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Materials and Methods 

 

Tree cover  

To assess the global potential tree cover, we first measured the tree cover of 78,774 0.5-hectare 

plots distributed throughout the global protected regions of the world (i.e. in regions with limited 

human activity) following a systematic sampling grid design (20-by-20km), using the augmented 

visual interpretation approach(8) followed by Bastin and colleagues (2017)(13). For analysis, we 

used all dryland plots in protected areas assessed in ref (9) (N=23,042), and collected new plots 

for all other biomes (N=34,564) following the same procedure. In addition, we added plots from 

the global dryland assessment(8) falling in desert regions to cover the full range of 

environmental conditions. 

 

Augmented visual interpretation of tree cover with Collect Earth 

The assessment of tree cover in each plot was performed through the Augmented Visual 

Interpretation approach(8), using Collect Earth. Collect Earth is an open access software built on 

Google Earth and Google Earth Engine and developed by the Open Foris initiative of the Food 

and Agriculture Organization of the United Nations (FAO). Collect Earth allows the operator to 

photo-interpret the tree cover of a plot (here a square of 70-by-70m) combining land cover 

information gathered from satellite images with very high spatial (pixel size ≤ 1metre) and 

temporal resolution (daily data acquisition)(8). The operator photo-interprets very high spatial 

resolution satellite images(8), made freely accessible for visualization on Google Earth, and in 

parallel controls his measurements with spectral information, automatically compiled for the last 

20 years from medium-to-high resolution satellite images, in particular from MODIS and 

Landsat7/8. Each plot presents a systematic grid of 7-by-7 points (49 points) allowing easy and 

direct measurements of tree canopy cover, with each point representing 2% of the plot. The 

fundamental variable measured in this study was the percentage of tree cover, ranging from 0 to 

100%.    

 

Regions with limited human activity 

To identify the regions of the world with limited human activity, we used the World Database on 

Protected Areas(9) (WDPA;  Fig. S2), developed by the United Nations Environmental Program 

(UNEP) and the International Union for Conservation of Nature (IUCN). The WDPA is the most 

comprehensive global database of marine and terrestrial protected areas, and includes a whole 

suite of descriptors (e.g. status of protection, year of establishment, etc) that were not 

incorporated into the present study. Here, we accounted for all protected areas available with the 

intention to maximize the number of training points used for the model. These regions are not 

entirely exempt from human activity(11), but these ecosystems represent areas where humans 

have had minimal impacts on the overall ecosystem type or forest cover. Assuming that any 

human effects will be likely to reduce tree cover, our modeled estimates are likely to be 

conservative estimates of potential tree cover. 

 

Environmental drivers 

To predict the global potential tree cover, we first selected the most relevant environmental 

covariates from a set of 58 environmental variables, comprising soil, topographic and climate 

layers (Data S2). All covariate layers were resampled and reapplied to a unified Eckert 4 equal 

area projection, at 30 arc-seconds resolution (≈1km at the equator). Layers with a higher original 
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pixel resolution were downsampled using a mean aggregation method; layers with a lower 

original resolution were resampled using simple upsampling (i.e., without interpolation) to align 

with the higher resolution grid. In total, this corresponds to 34 quantitative soil descriptors 

extracted from gridsoils(22), 5 topographic properties extracted from GMTED2010 and 19 

bioclimatic variables extracted from Worldclim 2.0(23). We then used the ClustOfVar R package 

to cluster the covariates in groups of collinear variables representative of environmental 

variations among the 78,774 plots. This resulted in the selection of 5 climate, 3 soil and 2 

topographic variables: annual mean temperature; annual precipitation; precipitation seasonality; 

mean temperature of the wettest quarter; precipitation of the driest quarter; organic carbon stock 

from 0-to-15 cm, depth to bedrock; sand content from 0-to-15 cm; elevation; and hillshade.  

 

Predicting the potential tree cover 

We implemented the 10 selected variables in a random forest machine learning regression 

model(12) to predict the tree cover among the 78,774 plots (number of trees: 20) (see Notes). 

