
Collective modes in excitonic magnets: dynamical mean-field study

D. Geffroy,1, 2 J. Kaufmann,2 A. Hariki,2 P. Gunacker,2 A. Hausoel,3 and J. Kuneš2, 4
1Department of Condensed Matter Physics, Faculty of Science,

Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
2Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria

3Institute for Theoretical Physics and Astrophysics,
University of Würzburg, Am Hubland 97074 Würzburg, Germany

4Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czechia

We present a dynamical mean-field study of dynamical susceptibilities in two-band Hubbard
model. Varying the model parameters we analyze the two-particle excitations in the normal as
well as in the ordered phase, an excitonic condensate. The two-particle DMFT spectra in the
ordered phase reveal the gapless Goldstone modes arising from spontaneous breaking of continuous
symmetries. We also observe gapped Higgs mode, characterized by vanishing of the gap at the phase
boundary. Qualitative changes observed in the spin susceptibility can be used as an experimental
probe to identify the excitonic condensation.

Long-rang order (LRO) and the concomitant sponta-
neous symmetry breaking are a prominent demonstra-
tion of collective behavior in solids. For common LROs,
e.g., magnetic order, the order parameter can be ob-
served directly with present technology. However, some
exotic LROs, dubbed hidden orders, have been recog-
nized through their thermodynamic properties so far [1–
3]. In this case, dynamical response functions are in-
valuable for understanding the nature of the LRO. Ex-
citonic insulator [4, 5] is an example of LRO that after
decades of defying detection has been identified through
its dynamical fingerprint [6]. Recently, realization of ex-
citonic magnet [7], an analog of excitonic insulator aris-
ing by condensation of spinful excitons, was proposed
in Pr0.5Ca0.5CoO3 [2, 8, 9] with conclusive evidence
still missing. Excitonic interpretation of magnetism of
Ca2RuO4 is subject of current debate [10, 11]. Exci-
tonic condensation finds its formal analogy in the LRO
in Heisenberg-dimer systems, experimentally studied in
TlCuCl3 [12].

In this Letter we use dynamical mean-field theory
(DMFT) to study the dynamical response of an exci-
tonic magnet realized in two-band Hubbard model. We
show that the symmetry lowering gives rise to a coupling
between the exciton condensate fluctuations and spin,
which leaves a unique signature in the dynamical spin
structure factor and thus can be observed by experiments
such as inelastic neutron or x-ray scattering.

Breaking of continuous symmetry in systems with
short range interactions results in appearance of gapless
Goldstone modes (GMs) [13] as well as gapped Higgs ex-
citations [14], which have been the subject of recent inter-
est [10, 12, 14, 15]. The description of interacting elec-
tron systems typically relies on perturbative approaches
in the weak-coupling limit [9, 16] or low-energy effective
models in the strong-coupling limit [7, 17]. The dynami-
cal mean-field theory (DMFT) [18, 19] uses a different ap-
proximation assuming a Luttinger-Ward functional with
the local propagators only, which makes DMFT tractable
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Figure 1. Sketch of the cryatal field vs temperature (∆− T )
phase diagram (b) with marked cuts, along which the sus-
ceptibilities are calculated. The 1P spectral function at the
(∆, T )-points violet (3.55, 1/11), green (3.55, 1/40) and blue
(3.8, 1/40).

for realistic multi-orbital models [20, 21]. DMFT has
been widely used to study one-particle (1P) dynamics,
while two-particle (2P) susceptibilities are rarely stud-
ied for multi-orbital models [22–27] and their behavior in
ordered phases is unexplored.

The Hamiltonian of studied model reads

H =
∑
ij,σ

(
a†iσ b†iσ

)(taa tab
tab tbb

)(
ajσ
bjσ

)
+

∆

2

∑
i,σ

(naiσ − nbiσ)

+ U
∑
i,α

nαi↑n
α
i↓ +

∑
i,σσ′

(U ′ − Jδσσ′)naiσn
b
iσ′ , (1)

where a†iσ and b†iσ are fermionic operators that create
electrons with the respective orbital flavors and spin σ
at site i of a square lattice. The first term describes the
nearest neighbor hopping. The rest, expressed in terms
of local densities nci,σ ≡ c†iσciσ, captures the crystal-field
∆, the Hubbard interaction U and Hund’s exchange J in
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Figure 2. Evolution of the excitonic modes of dynamical sus-
ceptibility in the U2(1) model (tab=0) across ∆-driven transi-
tion (T = 1/40). The columns correspond to − ImχOOγγ (k, ω)
with Oγ = Ix, Iy, Rx, Ry (left to right) along the high-
symmetry lines in the 2D Brillouin zone. The rows from
top to bottom correspond to ∆ =3.9, 3.8, 3.65, 3.55, 3.45
with ∆c ≈ 3.75 (Red line separates the normal state from the
PEC phase).

the Ising approximation. Parameters U = 4, J = 1, U ′ =
U − 2J , [28] taa = 0.4118, tbb = −0.1882, tab =0, 0.02,
0.06 with magnitudes (in eV) typical for 3d transition
metal oxides were used in previous studies [25, 29, 30].

