of
the renewal cycle (Stephens and Krebs, 1986; Houston and McNamara, 1999).
A single renewal cycle is given by a predator passing through the decision
tree in Figure 1.4. Since type i prey are only killed when the path denoted
by pi and then qi is followed, the functional response to prey i(= 1, 2) is

fi(q1, q2) =
piqi

p1 (q1(τs + h1) + (1− q1)τs) + p2 (q2(τs + h2) + (1− q2)τs)

=
piqi

τs + p1q1h1 + p2q2h2
.

When xi denotes density of prey type i in the environment and the predator
meets prey at random, pi = xi/x, where x = x1 + x2. Setting λ = 1/(τsx)
leads to

fi(q1, q2) =
λxiqi

1 + λx1q1h1 + λx2q2h2
.

These are the functional responses assumed in standard two prey type models.
The predator’s rate of energy gain is given by

E(q1, q2) = e1f1(q1, q2) + e2f2(q1, q2) =
e1p1q1 + e2p2q2

τs + p1q1h1 + p2q2h2
. (1.18)

This is the proxy of the predator’s fitness which is maximized over the preda-
tor’s diet (q1, q2), (0 ≤ qi ≤ 1, i = 1, 2).

Here, using the agent normal form of extensive form game theory (Cress-
man, 2003), we show an alternative, game theoretical, approach to find the
optimal foraging strategy. This method assigns a separate player (called an
agent) to each decision node (here 1 or 2). The possible decisions at this node
become the agent’s strategies and its payoff is given by the total energy in-
take rate of the predator it represents. Thus, all of the virtual agents have the
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same common payoff. The optimal foraging strategy of the single predator is
then a solution to this game. In our example, player 1 corresponds to decision
node 1 with strategy set ∆1 = {q1 | 0 ≤ q1 ≤ 1} and player 2 to node 2 with
strategy set ∆2 = {q2 | 0 ≤ q2 ≤ 1}. Their common payoff E(q1, q2) is given
by (1.18) and we seek the NE of the two-player game. Assuming that prey
type 1 is the more profitable for the predator, as its energy content per unit
handling time is higher than the profitability of the second prey type (i.e.,
e1/h1 > e2/h2) we get E(1, q2) > E(q1, q2) for all 0 ≤ q1 < 1 and 0 ≤ q2 ≤ 1.
Thus, at any NE, player 1 must play q1 = 1. The NE strategy of player 2 is
then any best response to q1 = 1 (i.e., any q2 that satisfies E(1, q′2) ≤ E(1, q2)
for all 0 ≤ q′2 ≤ 1) which yields

q2 =







0 if p1 > p∗1
1 if p1 < p∗1

[0, 1] if p1 = p∗1,
(1.19)

where
p∗1 =

e2τs
e1h2 − e2h1

. (1.20)

This NE coincides with the optimal strategy derived by maximization of
(1.18). It makes quite striking predictions. While the more profitable prey
type is always included in the predator’s diet, inclusion of the less profitable
prey type is independent of its own density and depends on the more prof-
itable prey type density only. This prediction was experimentally tested with
great tits (e.g., Krebs et al, 1977; Berec et al, 2003). That the Nash equilib-
rium coincides with the optimal foraging strategy (i.e., with the maximum of
E) in this model is not a coincidence. Cressman et al (2014) proved that this
is so for all foraging games with a 2-level decision tree. For decision tress with
more levels, they showed that the optimal foraging strategy is always a NE
of the corresponding agent normal form game and that other, non-optimal,
NE may also appear.

1.9.2 A predator-prey foraging game

As an example we consider here a predator-prey foraging game between prey
and predators in a two-patch environment. If xi denotes the abundance of
prey in patch i(= 1, 2), the total abundance of prey is x = x1 + x2 and,
similarly, the total abundance of predators is y = y1 + y2. Let u = (u1, u2)
be the distribution of prey and v = (v1, v2) be the distribution of predators.
We neglect the travel time between patches so that u1 + u2 = v1 + v2 = 1
(i.e., each animal is either in patch 1 or patch 2). We assume that the prey
population grows exponentially at each patch with the per capita population
growth rate ri and it is consumed by predators. The killing rate is given by
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the functional response. For simplicity we neglect the handling time so that
the functional response in patch i is fi = λixi, i.e., the per prey per predator
killing rate is λi. The prey payoff in patch i is given by the per capita prey
population growth rate in that patch, i.e., ri−λiviy as there are viy predators
in patch i. The fitness of a prey individual is

V (u,v) = (r1 − λ1v1y)u1 + (r2 − λ2v2y)u2. (1.21)

The predator payoff in patch i is given by the per capita predator population
growth rate eiuix−mi, where ei is a coefficient by which the energy gained
by feeding on prey is transformed into new predators and mi is the per capita
predator mortality rate in patch i. The fitness of a predator with strategy
v = (v1, v2) when the prey use strategy u = (u1, u2) is

W (v,u) = (e1λ1u1x−m1)v1 + (e2λ2u2x−m2)v2. (1.22)

This predator-prey game can be represented by the following payoff bima-
trix

(

Prey\Predator Patch 1 Patch 2

Patch 1 (r1 − λ1y, e1λ1x−m1) (r1,−m2)
Patch 2 (r2,−m1) (r2 − λ2y, e2λ2x−m2)

)

.

