
Extending XP Practices to Support
Security Requirements Engineering

Gustav Boström
SICS/KTH, Sweden
gusbo@kth.se

Jaana Wäyrynen
Stockholm University/DSV, Sweden

jaana@dsv.su.se

Marine Bodén

Ericsson R&D, Sweden
marine.boden@ericsson.com

Konstantin Beznosov Philippe Kruchten
University of British Columbia, Canada

{beznosov, pbk}@ece.ubc.ca

Abstract
This paper proposes a way of extending eXtreme Programming
(XP) practices, in particular the original planning game and the
coding guidelines, to aid the developers and the customer to
engineer security requirements while maintaining the iterative and
rapid feedback-driven nature of XP. More specifically, these steps
result in two new security-specific flavours of XP User stories:
Abuser stories (threat scenarios) and Security-related User stories
(security functionalities). The introduced extensions also aid in
formulating security-specific coding and design standards to be
used in the project, as well as in understanding the need for
supporting specific Security-related User stories by the system.
The proposed extensions have been tested in a student project.

Categories and Subject Descriptors
D.2 [Software Engineering]; K6.3 [Software Management];
K.6.5 [Security and protection]

General Terms
Management, Security, Human Factors.

Keywords
Security Engineering, Requirements, Agile Software
Development, eXtreme Programming, Development
methodology,

1. Introduction
For the last 20 years, developers of software intensive systems
have applied the technical-rational approach to project
management by using a sequential (or waterfall) lifecycle,
including rigorous up-front planning, up-front design, and a
constant care to monitor and drive the project to conform to the
plan. On one hand this approach has served certain software-

development activities well. Having planning and design artefacts
available early on for experts to examine has facilitated the task
of certifying system conformity to external standards, and has
often made the life of the acquirer of software-intensive system
easier. A discipline that took advantage of this sequential lifecycle
model is security assurance, and this applies equally to safety
certification in avionics or medical instrumentation.
On another hand, the failure rate of software projects is alarming.
As shown in the CHAOS report [26], the actual success rate of
software projects is very low: less than 50% success, and much of
it due to management practices. Software design is more akin to
research than to construction or manufacturing, and many of the
management paradigms adopted form those engineering fields
were simply not adapted to the needs of the software domain.
The problems within security engineering mirror some of the
inherent problems with traditional, waterfall based and document-
driven software development [10]. Existing security engineering
standards are based on a sequential, non-iterative lifecycle and
assume stable development environments where project plans and
security requirements are defined, fixed and documented upfront.
The ISO 15408 Common Criteria (CC) is an example [9]. The
predecessors of CC were designed mainly for military use on the
basis of the waterfall approach, with extensive documentation
requirements as a result. CC inherited some of these problems and
has also been criticised for being both a time and resource
consuming process. Hearn is among those who claim that there is
a marginal commercial interest driving the CC market due to the
cost issue [15]. Even indirect costs, e.g. coming from the time
devoted to producing documentation must also be taken into
account [2]. Some attempts have therefore been made to produce
a more flexible CC process [27, 28]. However, problems still
remain.
The low success rate in software projects has spawned the
emergence of a new breed of approaches to managing projects,
known collectively as agile methods. These methods proceed
iteratively: they rely on gradual emergence of the design and the
requirements, and emphasize direct person-to-person
communication rather than the heavy written documentation of
the waterfall approach. These methods exploit the “soft” nature of
software engineering and exploit many feedback loops in the
process. Rather than “plan-design-build,” the new methods
proceed by “speculate-collaborate-learn” [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SESS’06, May 20–21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