The model is built by finding of the set of combinations of covariates that predict best the 

training samples (12). This machine learning approach allows us to generate robust predictions 

without requiring explicit instruction or hypothesis when building the model. The quality of the 

model was tested and validated using a k-fold cross-validation method; where k (k=5) models 

were trained from k subsets of the original data (total number of plots minus the total number of 

plots divided by k) and tested on k subsets of remaining independent data (total number of plots 

divided by k). Combining the k iterations, we compared the original full dataset with the 

complete set of remaining independent data. The modelling approach was then validated by 

regressing predicted (x-axis) vs observed values (y-axis), following Pineiro and colleagues 

(2008)(24). The model had high predictive power (R2=0.86, intercept=-2.05% tree cover; 

slope=1.06; Fig. S3) and the k-fold cross validation revealed that our model could explain over 

71% of the variation in tree cover without bias (intercept=0.34% tree cover; slope=0.99; Fig. 

S4). The potential tree cover was then spatially extrapolated outside protected areas for each 

pixel using model coefficients combining the 10 selected variables information.  

 

Potential tree cover, forest extent and corresponding areas for restoration 

Forest cover 

The fundamental variable predicted in this study was the percentage of tree cover per pixel. To 

estimate the potential area of forest, we converted the global potential tree cover in forest/non-

forest classes using the latest definition of forest from the Forest Resources Assessment report of 

the Food and Agriculture Organization of the United Nations(14). Each pixel presenting at least 

10% of tree cover was assigned as a forest. Each pixel presenting less than 10% of tree cover 

was assigned as a non-forest (Fig. S7). We then used the function area from the raster R package 

to calculate the area of each pixel and we summed the total area covered by pixels assigned as a 

forest. We then calculated the potential area of forest around the globe, by country and by 

ecoregion, as defined by the World Wide Fund for Nature (WWF) in the shapefiles provided by 

The Nature Conservancy (Fig. S7).  

 

Forest area available for restoration 

To provide an estimate of the total area available for forest restoration we subtracted the current 

estimation of forest extent (calculated from the tree cover map published by Hansen and 

colleagues in 2013(15)) to the global potential forest extent (compiled from our global potential 
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tree cover map- Fig. 2A). To provide realistic numbers, we also removed all areas presenting 

urban settlements or agricultural activities, as identified in the global land cover map of the 

European Space Agency(16), Globcover (i.e. removing the following classes: 11,14,20,30,190). 

It should be noted that these classes contain from 20 to 100% of crops per pixel, meaning the 

smallest area covered by crops is equal to 1.8 hectare (Fig. S7B). We kept grazing areas, as 

several studies suggest alternatives to improve the efficiency of livestock production (7,25).  

To provide an additional assessment of the potential forest restoration, we re-did the same round 

of calculation, replacing, for the assessment of agricultural activites, the Globcover layer by the 

percentage of cropland per pixel published by Fritz and colleagues in 2015 (18) (Fig. S7C). The 

percentage of cropland ranges from 0 to 100% per pixel of 1 km2, meaning the smallest area 

covered by crops is equal to 1 hectare.   

 

Canopy cover 

To provide a better assessment of the global restoration potential, we evaluated the potential 

“canopy cover”. We refer to the “canopy cover” as the sum of tree crown area vertically 

projected to the ground (i.e. 1% of tree cover over 1ha corresponding to a canopy cover of 

0.01ha, and 100% to 1ha; Fig. S8). This simple metric is independent of any tree cover threshold 

or forest definition, and includes all levels of tree cover of a given region while more 

appropriately balancing the importance of tree density.  

 

Canopy cover available for restoration 

The potential area of continuous tree canopy available for restoration has been calculated with a 

similar approach as used for the potential restoration area of forest. We subtracted the current 

tree cover from Hansen and colleagues(15) to our estimate of the potential tree cover (Fig. 2B), 

kept pixels with remaining potential increase in tree cover (whether they present an initial tree 

cover or not). We then assessed the potential restoration by removing pixels presenting urban 

settlements or agricultural activities identified in the global land cover map (16) (i.e. removing 

the following classes: 11,14,20,30,190). 