That is, the rows in this bimatrix correspond to the prey strategy (the first
row means the prey are in patch 1, the second row means prey are in patch
2) and similarly columns represent the predator strategy. The first of the two
expressions in the entries of the bimatrix is the payoff for the prey, the second
is payoff for the predators.

For example, we will assume that for prey patch 1 has a higher basic patch
quality when compared to patch 2 (i.e., r1 ≥ r2) while for predators patch
1 has a higher mortality rate (m1 > m2). The corresponding NE is (Křivan,
1997)

(a) (u∗

1, v
∗

1) if x >
m1 −m2

e1λ1
, y >

r1 − r2
λ1

,

(b) (1, 1) if x >
m1 −m2

e1λ1
, y <

r1 − r2
λ1

,

(c) (1, 0) if x <
m1 −m2

e1λ1
,

where

(u∗

1, v
∗

1) =

(

m1 −m2 + e2λ2x

(e1λ1 + e2λ2)x
,
r1 − r2 + λ2y

(λ1 + λ2)y

)

.

If prey abundance is low (case (c)), all prey will be in patch 1 while predators
will stay in patch 2. Because the mortality rate for predators in patch 1 is
higher than in patch 2 and prey abundance is low, patch 2 is a refuge for
predators. If predator abundance is low and prey abundance is high (case
(b)), both predators and prey will aggregate in patch 1. When the NE is
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strict (cases (b) and (c) above) it is also the ESS because there is no al-
ternative strategy with the same payoff. However, when the NE is mixed
(case (a)), there exist alternative best replies to it. This mixed NE is the 2-
species weak ESS. It is globally asymptotically stable for the continuous-time
best response dynamics (Křivan et al, 2008) that model dispersal behavior
whereby individuals move to the patch with the higher payoff. We remark
that for some population densities (x = m1−m2

e1λ1

and y = r1−r2
λ1

) the NE is not
uniquely defined, which is a general property of matrix games (the game is
non-generic in this case).

1.10 Signalling games

Signalling between animals occurs in a number of contexts. This can be sig-
nals, often but not necessarily between conspecifics, warning of approaching
predators. This situation can be game theoretic, as the signaller runs a po-
tentially higher risk of being targeted by the predator. There are also cases
of false signals being given when no predator is approaching to force food to
be abandoned which can then be consumed by the signaller (Flower, 2011).
Alternatively within a group of animals, each individual may need to decide
how to divide their time between vigilance and feeding, where each individual
benefits from the vigilance of others as well as itself, and this has been mod-
elled game-theoretically (e.g., McNamara and Houston, 1992; Brown, 1999;
Sirot, 2012).

Another situation occurs between relatives over items of food, for example
a parent bird feeding its offspring. Young birds beg aggressively for food, and
the parent must decide which to feed, if any (it can instead consume the
item itself). The most well-known model of this situation is the Sir Philip
Sidney game (Maynard Smith, 1991), and is a model of cost-free signalling
(Bergstrom and Lachmann, 1998).

The classic example of a signalling game is between potential mates. Males
of differing quality advertise this quality to females, often in a way that is
costly, and the females choose who to mate with based upon the strength
of the signal. Examples are the tail of the peacock or the elaborate bowers
created by bowerbirds. There is obviously a large incentive to cheat, and so
how are such signals kept honest? A signal that is not at least partly corre-
lated to quality would be meaningless, and so would eventually be ignored.
The solution as developed by Zahavi (1975, 1977), the handicap principle, is
that these costly signals are easier to bear by higher quality mates, and that
evolution leads to a completely honest signal, where each quality level has a
unique signal.
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1.10.1 The game

The following signalling model is due to (Grafen, 1990a,b). Consider a popu-
lation with a continuum of male quality types q and a single type of female.
Assume that a male of quality q gives a signal a = A(q) of this quality, where
higher values of a are more costly. It is assumed that there is both a minimum
quality level q0 > 0 (there may or may not be a maximum quality level) and
a minimum signal level a0 ≥ 0 (which can be thought of as giving no signal).
When a female receives a signal she allocates a quality level to the signal
P (a). We have a nonlinear asymmetric game with sequential decisions; in
particular the nonlinearity makes this game considerably more complicated
than asymmetric games such as the Battle of the Sexes of Section 1.6.1. The
female pays a cost for misassessing a male of quality q as being of quality
p of D(q, p), which is positive for p 6= q, with D(q, q) = 0. Assuming that
the probability density of males of quality q is g(q), the payoff to the female,
which is simply minus the expected cost, is

−

∫

∞

q0

D(q, p)g(q)dq.