These methods are showing some industry successes and seem
indeed more suitable for modern software development. They
have been considered for application in both security engineering
[1, 5] and safety engineering [3, 23]. They also run counter to the
accepted practices in security engineering, more specifically to
security requirements engineering and security assurance.
Our previous work focuses on security assurance and examines
how its practices fit or don’t fit in the context of agile methods
[6]. We also identify that one of the popular agile methods—
eXtreme Programming [32]—lacks provisions for engineering
security requirements, among other things [31]. A naïve way to
address these issues would be to add more steps and document
artifacts to the XP process to address the identified shortcomings.
This would, however, reduce the benefits of using XP. An
alternative method would be to find a way of marrying XP with
the conventional practices of security requirements engineering.
In this paper, we propose an approach to strike a balance between
documentation-centric, plan-driven conventional practices of
security engineering, and iteration-centric, feedback-driven XP
practices. Our approach is derived from the results of a previous
analysis of how XP deals with the security activities and
requirements stated in the Systems Security Engineering—
Capability Maturity Model and the Common Criteria [9, 31]. The
approach combines the use of XP with activities taken from
security standards, to better ensure that the security requirements
are dealt with in the development of secure software.
In this paper, we specify our approach in detail. It extends the XP
planning game process of identifying and prioritizing business
requirements to include additional steps that result in two new
security-specific flavours of XP user stories: abuser stories and
security-related user stories. The former roughly correspond to
threat scenarios, and the latter to the countermeasures for
reducing the risks that are due to those threats. In addition, the
introduced activities aid in formulating application-specific
coding and design standards to be used in the project. The
proposed extensions also help mapping between abuser stories,
security-related user stories, and the coding and design standards.
The mapping is intended to facilitate for developers and
customers to understand the need for supporting specific security-
related user stories by the system. Throughout the paper, we use
examples from a project where security engineering students
employed our approach to engineer requirements for a secure
negotiation system they are developing.
The rest of the paper is organized as follows: Section 2 gives an
overview of the XP planning game. Section 3 describes the
proposed extensions to the XP planning game. Section 4 discusses
related work, and section 5 draws some conclusions and sketches
future work.

2. Overview of the XP Planning Game
To understand the extension it is necessary to understand how
requirements are specified in XP. Below, follows a short
description of the XP planning game.
As indicated by the name, the planning game involves planning,
namely two types of planning. Firstly, release planning is used to
create a system release plan, which involves identifying the
overall system requirements and defining the scope of the whole
project. The release plan is decomposed into the second type of

plan, i.e. the iteration plan. Iteration planning involves revisiting
the release plan, adding new requirements, selecting relevant
requirements and refining requirements. More specifically, based
on the release plan and possible new or changed requirements,
iteration planning aims to define a detailed plan for each
individual iteration. Because each iteration is short and ends with
an executable version of the system, allows for quicker feed-back
and help in ensuring that the project stays on track. Therefore,
iteration plans are produced during a planning session which takes
place just before an iteration begins, where possible new or
changed requirements can be accounted for [32]. Requirements
are defined as units of system features or functionality. In XP,
they are specified in so-called User stories [4], which are written
on index cards. An example of a User story is: “A customer detail
is shown by selecting it from a list.” User stories are expressed in
short phrases and should be measurable and testable. An essential
part of a planning meeting is negotiation, where the development
team estimates each story in terms of ideal programming time, i.e.
is how long developers estimate it would take to implement a
particular user story including the tests [32]. The customer then
decides what user stories have the highest priority to be
completed. Based on the estimates provided by the developers,
the priorities provided by the customer and the project time and
resources available, developers and customers finally discuss and
negotiate what should be implemented by moving the story cards
around on a table or a whiteboard to create a release or an
iteration plan.

