Journal article Open Access

Informative trees by visual pruning

Iorio, Carmela; Aria, Massimo; D'Ambrosio, Antonio; Siciliano, Roberta


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3267338">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3267338</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3267338"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Iorio, Carmela</foaf:name>
        <foaf:givenName>Carmela</foaf:givenName>
        <foaf:familyName>Iorio</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Naples Federico II, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Aria, Massimo</foaf:name>
        <foaf:givenName>Massimo</foaf:givenName>
        <foaf:familyName>Aria</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Naples Federico II, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>D'Ambrosio, Antonio</foaf:name>
        <foaf:givenName>Antonio</foaf:givenName>
        <foaf:familyName>D'Ambrosio</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Naples Federico II, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Siciliano, Roberta</foaf:name>
        <foaf:givenName>Roberta</foaf:givenName>
        <foaf:familyName>Siciliano</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Naples Federico II, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Informative trees by visual pruning</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>CART</dcat:keyword>
    <dcat:keyword>Impurity proportional reduction</dcat:keyword>
    <dcat:keyword>Cost-complexity pruning</dcat:keyword>
    <dcat:keyword>Visualization</dcat:keyword>
    <dcat:keyword>Supervised statistical learning</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/689669/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-08-01</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3267338"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3267338</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1016/j.eswa.2019.03.018"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/magic"/>
    <dct:description>&lt;p&gt;The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1016/j.eswa.2019.03.018"/>
        <dcat:byteSize>4024332</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3267338/files/Iorio-et-al_2019_ESWA.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/689669/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">689669</dct:identifier>
    <dct:title>Moving Towards Adaptive Governance in Complexity: Informing Nexus Security</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
67
49
views
downloads
Views 67
Downloads 49
Data volume 178.8 MB
Unique views 53
Unique downloads 42

Share

Cite as