Dataset Open Access

Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context

Lunghini, Filippo; Marcou, Gilles; Azam, Philippe; Horvath, Dragos; Patoux, Remi; Van Miert, Erik; Varnek, Alexandre


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c2b8e9fb-7980-4bbf-b5bc-676599348520/LD50_PublicCollectedData.xlsx"
      }, 
      "checksum": "md5:ab4a4ff8d5f381723d9adc761296a8bd", 
      "bucket": "c2b8e9fb-7980-4bbf-b5bc-676599348520", 
      "key": "LD50_PublicCollectedData.xlsx", 
      "type": "xlsx", 
      "size": 712288
    }
  ], 
  "owners": [
    68160
  ], 
  "doi": "10.5281/zenodo.3300664", 
  "stats": {
    "version_unique_downloads": 48.0, 
    "unique_views": 118.0, 
    "views": 134.0, 
    "version_views": 134.0, 
    "unique_downloads": 48.0, 
    "version_unique_views": 118.0, 
    "volume": 34189824.0, 
    "version_downloads": 48.0, 
    "downloads": 48.0, 
    "version_volume": 34189824.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3300664", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3300663", 
    "bucket": "https://zenodo.org/api/files/c2b8e9fb-7980-4bbf-b5bc-676599348520", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3300663.svg", 
    "html": "https://zenodo.org/record/3300664", 
    "latest_html": "https://zenodo.org/record/3300664", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3300664.svg", 
    "latest": "https://zenodo.org/api/records/3300664"
  }, 
  "conceptdoi": "10.5281/zenodo.3300663", 
  "created": "2019-07-12T15:44:09.618908+00:00", 
  "updated": "2020-01-24T19:25:18.848247+00:00", 
  "conceptrecid": "3300663", 
  "revision": 5, 
  "id": 3300664, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3300664", 
    "description": "<p>We report predictive models of acute oral systemic toxicity representing a follow-up of our previous work in the framework of the NICEATM project. It includes the update of original models through the addition of new data and an external validation of the models using a dataset relevant for the chemical industry context. A regression model for LD50 and classification model for toxicity classes according to the Global Harmonized System categories were prepared. ISIDA descriptors were used to encode molecular structures. Machine learning algorithms included Support Vector Machine (SVM), Random Forest (RF) and Na&iuml;ve Bayesian. Selected individual models were combined in consensus.</p>\n\n<p>The different datasets were compared using the Generative Topographic Mapping approach. It appeared that the NICEATM datasets were lacking some relevant chemotypes for chemical industry. The new models trained on enlarged data sets have applicability domain (AD) sufficiently large to accommodate industrial compounds. The fraction of compounds inside the models&rsquo; AD increased from 58 % (NICEATM model) to 94 % (new model). Yet, the increase of training sets only slightly improved of the models&rsquo; prediction performance: RMSE values decreased from 0.56 to 0.47 and balanced accuracies increased from 0.69 to 0.71 for NICEATM and new models, respectively.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3300663"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3300664"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "unistra"
      }
    ], 
    "version": "1.0", 
    "references": [
      "N.C. Kleinstreuer et al.,  Comput. Tox. 201 (2018), pp. 489\u2013492", 
      "T. Martin et al., Toxicity Estimation Software Tool v 4.1, US Environmental Protection Agency, 2012; software available at: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.", 
      "S. Bhatia, Regul. Toxicol. Pharmacol. 71 (2015), pp. 52\u201362", 
      "OECD, Data from: eChemPortal: Global portal to information on chemical substances, Organisation for Economic Co-operation Development; dataset available at: https://www.echemportal.org/echemportal/index.action."
    ], 
    "keywords": [
      "QSAR/QSPR; Generative topographic mapping (GTM); Oral rat acute toxicity; OECD principles; REACH"
    ], 
    "publication_date": "2019-07-10", 
    "creators": [
      {
        "orcid": "0000-0003-1676-6708", 
        "affiliation": "Laboratory of Chemoinformatics, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France", 
        "name": "Lunghini, Filippo"
      }, 
      {
        "affiliation": "Laboratory of Chemoinformatics, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France", 
        "name": "Marcou, Gilles"
      }, 
      {
        "affiliation": "Solvay S.A., Toxicological and Environmental Risk Assessment unit, 20 Rue Marcel Etienne Sembat, 69190, St. Fons, France", 
        "name": "Azam, Philippe"
      }, 
      {
        "affiliation": "Laboratory of Chemoinformatics, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France", 
        "name": "Horvath, Dragos"
      }, 
      {
        "affiliation": "Solvay S.A., Toxicological and Environmental Risk Assessment unit, 20 Rue Marcel Etienne Sembat, 69190, St. Fons, France", 
        "name": "Patoux, Remi"
      }, 
      {
        "affiliation": "Solvay S.A., Toxicological and Environmental Risk Assessment unit, 20 Rue Marcel Etienne Sembat, 69190, St. Fons, France", 
        "name": "Van Miert, Erik"
      }, 
      {
        "affiliation": "Laboratory of Chemoinformatics, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France", 
        "name": "Varnek, Alexandre"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3300663", 
        "relation": "isVersionOf"
      }
    ]
  }
}
134
48
views
downloads
All versions This version
Views 134134
Downloads 4848
Data volume 34.2 MB34.2 MB
Unique views 118118
Unique downloads 4848

Share

Cite as