3. Extending the Planning Game
Some XP proponents argue that the planning game process is
sufficient for specifying security requirements as well. They see
security requirements as any other requirement. We believe this is
wrong. Therefore we propose to integrate security engineering
activities with the planning game.
Having established a need for extending XP with security
requirements engineering activities, it is necessary to state what
the goals of these activities should be. An extension would be a
lot less useful if it transformed XP into a heavy, document-
centric, plan-driven process. The usefulness of an extension
would however also be reduced if it did not incorporate essential
security engineering activities. This balance of priorities is a
delicate matter and the correct extension will depend on the
situation of an actual project. Nevertheless it is useful to show
how one such extension might look like. Based on previous
research [31] and our experience with security engineering we
believe these goals to be important:

• New activities should be aligned with XP practices and
terminology as much as possible

• The activities should be amenable to iterative work, that is
the outputs should be easy to rework and preferably not rely
too much on documents

• The output of the requirements process should be easy to
follow up during the ensuing testing and coding activities of
the iteration

• Especially important parts of the output should also be
adapted for external review

• Requirements gathering activities should encourage
proactive definition of security requirements [21]

• Requirements should be based on risk analysis [30].

With these goals in mind, below is an outline of the steps we
propose to be included in the XP Planning Game in order to
engineer security requirements:

1. Identification of security sensitive Assets
2. Formulation of Abuser stories (Threat scenarios)
3. Abuser story Risk assessment
4. Abuser story and User story negotiation
5. Definition of Security-related User stories
6. Definition of security-related Coding standards
7. Abuser story – countermeasure cross-checking

These steps are illustrated in Figure 1 and explained below. The
activities are also illustrated with examples from artefacts
developed when applying the process on a secure negotiation
system.

1 - Identification of critical assets
Carried out concurrently with definition of the standard XP User
stories, this step has the goal of gaining an understanding of what
critical assets exist in the system under development. An asset is
anything of value for the organisation or the users of the system.
An example of an asset in the negotiation system could be:
“Confidential negotiation proposals”. The XP team, led by its
security engineer, collaborates with the customer to identify
relevant assets and their value. These assets are documented on
the planning whiteboard.

2 - Formulation of Abuser Stories
In parallel with the identification of system assets, the security
engineer (and possibly other development and customer team
members) also develops scenarios for those threats that could
result in the increased risks to the assets. This is a step where a
security engineer is crucial because up-to-date fluent knowledge
of security vulnerabilities, threats, and risks is essential for the
identification of threat scenarios [12]. We call these threat
scenarios Abuser stories, which we propose to use for
representing Abuse cases [20] in XP projects. Abuser stories
describe likely threats to critical assets in the form and language
familiar to XP developers and customers. Like User stories, they
are documented on index cards in a language understandable by
the customer and developers. An Abuser story is a textual
description of such a malicious interaction of a threat agent with
the system that, if successful, results in the increase of risk to the
asset(s) valued by the owner or user(s) of the system. An example
of a simplified Abuser story is: “A participant could modify
another competitor participant’s proposal to make it look bad”.
Abuser stories are discussed with the customer team to ensure
their relevance and importance. Finding good Abuser stories is a
brainstorming activity. However, using resources such as attack
patterns can be helpful here [16]. Abuser stories are the basis for
security testing of the system.
We argue that, unlike conventional threat analysis where threats
are considered in broad categories and requirements are derived
from them, specific, rather, than generic, Abuser stories should be
used for engineering security requirements for XP projects. Our

1 Identify
Assets

2 formulate
abuser stories

Identify
threats

5 Identify
Security

related user
stories and
6 Coding
standards

User
stories

Abuser
stories

Security engineering
activities

 3
Assess
the Risk

Security
related
user

stories

Mapping of Abuser stories
and Security related user
stories

Abuser story-
countermeasure

mapping
indicates that one activity must
take place before the other
indicates that there is an output
or input to the activity

can for example be an index-
card, a document etc.

indicates an activity- often
done by the security engineer

Coding
Standard

extensions

7 Abuser story –
countermeasure
cross-checking

Security engineering
activities

Security engineering
activities

Figure 1. Overview of the extended XP Planning Game and its outputs

argument is based on two points. First the mitigation of generic
categories of threats cannot be tested. How can one test that no
credit card information will be exposed to unauthorized users? If
the developers cannot show the mitigation through test results,
then they cannot objectively convince the customer that a
particular category of threats will be mitigated. The second point
of our argument is due to the distinction between the nature of
problem and solution, respectively. Even though Abuser stories
(the problem) are specific, the design of the system based on
those stories (the solution) can be generic enough to mitigate
classes of threats represented by the stories. It should be also
noted that specific Abuser stories provide common measurable
ground for the developers to receive the requirements in the
Planning Game and to implement continues integration, and for
the customer to gain confidence in the system, not just
documentation.