To provide an additional assessment of the potential forest restoration, we re-did the same round 

of calculation, replacing, for the assessment of agricultural activites, the Globcover layer by the 

percentage of cropland per pixel published by Fritz and colleagues in 2015 (17) (Fig. 2C).  

 

Risks of future changes 

For the future projections, we re-ran our original model, keeping the 3 soil and 2 topographic 

variables unchanged and updating the 5 bioclimatic variables from three general circulation 

models (GCMs) commonly used in ecology(26, 27). Two Community Earth System Models 

(CESMs) were chosen as they investigate a diverse set of earth-system interactions: the CESM1 

BGC (a coupled carbon–climate model accounting for carbon feedback from the land) and the 

CESM1 CAM5 (a community atmosphere model)(26). Additionally, the Earth System 

component of the Met Office Hadley Centre HadGEM2 model family was used as the third and 

final model(27). To generate the data, we chose Representative Common Pathways 4.5 and 8.5 

(RCP 4.5, RCP 8.5) scenarios from the Coupled Model Intercomparison Project Phase 5 

(CMIP5) as the input. The RCP 4.5. is a stabilization scenario, meaning that it accounts for a 

stabilization of radiative forcing before 2100, anticipating the development of new technologies 

and strategies for reducing greenhouse gas emissions. Generating climate data from the RCP 4.5 

anticipates potential change in which the increase of global temperature is limited to 1.5oC by 
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2050(1). The RCP 8.5 corresponds to the ‘business as usual' scenario, combining assumptions of 

high demography increase and slow technological change or energy use efficiency.  For each 

output, a delta downscaling method developed by the CGIAR Research Program on Climate 

Change, Agriculture and Food Security (CCAFS) was applied to reach a 30 arc-seconds 

resolution(28), using current conditions Worldclim 1.4 as a reference.  

From this approach, we produced 6 potential layers, voluntary restricted to the near future, i.e. 

2050, one for each RCP (RCP 4.5 and 8.5) and one for each GCM (CESM1 BGC, CESM1 

CAM5 and the HadGEM2ES). Future potential tree cover and expected changes in potential tree 

cover are illustrated for the 6 layers in Fig. S10 and S11.  

 

The risk assessment for changes between current and future tree cover potential was deduced by 

subtracting the “current potential” from the “future potential” so that potential increases are 

positive and potential decreases negative. In the main text, we report the change according to the 

average difference between present and future tree cover potential maps. We show that under 

RCP 4.5, we risk to lose an equivalent of 177, 175 and 172 Mha of potential canopy cover 

respectively for CESM1 BGC, CESM1 CAM5 and the HadGEM2ES; and under RCP 8.5 an 

equivalent of 228, 223 and 220 Mha (Figs. S9,S11). The small variation of these estimates within 

each scenario shows agreement between the chosen GCMs. The difference between the two 

scenarios, i.e. between the implementation of mitigation policies and business as usual, 

represents on average an area of 49 Mha of canopy cover. 

 

Estimation of the potential to restore trees and carbon stocks 

We extrapolated the quantity of carbon stocks that could be restored from a combination of our 

calculations of the potential continuous tree cover available for restoration with numbers from 

the literature (Table S2). In practice, we used available (biome- or ecoregion-level) reference 

data and multiplied it with the corresponding continuous tree cover available for restoration. For 

the carbon stocks we combined the average values of all the information gathered by Pan and 

colleagues(18) for Boreal, Temperate and Tropical biomes, and by Grace and colleagues(19) for 

Drylands. Each value of tree density or carbon density reported in these studies were associated 

to a pixel-value of potential tree cover of 100%. For example, in the tropics, the carbon density 

of 282.5 tC.ha-1 reported by Pan and colleagues (2011), is attributed to a pixel when its value of 

potential tree cover equals 100%. If the potential tree cover of the pixel is equal to 10%, its 

corresponding potential carbon density equals 23.2 tC.ha-1. The same calculation being done for 

the tree density. It should be noted that all carbon pools related to forest (aboveground, 

belowground, dead wood, litter and soil) were accounted for in the numbers of carbon densities.  