We follow the standard DMFT procedure of self-
consistent mapping the lattice model onto an auxiliary
Anderson impurity model (AIM) [31, 32], which is solved
with the ALPS implementation [33–35] [36] of the ma-
trix version of the strong-coupling continuous-time quan-
tum Monte-Carlo (CT-QMC) algorithm [37]. The sus-
ceptibilities [19, 22, 38, 39] are obtained by solving the
Bethe-Salpeter equation in the particle-hole channel with
the DMFT 1P propagators and 2P-irreducible vertices of
AIM using the orthogonal polynomial representation [40].

The susceptibilities χOOηη (k, ω) are obtained by analytic
continuation [41, 42] of their Matsubara representations

χOOηη (k, iνn) =
∑
R

∫ β

0

dτ ei(νnτ+k·R)〈Oηi+R(τ)Oηi (0)〉−〈Oη〉2,

with the observables O of interest being excitonic fields
Rηi (Iηi ) =

√
±1
∑
αβ σ

η
αβ(a†iαbiβ ± b†iαaiβ), respectively,

with η = x, y and the z-component of spin moment
Szi =

∑
αβ σ

z
αβ(a†iαaiβ + b†iαbiβ).

Model (1) at half-filling has a rich phase diagram ex-
hibiting a metal-insulator transition [43] as well as var-
ious types of LRO including antiferromagnetism, spin-
state order or superconductivity [25, 26, 44, 45]. For
the present parameters it undergoes a temperature- or
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Figure 3. (a) The sound velocity vs of the GMs, the phase
mode (χRRyy , blue symbols) and the spin rotation mode (χIIxx,
black symbols) in the U2(1) model as a function of the crys-
tal field ∆. The dotted lines show the corresponding strong-
coupling results. (b) The Higgs gap in the U(1) model with
tab =0.02 and 0.06 as a function of ∆. The line is a guide for
eyes.

crystal-field-controlled transition to polar exciton con-
densate (PEC) [46], as shown in Fig. 1b. PEC is char-
acterized by a finite excitonic field. Throughout the pa-
per we choose the orientation 〈Iy〉 = φ, while Ry, Ix
and Rx remain fluctuating. This phase is an instance of
spin nematic state, which breaks spin-rotation symmetry
without appearance of spin polarization.

The behavior of the collective modes depends on the
continuous symmetry broken by the LRO [13]. Here, it is
the U(1) spin (z-axis) rotation. If tab = 0, an additional
U(1) gauge symmetry due to conservation of

∑
i,σ(nai,σ−

nbi,σ) makes the total broken symmetry U(1)×U(1). We
will refer to the general tab 6= 0 case as U(1) model and
the tab = 0 case as U2(1) model.

∆-driven transition. While the system exhibits a siz-
able 1P gap throughout the studied ∆-range, horizontal
line in Fig. 1b, low-energy 2P-excitations show up in the
excitonic susceptibilities, Fig. 2. In the normal phase
(∆ > ∆c), these can be viewed as spinful Frenkel ex-
citons. The spin symmetry ensures the equivalence of
x and y directions, while the gauge symmetry leads to
equivalence of the excitonic fields R and I in the U2(1)
model.

Reducing ∆ closes the excitation gap and the system
undergoes transition to the PEC phase. For the exctionic
field, which freezes in an arbitrary direction both in the
xy-plane and the RI-plane in the U2(1) case, we choose
the orientation discussed above. Linear gapless GMs [42]
corresponding to the spin rotation and phase fluctuation
(RI-rotation) are observed in χIIxx and χRRyy , respectively.
The intensities of both GMs diverge as 1/|k| [42]. The
corresponding sound velocities are shown in Fig. 3a.

Finite cross-hopping tab leads to a generic U(1) model.
The equivalence between the R and I fields is lost, see
Fig. 4. The excitonic field freezes in the I-direction [46,
47], while the xy-orientation remains arbitrary. For the
small tab studied here, the changes to the excitonic spec-
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Figure 4. The same susceptibilities as in Fig. 2 (T = 1/40)
in the vicinity of Γ-point for U(1) model with cross-hopping
tab = 0.06. The rows from top to bottom correspond to
∆ =3.675, 3.60, 3.5, with ∆c ≈ 3.65 (Red line separates the
normal state from the PEC phase) .

tra [42] are concentrated in the low-energy region shown
in Fig. 4. The spin-rotation GM, visible in χIIxx, remains
gapless and linear. The ’phase’ mode acquires a Higgs
gap that vanishes at the transition, Fig. 3b, a behavior
observed in bi-layer Heisenberg system TlCuCl3 [12].