3 - Abuser Story Risk assessment
When all Abuser stories and User stories have been identified the
Risk assessment phase begins. In this phase the security engineer
together with the customer team assesses the risk of the threats
identified in the Abuser stories. The domain expertise of the
customer team is vital here in order to estimate the business
impact of threats [30]. Risk can roughly be seen as the product
(threat probability x consequence) [30]. For each Abuser story,
estimate the probability and the consequence of the threat being
realised. The security engineer has the main responsibility for
this, but it is the customers, who have the best knowledge of the
environment and context in which the system will be used, so
their input is also important. The risk assessment is documented
by placing the Abuser stories on a quadrant according to the
chances that they will occur and the consequences if they occur.
For example, Abuser stories placed in the right top corner of the
quadrant are associated with the highest risk for the customer’s
assets. When the assessment is finished, stickers with yellow or
red colors are attached to the Abuser stories index cards to
indicate their risk level. This activity is inspired by the experience
of risk assessment activities at Ericsson and by the ISO 13335-2
standard for risk analysis [18].

4 - Abuser Story and User story negotiation
When risk assessment is finished the planning for the iteration
begins. In this step the customer with the help of the security
engineer has to decide on which Abuser stories to be countered in
the iteration. This is analogous to how User stories are selected
for implementation in a standard XP Planning Game. Abuser
stories with high risk and consequences should be considered
first. Here the developers together with the security engineer also
have to estimate how much time will be required to counter the
given Abuser story.
5 - Definition of Security-related User stories
Security-related User stories are functional security requirements
for implementing countermeasures for the threats identified by the
Abuser stories. Unlike Abuser stories however, security-related
User stories can be validated directly by unit, system, and
integration testing as other User stories. The security engineer
defines security related User stories in cooperation with the
development team and the customer. An example of a security-
related User story is: “Encrypt all communications: All documents
sent between participants in the negotiation should be encrypted”.
To determine the security functions that are necessary for

countering Abuser stories, good knowledge of security
architectures and mechanisms is necessary. A good help here can
be to use security patterns [7]. This is a technical step which most
people in the customer team are probably not interested in.
Therefore, this activity could be carried out only with the security
engineer and the development team. By defining security
requirements as standard User stories it becomes clear for
developers what kind of security functionality that needs to be
implemented. In essence, this activity also serves as a
requirements phase for the security architecture of the system. As
the security architecture is something that could be of interest to
an external security reviewer the Security-related User stories will
be marked so that these requirements can easily be identified
among the other Users stories. Security-related User stories are
otherwise similar to other User stories.

6 - Definition of Security-related Coding standards
Not every Abuser story can be properly countered with a
Security-related User story. Some important security threats are
dealt with by system-wide properties of the system. One such
example is binary code injection via buffer-overflow. This attack
needs to be countered with secure coding techniques throughout
the code base. Other attacks can be countered with design rules.
Consequently, the Abuser stories could also result in an extension
of the Coding standards that should exist in an XP project. An
example of an extension to the coding standards could be: “At no
place in the code should any of the listed dangerous C-functions
be used”. Once a new design or coding rule has been defined, it
must be applied to the existing code base, and applied from this
point on to any new code addition. Clearly, this is best achieved
with the support of static code analysis tools and code reviews.

