Conference paper Open Access

Optimal Computational Resource Allocation and Network Slicing Deployment in 5G Hybrid C-RAN

De Domenico, Antonio; Liu, Ya-Feng; Yu, Wei


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3268620</identifier>
  <creators>
    <creator>
      <creatorName>De Domenico, Antonio</creatorName>
      <givenName>Antonio</givenName>
      <familyName>De Domenico</familyName>
      <affiliation>CEA-LETI Grenoble, France</affiliation>
    </creator>
    <creator>
      <creatorName>Liu, Ya-Feng</creatorName>
      <givenName>Ya-Feng</givenName>
      <familyName>Liu</familyName>
      <affiliation>LSEC, ICMSEC, AMSS, Chinese Academy of Sciences, Beijing, China</affiliation>
    </creator>
    <creator>
      <creatorName>Yu, Wei</creatorName>
      <givenName>Wei</givenName>
      <familyName>Yu</familyName>
      <affiliation>Department of Electrical and Computer Engineering, University of Toronto, Toronto ON, Canada</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Optimal Computational Resource Allocation and Network Slicing Deployment in 5G Hybrid C-RAN</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-05-20</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3268620</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3268619</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Network virtualization is a key enabler for the 5G systems for supporting the novel use cases related to the vertical markets. In this context, we investigate the joint optimal deployment of Virtual Network Functions (VNFs) and the allocation of computational resources in a hybrid cloud infrastructure by taking into account the requirements of the 5G services and the characteristics of the cloud nodes. To achieve this goal, we analyze the relations between functional placement, computational requirements, and latency constraints, and formulate an integer linear programming problem, which can be solved by using a standard solver. Our results underline the advantages of a hybrid architecture over a standard solution&amp;nbsp;with a central cloud, and show that the proposed mechanism to deploy VNFs leads to high resource utilization efficiency and large gains in terms of the number of slice chains that can be supported by the cloud-enhanced 5G networks.&lt;/p&gt;</description>
    <description descriptionType="Other">© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/761445/">761445</awardNumber>
      <awardTitle>5G Mobile Network Architecture for diverse services, use cases, and applications in 5G and beyond</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
48
25
views
downloads
All versions This version
Views 4848
Downloads 2525
Data volume 12.2 MB12.2 MB
Unique views 4848
Unique downloads 2424

Share

Cite as