Journal article Open Access

A modified pseudo-steady-state analytical expression for battery modeling

Kudakwashe Chayambuka; Grietus Mulder; Dmitri L. Danilov; Prof. Peter H. L. Notten


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial Share Alike 2.0 Generic</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-04-24</subfield>
  </datafield>
  <controlfield tag="005">20200120162900.0</controlfield>
  <controlfield tag="001">3253470</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3253470</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The solid-state spherical diffusion equation with flux boundary conditions is a standard problem in lithium-ion battery simulations. If finite difference schemes are applied, many nodes across a discretized battery electrode become necessary, in order to reach a good approximation of solution. Such a grid-based approach can be appropriately avoided by implementing analytical methods which reduce the computational load. The pseudo-steady-state (PSS) method is an exact analytical solution method, which provides accurate solid-state concentrations at all current densities. The popularization of the PSS method, in the existing form of expression, is however constrained by a solution convergence problem. In this short communication, a modified PSS (MPSS) expression is presented which provides uniformly convergent solutions at all times. To minimize computational runtime, a fast MPPS (FMPPS) expression is further developed, which is shown to be faster by approximately three orders of magnitude and has a constant time complexity. Using the FMPSS method, uniformly convergent exact solutions are obtained for the solid-state diffusion problem in spherical active particles.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">VITO, Boeretang 200, 2400 Mol, Belgium; EnergyVille, Thor Park 8310, 3600 Genk, Belgium</subfield>
    <subfield code="a">Grietus Mulder</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, Netherlands; Forschungszentrum Jülich (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Dmitri L. Danilov</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, Netherlands; Forschungszentrum Jülich (IEK-9), D-52425 Jülich, Germany; University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia</subfield>
    <subfield code="a">Prof. Peter H. L. Notten</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1296655</subfield>
    <subfield code="z">md5:f8f36f415a156b0e8798b0d4c07a25c8</subfield>
    <subfield code="u">https://zenodo.org/record/3253470/files/A modified PSS analytical expression for battery modeling final.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">VITO, Boeretang 200, 2400 Mol, Belgium; EnergyVille, Thor Park 8310, 3600 Genk, Belgium; Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, Netherlands</subfield>
    <subfield code="a">Kudakwashe Chayambuka</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Porous electrodes, Pseudo-steady state, Analytical methods, Spherical diffusion.</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.ssc.2019.04.011</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A modified pseudo-steady-state analytical expression for battery modeling</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">769900</subfield>
    <subfield code="a">DEsign and MOdelling for improved BAttery Safety and Efficiency</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
50
67
views
downloads
Views 50
Downloads 67
Data volume 86.9 MB
Unique views 49
Unique downloads 64

Share

Cite as