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Frequency-dependent Model for Transient Stability Analysis
Federico Milano, IEEE Fellow, and Álvaro Ortega, IEEE Member

Abstract— This letter proposes a precise frequency-dependent model for
power systems that takes into account spatial variations of the frequency
in the network during a transient. In the proposed approach, boundary
conditions are synchronous machine rotor speeds and the variation of the
frequency is based on the concept of frequency divider recently proposed
by the authors. The proposed model leads to a more accurate simulation of
transient conditions than conventional models for angle and voltage stability
analysis. The letter discusses the theoretical background of the proposed
model and compares it with the standard transient stability model, as well
as with a fully-fledged dynamic phasor model through a 1,479-bus dynamic
model of the all-island Irish transmission system.

Index Terms— Frequency dependent models, transient stability analysis,
center of inertia, frequency divider.

I. INTRODUCTION

The conventional Transient Stability Model (TSM) assumes that the
frequency is constant and equal to the nominal one for the definition
of network parameters such as transmission line series reactances and
shunt susceptances [1], [2]. This approximation is widely adopted
in simulation software tools for transient stability analysis. However,
during a transient triggered by a large disturbance, e.g., the outage
of a large infeed, synchronous machine rotor speeds can deviate
significantly from their nominal value. This variations can be properly
captured by Electromagnetic Transients (EMT) models, which include
detailed three-phase AC dynamic models of all elements of the grid.
But EMT models are computationally too heavy to be used for the
stability analysis of large power systems.

Some proprietary software tools, such as Eurostag and PSS®E,
allow utilizing a modified version of the TSM with inclusion of a
variable frequency for the reactances of transmission lines and loads.
Eurostag utilizes a reference frequency, common to all devices [3].
Such a frequency is the center of inertia (COI), i.e., the weighted
average of synchronous machine rotor speeds connected to the network.
PSS®E implements another approach, i.e., calculates the numerical time
derivative of bus voltage phase angles using a filter time constant
of 0.04 s [4]. As we have throughly discussed in [5]–[7], however,
neither of these two techniques is accurate. On one hand, the frequency
of the COI is unique for the whole system and cannot account for
local variations of the frequency. The Eurostag model is thus not fully
accurate in the first seconds after a large contingency. On the other
hand, the numerical derivatives of bus voltage phase angles (as those
calculated by PSS®E) are always affected by numerical issues and/or
delays which can even lead to extraneous instabilities [6].

In this letter, we propose a Frequency Dependent Model (FDM)
for transient stability analysis based on the frequency divider formula
(FDF) presented in [5] that overcomes both issues above. The FDF

shows that the value of the frequency varies as a continuum along the
branches of the grid and synchronous machine rotor speeds constitute
the boundary conditions. Hence, during a transient, the frequency
not only varies from bus to bus, but also along the length of series
reactances of transmission lines and transformers. This observation
leads to the following question: what frequency should be used to
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compute correctly the parameters of network branches? The remainder
of this letter provides an answer to this question.

II. MODELLING

The FDF proposed in [5] allows estimating the frequencies at every
bus of the grid, as follows:

ωB(t)− 1n,1 = D(ωG(t)− 1m,1) , (1)

where
D = −(BBB +BBS)

−1BBG , (2)

where ωB is a n× 1 vector of the frequencies at system buses; BBB

is the n×n network susceptance matrix, i.e., the imaginary part of the
standard network admittance matrix; BBG, is the susceptance n ×m
matrix obtained using the stator and step-up transformer impedances of
the synchronous machines; BBS is a n× n diagonal matrix that takes
into account the internal susceptances of the synchronous machines
at generator buses; and 1n,1 and 1m,1 are unitary vectors of order n
and m, respectively. The interested reader can find in [5] a thorough
discussion on the accuracy of the FDF, which is fully independent from
the model of generators and their controllers, loads, compensation of
lines and cables, as well as from the size and topology of the network.

