Journal article Open Access

Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks

Caballero, Pablo; Banchs, Albert; De Veciana, Gustavo; Costa-Pérez, Xavier


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120161324.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  </datafield>
  <controlfield tag="001">3267258</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University Carlos III of Madrid, Leganés, Spain</subfield>
    <subfield code="a">Banchs, Albert</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Texas at Austin, Austin, TX, USA</subfield>
    <subfield code="a">De Veciana, Gustavo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NEC Laboratories Europe GmbH, Heidelberg, Germany</subfield>
    <subfield code="a">Costa-Pérez, Xavier</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5083088</subfield>
    <subfield code="z">md5:dfca9be5ad0b284dd56944a026ece50d</subfield>
    <subfield code="u">https://zenodo.org/record/3267258/files/network slicing games.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-02-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3267258</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">662-675</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">IEEE/ACM Transactions on Networking</subfield>
    <subfield code="v">27</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Texas at Austin, Austin, TX, USA</subfield>
    <subfield code="a">Caballero, Pablo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">761445</subfield>
    <subfield code="a">5G Mobile Network Architecture for diverse services, use cases, and applications in 5G and beyond</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Network slicing to enable resource sharing among multiple tenants-network operators and/or services-is considered as a key functionality for next generation mobile networks. This paper provides an analysis of a well-known model for resource sharing, the share-constrained proportional allocation mechanism, to realize network slicing. This mechanism enables tenants to reap the performance benefits of sharing, while retaining the ability to customize their own users&amp;#39; allocation. This results in a network slicing game in which each tenant reacts to the user allocations of the other tenants so as to maximize its own utility. We show that, for elastic traffic, the game associated with such strategic behavior converges to a Nash equilibrium. At the Nash equilibrium, a tenant always achieves the same or better performance than that of a static partitioning of resources, thus providing the same level of protection as static partitioning. We further analyze the efficiency and fairness of the resulting allocations, providing tight bounds for the price of anarchy and envy-freeness. Our analysis and extensive simulation results confirm that the mechanism provides a comprehensive practical solution to realize network slicing. Our theoretical results also fills a gap in the analysis of this resource allocation model under strategic players.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TNET.2019.2895378</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
40
85
views
downloads
Views 40
Downloads 85
Data volume 432.1 MB
Unique views 40
Unique downloads 80

Share

Cite as