7 - Abuser story – Countermeasure cross-checking
To justify Security-related User stories, each story needs to be
mapped into one or more Abuser stories. However, it is possible
that an Abuser story does not have any corresponding Security-
related User story. A Security-related User story is to be
implemented in an iteration provided that the corresponding
Abuser story has to be mitigated by the revision of the system
developed in that iteration. This activity can be done by the
security engineer but if any inconsistencies in the mapping are
found, the customer (team) must be consulted to solve the
problem. This step is slightly redundant because Security-related
User stories are derived from Abuser stories from the start.
However, it is so vital that the mapping of security functions and
countermeasures to threats is correct that we believe this step is
motivated. The cross-checking activity should also result in a
specification of how Abuser stories, which are not easily dealt
with through Security-related User stories are prevented. This is
where the coding standards and the assurance activities for
following them up are defined. This could include a specification
of how activities, such as static analysis are used to verify that no
buffer-overflows will occur in the system. Another activity could
be code reviews through pair-programming with a security
engineer. The output of this activity is a document outlining how
each Abuser story is mapped to a countermeasure in the form
either of a Security-related User story or verification activities.

3.1 Results from applying the process on
student thesis project
As a first attempt to validate our approach we have applied the
process on a student master thesis project. The task of the students
is to construct a secure negotiation coordinator to be used for
negotiating Service Level Agreements (SLA) electronically over
the internet in virtual organizations. They used a whiteboard to
document and discuss the different artefacts of the process. On the
left side they put the user stories, the assets and the Abuser
stories. On the right side, they place the results of the risk
assessment. The different Abuser stories have been given
numbers and these numbers are placed in the risk assessment
matrix according to their risks and consequences. To the left at
the bottom they place the Abuse story–Countermeasure

crosschecking table. Figure 2 shows some of the Abuser stories
and Security related user stories produced.
When interviewing the students concerning their experiences of
using the process a couple of interesting points were raised. The
first was that they perceived the process to be significantly easier
to work with than the Common Criteria (Primarily the students
have mainly used CC in their course work.). However an issue
that was raised was that it was difficult to perform the Risk
analysis without a good description of the background and
environment of the system. The students also chose to apply a
more advanced method for the risk analysis activity. They applied
the CORAS-method which they were familiar with [11]. This is
an example of a possible extension of the process.

Figure 2: Sample Abuser stories and Security related User stories for a secure negotiation system

3.2 Implications for other Activities in the
XP Process
Extending the XP Planning Game, as we described above, has
impacts on other activities in the XP process. In the
implementation phase of an XP iteration, the developers write
tests and implement the selected User stories for the system
(both standard User stories and security-related ones). The
nature of these tests could be different when testing against
Abuser stories. For example, it could be useful to complement
unit tests and acceptance tests with automatic vulnerability
testing, as well as static analysis of the system source code.
Conventional assurance techniques, e.g., Red Team tests, where
security experts explicitly try to perform attacks on the system,
can be employed too. Coding activities are affected by the need
to verify that the code complies with the defined coding
standards. Static analysis tools could also be applied when doing
Continuous Integration [13], for example.
When the system is handed off to the customer, the customer
will have to have a clear understanding of the assumptions about
the threats (and their agents) and the environment that have been
made during the system development. The discrepancy, either

pre-existing or emerged, between the assumptions and the
reality would have to be handled by the customer by, for
example, changing the environment or the system. Our approach
does not propose methods for deriving such assumptions, which
could be a subject of future work. We believe that this issue
cannot be addressed by just requiring the customer to write the
assumptions down, as the customer should not be expected to be
sufficiently versed in security to document the assumptions
about the expected threats and the environment. Even if the
customer is capable of doing so, the assumptions in such form
are not helpful for story-centric planning, testing, and
implementation processes of XP. How would the customer
verify and the developers make sure that the system corresponds
to the assumptions? However, we envision that the process or
the internal deliverables (i.e., Abuser stories, security design and
Coding standards, Security-related User stories) of the modified
Planning Game are sufficient for deriving, and if necessary
documenting, these assumptions. This is where the expertise and
skills of the security engineer in the XP team would become
critical.
Similarly, the capability of the system to enforce specific types
of security policies have to be well understood by the customer

3. Modify proposals

A participant could modify another
participant’s proposal to make it look

bad

5. Modify Termination Rules.

A participant could modify the
termination rules like the deadline for

example so that he prevents other
participants from submitting their

proposals.