 

Error and uncertainties 

Interpolation limits 

We studied the limits of our predictive model by comparing the range of the 10 environmental 

values covered by our sampling design (i.e. the 78,774 plots) with their full range across the 

globe. Using these minima and maxima, we assessed the percentage of interpolation of each 

pixel. This allows us to differentiate interpolation from extrapolation in our current global 

potential tree cover map.  In total, we observe that our map is extrapolated on average at 8% 

(Fig. S12). 

 

Uncertainty in the global potential tree cover estimation 
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We calculated uncertainties of the pixel-based prediction of tree cover and of the global estimate 

of continuous tree cover from the k tree cover maps produced in the k-fold cross-validation 

scheme (Figs. S5,6).  

By stacking the k predictions of the global potential tree canopy cover and calculating the 

standard deviation of the k predicted tree canopy cover values for each pixel, we can visualize 

how the confidence in our model varies across space (Fig. S6). Across all pixels, the mean 

standard deviation around the modeled estimate is about 9% in tree cover (i.e. 28% of the mean 

tree cover; Fig. S6). Uncertainties are highest in regions with intermediate levels of tree cover 

potential (tree cover uncertainty of ~15%; Fig. S5). In contrast, we had high model confidence in 

non-forested deserts or densely forested regions (tree cover uncertainty <1%; Fig. S6). While 

such pattern was expected, as “0%” and “100%” of tree cover are two big attractors in our 

dataset (Fig. S2), we observe that these patterns are systematic across the tropical dense forests. 

Model simulations for tropical forests in South America and Asia are highly consistent, 

predicting 100% of tree cover across most of the regions. However, the uncertainty in Africa 

highlights the possibility for African tropical ecosystems to either exist in a state of dense forest 

or open land (Figs. S6B,C). This observation lends some support to previous work highlighting 

the presence of two alternative stable states for forest ecosystems in Africa(29). 

 

GCMs uncertainties 

Uncertainties related to the choice of the GCM were assessed by calculating the standard 

deviation of the prediction from the set of three maps produced for each year and each RCP (Fig. 

S10). Importantly, the choice of the GCM influences less than 5% of the estimated future 

potential continuous tree cover, showing that all GCMs consistently predict tree cover losses by 

2050. 

All analysis were performed using Rcran (v.3) and Google Earth Engine Code Editor.  
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Figures 

 

 
 

Fig. S1. Observed tree cover across the world’s protected areas. Spatial distribution of the 

0.5 hectare plots located in protected areas (9), for which we photo-interpreted tree cover using 

very high spatial resolution images. Small captions represent the different forest types in 

protected areas as seen from very high spatial resolution images, including boreal, dry, temperate 

and tropical forests. 
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Fig. S2. Distribution of the World’s protected areas among the main Ecoregions of the world. The 

World Database on Protected Areas (WDPA) is developed by the United Nations Environmental Program 

(UNEP) and the International Union for Conservation of Nature (IUCN). The WDPA is the most 

comprehensive global database of marine and terrestrial protected areas. The ecoregions of the world are 

provided by the Nature Conservancy and defined by the World Wide Fund for Nature.   
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Fig. S3. Tree cover distribution. Histogram illustrating the relative frequency of tree cover, distributed by 

bins of 10 %. The U-shaped distribution shows a dominance of 0 and 100% of tree cover in the world, when 

tree cover is photo-interpreted at very high spatial resolution in protected areas, on 0.5-hectare plots and 

independently of model-based approaches.   
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Fig. S4. K-fold cross-validation (A) procedure; (B) density plot and (C) boxplots of observed versus 

predicted tree cover estimates. See Methods for detailed description of panel a.  
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Fig. S5. Uncertainty from k-fold cross validation. The uncertainty is expressed as the standard deviation 

of the tree cover predicted from the k potential tree cover layers computed during the k-fold cross-

validation. (A) Summary of the procedure. (B) Uncertainty (standard deviation) vs. mean predicted tree 

cover at the pixel level. The relationship shows that the level of uncertainty is greater at intermediate tree 

cover classes, reaching 15% of tree cover variation at 50% of the predicted potential tree cover. 
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Fig. S6. Uncertainty map of the prediction of potential tree cover. The uncertainty is calculated at the 

pixel-level as the standard deviation among the k tree cover layers predicted from the k models developed 

from the k-fold cross-validation. The bimodal distribution of the standard deviation is illustrated within 

caption (A), showing a peak at 0% and another at 7% of standard deviation in tree cover. The resulting map 