An honest signalling system with strategies A∗ and P ∗ occurs if and only
if P ∗(A∗(q)) = q, for all q. We note that here the female never misassesses
a male, and so pays zero cost. Clearly any alternative female assessment
strategy would do worse. But how can we obtain stability against alternative
(cheating) male strategies?

The fitness of a male of quality q,W (a, p, q), depends upon his true quality,
the quality assigned to him by the female and the cost of his signal. W (a, p, q)
will be increasing in p and decreasing in a. For stability of the honest signal,
we need that the incremental advantage of a higher level of signalling is
greater for a high quality male than for a low quality one, so that

−
∂
∂aW (a, p, q)
∂
∂pW (a, p, q)

(1.23)

is strictly decreasing in q (note that the ratio is negative, so minus this ratio is
positive), i.e., the higher quality the male, the lower the ratio of the marginal
cost to the marginal benefit for an increase in the level of advertising. This
ensures that completely honest signalling cannot be invaded by cheating,
since costs to cheats to copy the signals of better quality males would be
explicitly higher than for the better quality males, who could always thus
achieve a cost they were willing to pay that the lower quality cheats would
not.

The following example male fitness function is given in Grafen (1990a) (the
precise fitness function to the female does not affect the solution provided that
correct assessment yields 0, and any misassessment yields a negative payoff)
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W (a, p, q) = prqa, (1.24)

with qualities in the range q0 ≤ q < 1 and signals of strength a ≥ a0, for
some r > 0.

We can see that the function from (1.24) satisfies the above conditions on
W (a, p, q). In particular consider the condition from expression (1.23)

−
∂

∂a
W (a, p, q) = −prqa ln q,

∂

∂p
W (a, p, q) = rpr−1qa

which are the increase in cost per unit increase in the signal level and the
increase in the payoff per unit increase in the female’s perception (which in
turn is directly caused by increases in signal level), respectively. The ratio
from (1.23), which is proportional to the increase in cost per unit of benefit
that this would yield, becomes −p ln q/r, takes a larger value for lower values
of q. Thus there is an honest signalling solution. This is shown in Grafen
(1990a) to be given by

A(q) = a0 − r ln

(

ln(q)

ln(q0)

)

, P (a) = q
exp(−(a−a0)/r)
0 .

1.11 Conclusion

In this chapter we have covered some of the important evolutionary game
models applied to biological situations. We should note that we have left out
a number of important theoretical topics as well as areas of application. We
briefly touch on a number of those below.

All of the games that we have considered involved either pairwise games, or
playing the field games, where individuals effectively play against the whole
population. In reality contests will sometimes involve groups of individuals.
Such models were developed in Broom et al (1997), for a recent review see
Gokhale and Traulsen (2014). In addition the populations were all both effec-
tively infinite and well-mixed in the sense that for any direct contest involving
individuals, each pair was equally likely to meet. In reality populations are
finite and have (e.g., spatial) structure. The modelling of evolution in finite
populations often uses the Moran process (Moran, 1958), but more recently
games in finite populations have received significant attention (Nowak, 2006).
These models have been extended to include population structure by consid-
ering evolution on graphs (Lieberman et al, 2005), and there has been an
explosion of such model applications, especially to consider the evolution of
cooperation. Another feature of realistic populations that we have ignored is
the state of the individual. A hungry individual may behave differently to
one that has recently eaten, and nesting behaviour may be different at the



36 Mark Broom and Vlastimil Křivan

start of the breeding season to later on. A theory of state-based models has
been developed in Houston and McNamara (1999).

In terms of applications we have focused on classical biological problems,
but game theory has also been applied to medical scenarios more recently.
This includes the modelling of epidemics, especially with the intention of de-
veloping defence strategies. One important class of models (see for example
Nowak and May, 1994) considers the evolution of the virulence of a dis-
ease as the epidemic spreads. An exciting new line of research has recently
been developed which considers the development of cancer as an evolutionary
game, where the population of cancer cells evolves in the environment of the
individual person or animal (Gatenby et al, 2010). A survey of alternative
approaches is considered in Durrett (2014).

1.12 Cross References (to other articles or chapters)

The theoretical foundations for models surveyed in this Chapter are in Vol-
ume I, Chapter Evolutionary games.
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Křivan V (1997) Dynamic ideal free distribution: Effects of optimal patch
choice on predator-prey dynamics. American Naturalist 149:164–178
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