Conference paper Open Access

A Graph Coloring based Inter-Slice Resource Management for 5G Dynamic TDD RANs

Pateromichelakis, Emmanouil; Samdanis, Konstantinos


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3266866</identifier>
  <creators>
    <creator>
      <creatorName>Pateromichelakis, Emmanouil</creatorName>
      <givenName>Emmanouil</givenName>
      <familyName>Pateromichelakis</familyName>
      <affiliation>Huawei Technologies, German Research Center, Munich Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Samdanis, Konstantinos</creatorName>
      <givenName>Konstantinos</givenName>
      <familyName>Samdanis</familyName>
      <affiliation>Huawei Technologies, German Research Center, Munich Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Graph Coloring based Inter-Slice Resource Management for 5G Dynamic TDD RANs</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-07-31</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3266866</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ICC.2018.8422748</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper studies the notion of network slicing in the emerging 5G Time Division Duplex (TDD) networks, considering different applications with diverse service requirements. The proposed solution relies on flexible slicing considering the entire spectrum band, wherein service oriented slices can independently adopt and adjust an UL/DL ratio reflecting traffic conditions. To this end, this paper initially describes and analyses the inter-slice resource allocation problem taking into account different TDD patterns, the slice traffic load and the inter-node interference, which originates by multiple and diverse sources. In this context, a graph-based framework is proposed to reduce the complexity of the problem by decoupling it in two sub-problems: the selection of TDD patterns to find which links should be activated at particular time instances and accordingly perform graph-based resource allocation for all slice traffic collectively. Our performance evaluations show significant enhancements of the UL and DL throughput respectively.&lt;/p&gt;</description>
    <description descriptionType="Other">© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/761445/">761445</awardNumber>
      <awardTitle>5G Mobile Network Architecture for diverse services, use cases, and applications in 5G and beyond</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
57
61
views
downloads
Views 57
Downloads 61
Data volume 77.9 MB
Unique views 55
Unique downloads 57

Share

Cite as