(A) shows higher uncertainty in regions with intermediate potential tree cover and low uncertainty in 

regions with low (e.g. desert) or high (rainforest) tree cover levels. One exception remains, with higher 

levels of uncertainty in tropical wet forests of Central Africa (C) vs. other tropical wet forests (B). 
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Fig. S7. Global forest restoration potential. The global potential forest cover is illustrated on (A), 

representing an area of 8.7 billion hectares of forest cover. Forests are defined as pixels with a forest cover 

≥ 10%. The global potential forest cover available for restoration is illustrated in (B) using cropland from 

Globcover and in (C) using Cropland from Fritz and colleagues (2015). These are calculated from the global 

potential forest cover (A) subtracting existing forest cover and removing agricultural and urban areas. This 

global tree restoration potential represents an area of 1.8 billion hectares of forest (Globcover; Table S2) or 

of 1.7 billion hectares of forest (Fritz and colleagues (2015); Table S2).   
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Fig. S8. Principles and calculation of continuous tree cover. Original plots are segmented in 7-by-7 

subplots and each cell intercepting a tree crown is scored (green dot). These scores (ranging from 0 to 49 

out of 49 subplots) are then used to quantify the tree cover of the plot. The subfigures illustrate that the 

quantification of the forest cover and of the continuous canopy cover can differ significantly, leading to an 

overestimation in forest cover area when using a binary forest cover definition. In this example, 36% less 

forest area was estimated when using continuous canopy cover to calculate forest area.   
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Fig S9. Average expected changes in potential tree cover by 2050. Maps illustrate the average expected 

changes between current and future conditions of tree cover for three Earth System Models (CESM1-bgc, 

CESM1-cam5 and mohc-Hadgem2es) and two Representative Circulation Pathways (RCP 4.5 and RCP 

8.5). (A) Average expected change according to scenario RCP 4.5. (B) Average expected change according 

to RCP 8.5. (C) Difference between the two scenarios.  
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Fig. S10. Potential tree cover in 2050. The extrapolation of the potential tree cover for 2050 is based on 

the current relationship between tree cover and environmental conditions within the protected areas of the 

world. Maps are illustrated for three Earth System Models (CESM1-bgc, CESM1-cam5 and mohc-

Hadgem2es) and two Representative Circulation Pathways (RCP 4.5 and RCP 8.5).    
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Fig. S11. Expected changes in potential tree cover by 2050. Percentage increase (green) or decrease (red) 

in potential tree cover by the year 2050 compared to the present. Calculations of changes in the potential 

tree cover are based on the current relationship between tree cover and environmental conditions within the 

protected areas of the world. Maps are illustrated for three Earth System Models (CESM1-bgc, CESM1-

cam5 and mohc-Hadgem2es) and two Representative Circulation Pathways (RCP 4.5 and RCP 8.5).    
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Fig. S12. Interpolation vs. extrapolation of the model. The mean percentage of extrapolation at the 

pixel level is equal to ~8%, showing that most of the potential tree cover map is interpolated, not 

extrapolated.      
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Table S1. 

Data Name Layer Group 
Original Spatial 

Resolution 

Latitude / Longitude (Abs_Lat Abs_Long) Process 

WC01 / BIO01 = Annual Mean Temperature Climatic 30 arcsec 

WC08 / BIO08 = Mean Temperature of Wettest Quarter Climatic 30 arcsec 

WC12 / BIO12 = Annual Precipitation Climatic 30 arcsec 

WC15 / BIO15 = Precipitation Seasonality (Coefficient of Variation) Climatic 30 arcsec 

WC17 / BIO17 = Precipitation of Driest Quarter Climatic 30 arcsec 

Elevation Topographic 30 arcsec 

Hillshade Topographic 30 arcsec 

OCSTHA_M_sd1_250m_ll = Soil Organic Carbon Stock from 0.00m-0.05m Soil 250m 

SNDPPT_M_sl2_250m_ll = Sand content (50â€“2000 micro meter) at 0.05m Soil 250m 

BDRICM_M_1km_ll = Depth to Bedrock Soil 1km 
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Table S2. Potential restoration per biome. 