13. Exploiting
vulnerabilities

An attacker could always
attack the participants’

underlying platform (e.g. the
O.S.) or the negotiation

software by exploiting some
software bug/ vulnerability
and cause for example the

negotiation process to cease
or steal information about

H.

Follow secure coding
principles when developing

the negotiation system

B.

Sign proposals
before sending

A.

Encrypt all communications:
All documents sent between

participants should be
encrypted

1. Intercept proposals
A non-participant could be

eavesdropping on the proposals and
contact directly the requestor with a

better offer.

before the system is deployed in production. It was beyond the
scope of this work to suggest how the support for security policy
types could be determined and/or communicated. We expect
that the Abuser stories as well as Security-related User stories
can be employed for this purpose.

3.3 Roles in the Security Requirements
Engineering Planning Game
To clarify our proposed process adaptation, it is also useful to
have an understanding of the roles different participants will
have. All the contributors to an XP project are members of one
project team that work together as much as possible [4]. In our
definition, a project team consists of three interacting main
parties, i.e., the customer team, the development team, and the
security engineer(s). The customer team includes business
representatives, e.g. domain experts, product managers and end-
users. The customer team is responsible for providing the
requirements and for defining the priorities of the project. The
development team includes for example programmers, testers
and system analysts. They provide the technical skills, but they
also help the customer to refine the requirements and to define
acceptance tests. The role of the security engineer can be played
by one or several persons, who serve both the customer and the
developers with security expertise throughout the project. More
specifically, the security engineer primarily supports the
customer during the requirements phase by specifying the
security requirements. He or she plays the devil’s advocate and
identifies all the possible threats that need to be accounted for in
the system’s production environment. For developers, the
security engineer provides support mainly during
implementation where he participates in coaching and pair
programming.

4. Related Work
Several attempts have been made to incorporate security
activities into software development methods, e.g., by Breu et
al. [8] and McDermott [19]. However, their work has a more
formal character which could be more difficult to integrate with
XP practices. The concept of Abuse cases however is very
similar to what we propose with Abuser stories. Hope et al. also
provide a good overview of Abuse Cases [17]. Beznosov &
Kruchten identify points of conflict between agile development
processes and conventional security assurance techniques [6].
Siponen et al. examine how security can be integrated into agile
development methods in general, but do not target XP
specifically [24].
A number of recent results are directly related to our work.
Chivers et al. discuss how a security architecture can evolve
iteratively [10]. Another interesting example of a development
process with explicit support for security requirements is
AEGIS, which builds on the spiral model for software
development [12]. This process is similar to ours, but is not
specifically aligned to XP or agile development. Vetterling et al.
present a practical experience of applying the practices of the
Common Criteria to software development projects [29].
However, we believe this approach to be an example of a plan-
driven and more heavy-weight process and thus not suitable for
agile development.

Peeters has a proposal for defining agile security requirements
and he introduces Abuser stories [22]. He finds that Abuser
stories have served him well in a number of projects. Our work
is closely related to Peeters’ but goes further by making it more
explicit how Abuser stories fit into the overall development
process. We add new steps to the process for risk analysis by
defining Security-related User stories and cross-checking
against Abuser stories.
The Common Criteria implicitly defines a process for
requirement capturing which is applicable to a software
development process. This is, however, not explicitly integrated
into any existing software development method but rather
treated as a separate activity. Moreover, the activities of threat
identification and risk assessment are not covered in the
Common Criteria because the standard relies on commonly used
practices, defined in for example the ISO 13335-2 standard [18].

