Software Open Access

FVTool: a finite volume toolbox for Matlab

Ali Akbar Eftekhari; Kai Schüller


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.32745</identifier>
  <creators>
    <creator>
      <creatorName>Ali Akbar Eftekhari</creatorName>
      <affiliation>TU Delft</affiliation>
    </creator>
    <creator>
      <creatorName>Kai Schüller</creatorName>
      <affiliation>Aachen Institute for Advanced Study in Computational Engineering Science (AICES)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>FVTool: a finite volume toolbox for Matlab</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2015</publicationYear>
  <dates>
    <date dateType="Issued">2015-10-26</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/32745</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/simulkade/FVTool/tree/v0.11</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.593691</relatedIdentifier>
  </relatedIdentifiers>
  <version>v0.11</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;FVTool is an implementation of cell-centered finite volume technique in Matlab, that can be used to discretize a linear transient convection-diffusion equation on a variety of coordinate systems, including 1, 2, or 3D Cartesian, Cylindrical, and Spherical. A general boundary condition is designed that can help the user to define Dirichlet, Neumann, and Robin boundary conditions with a minimal effort. The convection term can be discretized using different techniques, i.e., central difference, upwind, and total variation diminishing (TVD). The code is particularly useful for a quick implementation of the mathematical models that describe the transport phenomena in chemical and petroleum engineering.&lt;/p&gt;</description>
  </descriptions>
</resource>
1,703
140
views
downloads
All versions This version
Views 1,7031,110
Downloads 14062
Data volume 62.0 MB27.5 MB
Unique views 1,6271,089
Unique downloads 12558

Share

Cite as