Interestingly the character of this mode changes as we
proceed deeper into the ordered phase, Fig. 4. Close
to the phase boundary, its spectral weight is dominated
by χIIyy, i.e., amplitude fluctuation of the condensed Iy

field. Deeper in the ordered phase the spectral weight is
mostly in χRRyy , corresponding to phase fluctuation (RI-
rotation) as in the U2(1) model. We offer an interpre-
tation in terms of the relative strength of the symmetry
breaking term (tab) in the Hamiltonian and the sponta-
neously generated Weiss field. The Weiss field, the off-
diagonal F ↑↓ab (ω) part of the hybridization function in the
present method, is in general a fluctuating (frequency
dependent) object, which prohibits a direct comparison
to tab. Nevertheless, we can compare their dynamical
effects. A Weiss field dominating over the Hamiltonian

Figure 5. (a) Evolution of dynamical spin susceptibility
− ImχSSzz (k, ω) across the ∆-driven transition in the U2(1)
model of Fig. 2 (Asterisk marks the normal phase). (b) The
corresponding static susceptibilities ReχSSzz (k, 0) throughout
the Brillouin zone.

Table I. The parameters of Eq. 3. The variational parameter
0 ≤ α2 ≤ 1, corresponding to the LS density, assumes 1 in
the normal phase and µ+z(T +W)+zV

2z(T +W)+zV in the condensate.

µx α2µ+ zα2(1− α2)(2T + 2W + V)
Tx α2T − (1− α2)J
Wx α2W + (1− α2)J
µy z(T +W); µ if α2 = 1
Ty T − α2(1− α2)(2T + 2W + V)
Wy W − α2(1− α2)(2T − 2W + V)

term (tab) results in a gapped GM found deep in the
ordered phase. A common example of such situation is
a gap in spin-wave spectra of magnets due to magneto-
crystalline anisotropy. Dominance of the Hamiltonian
term (tab) close to the phase boundary, where the Weiss
field is small, results in amplitude fluctuations. This is a
generic situation in cases without an approximate sym-
metry. This interpretation is supported by the observa-
tion that the extent of the amplitude-fluctuation regime
shrinks when tab is reduced [42]. Moreover, the strong-
coupling calculations (see SM [42]), which make an ex-
plicit comparison possible, lead to the same conclusions.

Next, we discuss the impact of exciton condensation
on the spin susceptibility χSSzz , shown in Fig. 5. In the
normal phase, χSSzz (k, ω) exhibits no distinct dispersion
and essentially vanishes throughout the Brillouin zone,
Fig. 5b, as expected in a band insulator. In the PEC
phase, it develops a sharp spin-wave-like dispersion al-
though there are no ordered moments present. We point
out a similarity of χSSzz (k, ω) to χRRxx (k, ω) that we discuss
later. A distinct feature of χSSzz (k, ω) is the suppression of
the spectral weight close to the Γ-point. This suppression
can be overcome by doping, which results in appearance
of ferromagnetic exciton condensate [29].

Strong-coupling limit. To understand the numerical
results, it is instructive to analyze the strong-coupling
limit of (1), which can be expressed in terms of two-flavor
hard-core bosons [46, 48, 49]

H =µ
∑
i

ni −
∑
ij,ν

[
T d†iνdjν −

W
2

(d†iνd
†
jν + diνdjν)

]
+
V
2

∑
ij

ninj +
J
2

∑
ij

Szi S
z
j ,

(2)

Bosonic operators d†iν (ν = x, y), which create high-spin
(HS) states out of the low-spin (LS) state, are related
to the excitonic fields by Rνi (Iνi ) →

√
±1(d†iν ± diν).

The number operators ni =
∑
ν d
†
iνdiν measure the

HS concentration and Szi = −i(d†ixdiy − d
†
iydix) is the z-

component of the spin operator. The relations of the
coupling constants µ, T , W, V, and J to the parame-
ters of (1) can be found in SM [42] and Ref. 25. Since
W ∼ t2ab, the gauge symmetry of the U2(1) model reflects
conservation of d-charge for W = 0.
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Figure 6. The same susceptibilities of U2(1) model as in Fig. 2
calculated across the thermally driven transition for ∆ =3.55.
The rows from top to bottom correspond to temperatures
T = 1/11, 1/16, 1/30, 1/40 with Tc ≈ 1/13.