5. Conclusions and Future Plans
There is a tension between the needs of security engineering and
the practices of agile processes. The former has long benefited
from the waterfall lifecycle to “insert” security engineering,
especially the requirements, early in the cycle, and to execute
human and resource intensive activities only once in the cycle.
The latter advocate few written work artifacts, and an iterative
lifecycle that forces security-related activities to occur several
times. However, security engineering can benefit from iterative
development too [5], allowing a gradual discovery of security
issues, and a progressive implementation of countermeasures.
Iterative development will provide rapid feedback on the
effectiveness of security requirement process and its
implementation in the form of special user stories and design
rules. By applying the simple documentation techniques of
Agile methods and XP, such as index cards and whiteboard
drawings, security work also becomes less heavy and the
negative effects of needed rework in iterations is also reduced.
The dilemma between agile approaches and security concerns is
not unique to security. Other quality attributes found in complex
or mission critical systems are affected similarly: safety, high
availability, or high performance. In these cases as well,
requirements are not simply discovered by a dialog with the
customer, and captured in User stories. Adaptation of the basic
XP practices is required, a stronger emphasis on architecture
and design standards is necessary, but these concerns can also
be accommodated in an iterative lifecycle and a lightweight
process.
Further work is necessary to validate our approach in practice,
to determine how and how much security is affected by an agile
approach. Another issue for further work is to elaborate on how
security requirements are followed up using agile assurance
techniques, such as pair programming and testing. A first round
of validation is planned to be carried out through workshops in a
Software Process Improvement Networks (SPIN-Stockholm)
and through use of the process in more student projects. The
results of the first student project showed that possible ways of
improving our proposed process could be to include more
support for reasoning about the system environment. It is also
possible to enhance it by using more advanced risk analysis
methods if necessary. But this should be seen as normal process
adaptation.

In this paper we have shown how the elaboration of security
requirements can be integrated with the XP planning game. It is
our goal that by defining security requirements engineering
activities in an agile manner, these activities will actually be
carried out and not neglected altogether, as is so often the case
today.

6. Acknowledgments
The example application of the process presented in this paper
was partly funded by the European Commission through the IST
program under Framework 6 grant 001945. The authors also
wish to thank the master students for their valuable input
derived from working with the process.

References
[1] Abrams, M. D., Security Engineering in an Evolutionary

Acquisition Environment, in Proceedings of New Security
Paradigms Workshop, Charlottsville, VA, 1998, pp. 11-20.

[2] Aizuddin, A., The Common Criteria ISO/IEC 15408 The
insight, Some Thoughts, Questions and Issues Oct. 1, 2001.
http://www.sans.org/rr/whitepapers/standards/545.php
accessed June 17, 2005

[3] Amey P., and Chapman R., Static Verification and Extreme
Programming. Proceedings of the ACM SIGAda Annual
International Conference, 2003.

[4] Beck K., Extreme Programming Explained: Embrace
Change 2nd Edition. Addison-Wesley, 2004.

[5] Beznosov, K., eXtreme Security Engineering: On
Employing XP Practices to Achieve “Good Enough
Security” without Defining It, in Proc. of First ACM
Workshop on Business Driven Security Engineering
(BizSec), Fairfax, VA, USA, Oct. 31, 2003.

[6] Beznosov, K. and Kruchten, P., Towards Agile Security
Assurance, Proc. of the New Security Paradigm Workshop,
White Point Beach, NS, 2004, ACM, pp. 47-54.

[7] Blakley B., Heath C. and members of The Open Group
Security Forum, Security Design Patterns, The Open
Group, 2004.

[8] Breu R., Burger K., Hafner M., Jürens J., Popp G.,
Wimmel G. and Lotz V., Key Issues of a Formally Based
Process Model for Security Engineering, 16th International
Conference on Software & System Engineering & Their
Applications (ICSSEA), 2003.

[9] CC, ISO 15408 Common Criteria for Information
Technology Sec. Evaluation Version 2.1, August 1999.