The vector of bus frequencies ωB allows directly defining frequency
dependent models of shunt devices, such as loads and capacitor banks.
A well-accepted load frequency-dependent model is:

p = p0 v
αp

h ωβp

q = q0 v
αq

h ωβq ,
(3)

where p0 and q0 are the nominal active and reactive power consump-
tions, respectively; v is the voltage magnitude at the load bus; and ωh
is the bus frequency as determined with (1), and the exponents are
determined either empirically or based on the nature of the device [8].

Less straightforward is to determine the frequency of series connec-
tions. Equation (1) is derived assuming that, for a series connection,
the frequency variation between one point to another is linear, as
illustrated in Fig. 1. The frequencies at buses h and k are imposed by
the generators, namely ωh and ωk. The frequency ωi at the intermediate
point i can be obtained from (1) as:

ωi =
xik
xtot

ωh +
xhi
xtot

ωk , (4)

where xtot = xhi + xik.

ξ
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ih kxhi xik
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Fig. 1. Radial system connecting two generators. This system serves to discuss
the frequency variation along a branch.
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Let us consider first a uniform transmission line and let ` be the
total length of the branch connecting nodes h and k, and ξ the distance
of point i from bus h. Consequently, ` − ξ is the distance of point i
from bus k. Then, according to (4), the frequency along the connection
between buses h and k can be rewritten as function of the position ξ:

ω(ξ) =
(`− ξ)ωh + ξωk

`
, ξ ∈ [ 0, ` ] , (5)

which states that the frequency varies linearly in a series connection
(see the plot depicted in Fig. 1).

v(t, ξ)

i(t, ξ)

ξ ξ + dξ

gℓdξ

lℓdξ rℓdξ

cℓdξ

Fig. 2. Transmission line section of length dξ.

To determine the value of the frequency to compute frequency-
dependent transmission line parameters, let us consider the infinitesimal
length dξ of the line, as shown in Fig. 2 where r`, l`, g` and c` are
the resistance, inductance, susceptance and capacitance, respectively,
in per unit length of the line. For uniform transmission lines, the series
impedance of the line is given by:∫ `

0

(r` + jω(ξ)l`)dξ = r``+ j
ωh + ωk

2
l`` = r + jω̂hkl (6)

where ω̂hk = 1
2
(ωh + ωk) is the average frequency between nodes

h and k; and r and l are the total resistance and inductance of the
line, respectively. Equation (6) can be easily extended to the case of a
non-uniform transmission line, e.g., a connection obtained as a series
of sections with different materials or topologies. Similarly, the shunt
susceptance of the line is obtained as:∫ `

0

(g` + jω(ξ)c`)dξ = g``+ j
ωh + ωk

2
c`` = g + jω̂hkc (7)

where g and c are the total susceptance and capacitance, respectively,
of the line. Note that (6) applies also to transformers. In fact, the
FDF expresses the variation of the frequency as a continuum of
series reactance but does not impose any assumption on the physical
dimension of the branch. For transformers, assuming dρ = r`dξ and
dλ = l`dξ, one has:∫ r

0

dρ+ j

∫ l

0

ω(λ)dλ = r + jω̂hkl (8)

where λ = l`ξ and the dependence of ω on the inductance λ is formally
analogous to (5):

ω(λ) =
(l − λ)ωh + λωk

l
, λ ∈ [ 0, l ] . (9)

Finally, let us consider the case of synchronous machines. Each
machine imposes the frequency, i.e., the rotor speed, at its emf behind
the internal reactances, not at the bus where the machine is connected.
The internal reactances of the machine thus constitute an antenna,
i.e., a series connection between the internal emf and the terminal
bus of the machine. The frequency at the emf is, by definition, the
rotor speed of the machine ωr , while the frequency at the bus ωh is
that determined through (1). Assuming a continuous linear variation of
the frequency from ωr to ωh and proceeding in a similar manner as
discussed for the transmission line and transformer, we obtain that the
average frequency along the internal stator reactances of the machine

is ω̂rh = 1
2
(ωr + ωh). Thus, the dependency of the machine stator

voltage equations on the frequency can be written as follow:

0 = raid + ω̂rhψq + vd

0 = raiq − ω̂rhψd + vq ,
(10)

where, using a conventional notation, ra is the armature resistance; and
vd and vq are the Park components of the voltage; id and iq are the Park
components of the current; and ψd and ψq are the Park components
of the magnetic fluxes.