Generalized spin wave treatment [49, 50] of
the excitations over the variational ground state
|G〉 =

∏
i(α+ i

√
1− α2d†iy)|0〉, see SM [42] for details,

leads to a free boson model

H̃ν = µν
∑
i

ñiν −
∑
ij

[
Tν d̃†iν d̃jν −

Wν

2
(d̃†iν d̃

†
jν +H.c.)

]
.

(3)
Note that the parameters of this effective model in the
ordered phase, given in Table I, depend on the flavor
ν = x, y. The elementary excitations of (3) have the dis-
persion εν(k) =

√
(µν − 2Tνδ(k))2 − (2Wνδ(k))2 with

δ(k) = cos kx + cos ky. In the U2(1) case with W = 0
both x and y modes are gapless with sound velocities
vν ≡ ∇kεν(k = 0) =

√
8|Wν |(Tν + |Wν |) vanishing at

the transition. Finite W in the U(1) case leads to open-
ing of a gap for y-excitations. The ratio of the spectral
weights of I− and R− propagators corresponding to χIIyy
and χRRyy at Γ point is given by [42]

ImχIIyy(0, νgap)

ImχRRyy (0, νgap)
≈ 4W

(2T + V)φ2
,

which supports the interpretation that a dominant
Hamiltonian term (W) favors the amplitude fluctuations,
while a dominant Weiss field (∼ T φ) favors the gapped
Goldstone fluctuations.

Finally, we address the behavior of the spin susceptibil-
ity χSSzz in Fig. 5 We observe that replacing the operator
diy in the strong-coupling expression for Szi by its finite
PEC value yields Szi ∼ (d†ix + dix)φ/2. In the ordered
phase, the spin susceptibility χSSzz therefore follows χRRxx ,
while they are decoupled in the normal phase.

Thermally driven transition. Since the transition ob-
served in Pr0.5Ca0.5CoO3 [2] is driven by temperature

Figure 7. (a) Evolution of dynamical spin susceptibility
− ImχSSzz (k, ω) across the thermally driven phase transition
as in Fig. 6 for temperatures T = 1/11, 1/20, 1/30 (Aster-
isk marks the normal phase). (b) The corresponding static
susceptibilities ReχSSzz (k, 0) throughout the Brillouin zone.

we investigate the behavior of the U2(1) model along the
vertical trajectory in Fig. 1b. We observe that the 1P
gap in the normal state is closed, Fig. 1d. The exci-
tonic susceptibilities possess a peak at finite frequency,
whose tail extends to zero frequency, Fig. 6 Cooling is
accompanied by a downward shift of the damped dispre-
sive features, i.e., the phase transition can be viewed as a
mode softening, an observation also made experimentally
on TlCuCl3 [12].

The normal state spin susceptibility χSSzz in Fig. 7 does
not vanish as in Fig. 5. The presence of thermally excited
HS states gives rise to k-featureless susceptibility with
spectral weight concentrated at low energies. Neverthe-
less, χSSzz (k, ω) changes qualitatively at the transition in
this case as well. The dispersion becomes sharper and
its bandwidth increases significantly. As a result, upon
cooling below Tc, the low-energy region is depleted of
spectral weight throughout the Brillouin zone, except in
the vicinity of the Γ-point. Recently, this behavior was
reported in inelastic neutron scattering in the putative
excitonic material (Pr1−yYy)1−xCaxCoO3 [51].

In conclusion, we used DMFT to study the 2P re-
sponse across exciton condensation transition in two-
orbital Hubbard model. We observed the formation of
GMs as predicted by symmetry considerations [13]. Ex-
plicit breaking of continuous symmetry led to appearance
of a gapped mode [14], characterized by vanishing of the
gap at the phase transitions similar to observations in
TlCuCl3 [12]. We have observed that the character of
this mode changes from Higgs-like amplitude fluctuations
close to the phase boundary, to Goldstone-like phase fluc-
tuations deep in the ordered phase. We suggest that
this behavior shall be common to systems with weakly
broken symmetry and provide an interpretation in terms
of the relative strengths of the spontaneously generated
Weiss field and the explicit symmetry-breaking term in
the Hamiltonian.
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Experimental observation of excitonic modes is in prin-
ciple possible [52, 53] using resonant inelastic x-ray scat-
tering, however, practical limitations in energy resolu-
tion and k-space accessibility [52] exist at the moment.
We have shown that the measurement of dynamical spin
susceptibility provides an alternative, that can used to
identify spinful excitonic condensates with current ex-
perimental technology.
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