[10] Chivers, H. Paige, R., Ge, X., Agile Security Using an
Incremental Security Architecture. Proceedings of Extreme
Programming and Agile Processes in Software Engineering
6th International Conference, XP 2005, Sheffield, UK,
2005.

[11] CORAS, http://www2.nr.no/coras/, accessed in Jan. 2006
[12] Flechais I M., Sasse A. and Hailes S. M. V., Bringing

Security Home: A Process for Developing Secure and
Usable Systems, ACM/SIGSAC New Security Paradigms
Workshop, Switzerland, August 2003

[13] Fowler M. and Foemmel M., Continuous Integration.
URL:http://www.martinfowler.com/articles/continuousInte
gration.html. Accessed in January 2006.

[14] Highsmith J. A., Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
New York: Dorset House, 2000.

[15] Hearn, J., Does the Common Criteria paradigm have a
future?, IEEE Security and Privacy, Vol. 2, Issue 1, 2004

[16] Höglund, G., McGraw, G., Exploiting Software : How to
Break Code, Addison-Wesley Professional, 2004

[17] Hope P., McGraw G., Anton A.., Misuse and Abuse Cases,
IEEE Security and Privacy, 2004

[18] ISO/IEC, 4th WD 13335-2- Information Technology-
Security Techniques- Management of information and
communications technology security- Part 2: Techniques
for information and communications technology security
risk management.

[19] McDermott J. and Fox C., Using abuse case models for
security requirements. Proceedings of the 15ths Annual
Computer Security Applications Conferences (ACSAC).
IEEE Computer Society Press, 1999.

[20] McDermott J. Abuse-case-based assurance arguments.
Using abuse case models for security requirements,
Proceedings of the 17ths Annual Computer Security
Applications Conferences, 2003.

[21] McGraw G. and Viega J., Building Secure Software: How
to Avoid Security Problems the Right Way, Addison-
Wesley, 2002.

[22] Peeters J. Agile Security Requirements Engineering.
Presented at the Symposium on Requirements Engineering
for Information Security, 2005.

[23] Poppendieck M. and Morsicato R, Using XP for Safety-
Critical Software, Cutter IT Journal, 15 (9), 2002, 12-16.

[24] Siponen M., Baskerville, R., Kuivalainen, T., Integrating
Security into Agile Development Methods, Proc. of the 38th
Hawaii International Conference on System Science, 2005

[25] SSE-CMM, Systems Security Engineering Capability
Maturity Model, Model Description Document Version 3.0.
URL: www.sse-cmm.org/model/ssecmmv2final.pdf.
Accessed in January 2004.

[26] Standish Group, The Chaos Report: Extreme Chaos, West
Yarmouth, MA: The Standish Group, 2001.

[27] ST-Lite V 1.1, July
2002 http://www.commoncriteriaportal.org/public/expert/in
dex.php?menu=6 accessed 2006-02-01

[28] Fast Track, Fast Track Assessment Methodology,
Information Assurance and Certification Services (IACS),
CESG.
http://www.cesg.gov.uk/site/iacs/index.cfm?menuSelected
=3&displayPage=31 Accessed August 25 2005

[29] Vetterling M. and Wimmel G., Secure Systems
Development Based on the PalME project, presented at
Tenth ACM SIGSOFT Symposium on Foundations of
Software Engineering, Charleston, South Carolina, USA,
2002.

[30] Verdon D, McGraw, G., Risk Analysis in Software Design.
IEEE Security and Privacy, 2(4), 2004, pp.79-84.

[31] Wäyrynen J., Bodén M. and Boström G., Security
Engineering and eXtreme Programming: an Impossible
marriage?, XP/Agile Universe 2004, C. Zannier, H.
Erdogmus, and L. Lindstrom, Eds. LNSC3134, Berlin:
Springer-Verlag, 2004, pp. 117-128.

[32] XP, Extreme Programming: A Gentle Introduction. URL:
http://www.extremeprogramming.org, Accessed in
September 2005