III. CASE STUDY

The model of the Irish Transmission system grid, which is provided
by EirGrid, the Irish TSO, consists of 1,479 buses, 1,851 transmission
lines and transformers, and 245 loads. Based on this topology, a
synthetic dynamic model including 21 conventional synchronous power
plants modeled with 6th order synchronous machine models with AVRs
and turbine governors, 6 PSSs, and 176 wind power plants, of which
142 are DFIGs and 34 CSWTs has been elaborated by researchers with
the authors’ department. This model provides a dynamic representation
of the Irish electrical grid which is topologically accurate and approx-
imates the dynamics of the actual Irish grid. However, dynamic data
are guessed and the results obtained in this section, while realistic, do
not represent any actual operating condition. All results shown in this
section are obtained using Dome [9].

Figure 3 shows the transient response of the all-island Irish system
discussed above following the outage of the largest infeed, namely, the
HVDC interconnection with UK. This is the most severe contingency
that can happen in the Irish system which is considered here to
dramatize frequency variations.
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Fig. 3. Rotor angular speed of a synchronous machine (top panel) and voltage
magnitude at a load bus (lower panel) of the all-island Irish system following
the outage of the largest infeed.

In Fig. 3, we compare the following three models:
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• The TSM that considers constant reactances and susceptances
everywhere in the grid;

• The proposed FDM of loads, branches and synchronous machines.
Loads are assumed to be full-load induction motors with αp =
0.1, αq = 0.6, βp = 2.8 and βq = 1.8 [10]; and

• A Dynamic Phasor Model (DPM) that includes machine flux and
line dynamics.

Note that the DPM is the dqo transformation of the fully-fledged EMT

model with the following approximations: (i) load is assumed perfectly
balanced; (ii) no harmonics are considered; and (iii) the fundamental
frequency is shifted by means of the dqo transformation.

Simulation results show that the TSM is conservative, as the fre-
quency nadir is about 100 mHz lower than that obtained with the more
precise FDM. Voltage variations are also, in general, bigger for the
standard model than for the FDM. Finally, the computational burden of
the FDM model is only about the double than the conventional one (14 s
vs. 7.5 s, using an integration time step of 0.01 s), despite the significant
nonlinearity introduced by the dependency of network parameters on
the frequency. On the other hand, the FDM and DPM give basically same
results, except for some spikes in the voltages right after the occurrence
of the contingency. However, the DPM requires a much smaller time
step to properly integrate flux and line dynamics. To complete the DPM

simulation shown in Figure 3, in fact, required about 165 s with a time
step of 0.002 s.

Figure 4 shows a further comparison of the trajectories of stator
fluxes of a synchronous generator of the Irish system following the
same contingency discussed above and considering the FDM with two
scenarios, namely, with and without stator flux dynamics. The results
indicate that the effect of the dynamics of the fluxes is visible only
in the very first instants after the contingency and do not modify the
overall behavior of the machine.
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Fig. 4. Stator dq-frame fluxes of a synchronous machine of the all-island Irish
system following the outage of the largest infeed.

IV. CONCLUSIONS

In this letter, we propose an intermediate model between the transient
stability and EMT approaches. With respect to the existing transient
stability models, the FDM takes into account the actual local variations
of the frequency at every bus of the system. This allows properly
taking into account, during the first seconds after a contingency,
the electromechanical oscillations of the synchronous machines. With
respect to an EMT approach, the FDM neglects fast electromagnetic
dynamics, which anyway damp in the first tens of milliseconds after
a contingency and, thus, have little impact on the electromechanical
dynamics on which we focus in this letter. As a result, the proposed
FDM enhances the accuracy of the standard transient stability model
while avoiding the computational burden of the fully-fledged EMT

simulations.
Based on simulation results, we conclude that the proposed FDM

can be an useful improvement with respect to conventional models as
it is less conservative and can thus lead to better estimations of the
transient behavior of power systems, especially those with low inertia,
which are thus prone to high frequency variations.
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