 

  

Potential canopy cover (Mha) Potential forest cover (Mha) Potential carbon stock  

total  
restoration 
(Globcover 

2009)  

restoration 
(Fritz et al. 

2015) 
total  

Restoration 
(Globcover 

2009) 

restoration 
(Fritz et al. 

2015) 

density 
(t.ha-1) 

restoration 
(Globcover 
2009; GtC) 

restoration 
(Fritz et al. 

2015; 
GtC) 

BIOME          

Tundra 
79.1 50.6 50.94 254.9 166.2 508.9 202.4 10.2 10.3 

Boreal Forests/Taiga 
768.5 178.0 181.8 1493.7 216.0 258.0 239.2 42.6 43.5 

Deserts and Xeric Shrublands 
129.5 77.6 79.6 413.4 232.7 226.6 202.4 15.7 16.1 

Flooded Grasslands and Savannas 
25.5 9.0 9.6 69.1 22.9 18.3 202.4 1.8 2.0 

Mangroves 
14.4 2.6 2.7 27.8 4.4 0.5 282.5 0.7 0.8 

Mediterranean Forests 
73.2 18.8 15.5 222.4 58.2 3.1 202.4 3.8 3.1 

Montane Grasslands and Shrublands 
52.9 19.3 22.1 145.9 53.5 41.5 202.4 3.9 4.5 

Temperate Broadleaf 
615.2 109.0 82.0 1167.4 153.0 39.9 154.7 16.9 12.7 

Temperate Conifer Forests 
199.8 35.9 34.2 373.2 56.5 134.6 154.7 5.6 5.3 

Temperate Grasslands 
195.9 72.5 62.7 645.4 243.5 130.7 154.7 11.2 9.7 

Tropical Coniferous Forests 
32.7 7.1 6.2 63.9 10.6 6.9 282.5 2.0 1.7 

Tropical Dry Broadleaf Forests 
165.6 32.8 36.2 358.8 50.0 19.5 282.5 9.3 10.2 

Tropical Grasslands 
569.5 189.5 210.2 1496.8 388.0 164.0 282.5 53.5 59.4 

Tropical Moist Broadleaf Forests 
1443.8 97.1 117.1 1948.9 115.9 105.1 282.5 27.4 33.1 

          

Total 4365.5 899.9 910.7 8681.5 1771.5 1657.4   204.7 212.3 

Standard deviation         (from k-fold 
crossvalidation) 131.0 27.0 27.3 260.4 53.1 49.7  6.1 6.4 
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Table S3. Risk of gain and loss in canopy cover per biome by 2050 

 

Ecoregion RCP4.5 (Mha) RCP 8.5 (Mha) 

Tundra (Boreal) 76.19 101.21 

Boreal Forests/Taiga 18.69 26.95 

Deserts and Xeric Shrublands 13.49 27.97 

Flooded Grasslands and Savannas -2.77 -3.02 

Mangroves -3.33 -3.47 

Mediterranean Forests,  Woodlands and Scrub -1.87 -2.29 

Montane Grasslands and Shrublands 20.00 30.90 

Temperate Broadleaf and Mixed Forests -1.11 -4.21 

Temperate Conifer Forests 7.29 8.11 

Temperate Grasslands Savannas 19.79 32.25 

Tropical and Subtropical Coniferous Forests 0.10 0.12 

Tropical and Subtropical Dry Broadleaf Forests -27.98 -46.45 

Tropical and Subtropical Grasslands -18.94 -45.51 

Tropical and Subtropical Moist Broadleaf Forests -278.93 -345.78 

SUM -174.37 -223.19 
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Data S1. Photo-interpreted tree cover database 

Data S2. Potential restoration by country 
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