
Compiler Testing via a Theory of Sound
Optimisations in the C11/C++11 Memory Model

Robin Morisset
ENS & INRIA

Pankaj Pawan
IIT Kanpur & INRIA

Francesco Zappa Nardelli
INRIA

Abstract
Compilers sometimes generate correct sequential code but break
the concurrency memory model of the programming language:
these subtle compiler bugs are observable only when the miscom-
piled functions interact with concurrent contexts, making them par-
ticularly hard to detect. In this work we design a strategy to reduce
the hard problem of hunting concurrency compiler bugs to differen-
tial testing of sequential code and build a tool that puts this strategy
to work. Our first contribution is a theory of sound optimisations in
the C11/C++11 memory model, covering most of the optimisations
we have observed in real compilers and validating the claim that
common compiler optimisations are sound in the C11/C++11 mem-
ory model. Our second contribution is to show how, building on this
theory, concurrency compiler bugs can be identified by comparing
the memory trace of compiled code against a reference memory
trace for the source code. Our tool identified several mistaken write
introductions and other unexpected behaviours in the latest release
of the gcc compiler.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors – compilers; D2.4 [Software Engineering]:
Software/Program Verification; F.3.1 [Specifying and Verifying
and Reasoning about Programs]

Keywords C11/C++11 memory model; compiler testing

1. Random testing for concurrency compiler bugs
The C and C++ languages were originally designed without concur-
rency support: threads were available via external libraries, yielding
unexpected behaviours and misunderstandings between program-
mers and compiler writers.1 The recent revision of the C and C++
standards [6] does provide a precise semantics for threads: well-
synchronised programs must exhibit only sequentially consistent
behaviours, racy programs can have any behaviour, and an escape
mechanism with a complex semantics, called low-level atomics, en-
ables programmers to write high-performance but portable concur-
rent code. The resulting model is intricate and the interactions with

1 as an example, this recent discussion illustrates the mismatch and tensions
between what Linux kernel developers expect from compilers and what gcc
does: http://gcc.gnu.org/ml/gcc/2012-02/msg00005.html.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

#include <stdio.h>
#include <pthread.h>

int g1 = 1; int g2 = 0;

void *th_1(void *p) {
for (int l = 0; (l != 4); l++) {

if (g1) return NULL;
for (g2 = 0; (g2 >= 26); ++g2)

;
}

}

void *th_2(void *p) {
g2 = 42;
printf("%d\n",g2);

}

int main() {
pthread_t th1, th2;
pthread_create(&th1, NULL, th_1, NULL);
pthread_create(&th2, NULL, th_2, NULL);
(void)pthread_join (th1, NULL);
(void)pthread_join (th2, NULL);

}

Figure 1: foo.c, a concurrent program miscompiled by gcc 4.7.0.

compiler optimisations are not entirely understood. Today’s C and
C++ compilers, whose optimisers were initially developed in ab-
sence of any well-defined memory model, are being extended to
support the new concurrency standard. This is a hard task. Past re-
search showed that all production-quality C compilers used to gen-
erate incorrect code for accessing volatile variables [10]: the mem-
ory model defined by the volatile modifier is trivial compared to
the new C11/C++11 model. Correctly supporting the new memory
model in today’s compilers will be an error-prone enterprise, re-
quiring significant development effort. It is thus vital to investigate
techniques to build assurance in widely used implementations of C
and C++.

Consider for instance the C program in Figure 1. Can we guess
its output? This program spawns two threads executing the func-
tions th_1 and th_2 and waits for them to terminate. The two
threads share two global memory locations, g1 and g2, but a care-
ful reading of the code reveals that the inner loop of th_1 is never
executed and g2 is only accessed by the second thread, while g1
is only accessed by the first thread. According to the C11/C++11
standards this program should always print 42 on the standard out-
put: the two threads do not access the same variable in conflicting

http://gcc.gnu.org/ml/gcc/2012-02/msg00005.html

ways, the program is data-race free, and its semantics is defined as
the interleavings of the actions of the two threads.

If we compile the above code with the version 4.7.0 of gcc on an
x86 64 machine running Linux, and we enable some optimisations
with the -O2 flag (as in g++ -std=c++11 -lpthread -O2 -S foo.c)
then, sometimes, the compiled code prints 0 to the standard output.
This unexpected outcome is caused by a subtle bug in gcc’s imple-
mentation of the loop invariant code motion (LIM) optimisation. If
we inspect the generated assembly we discover that gcc saves and
restores the content of g2, causing g2 to be overwritten with 0:

th_1:
movl g1(%rip), %edx # load g1 (1) into edx
movl g2(%rip), %eax # load g2 (0) into eax
testl %edx, %edx # if g1 != 0
jne .L2 # jump to .L2
movl $0, g2(%rip)
ret

.L2:
movl %eax, g2(%rip) # store eax (0) into g2
xorl %eax, %eax # return 0 (NULL)
ret

This optimisation is sound in a sequential world because the extra
store always rewrites the initial value of g2 and the final state is un-
changed. However, as we have seen, this optimisation is unsound in
a concurrent context as that provided by th_2 and the C11/C++11
standards forbid it.

How to search for concurrency compiler bugs? We have a com-
piler bug whenever the code generated by a compiler exhibits a be-
haviour not allowed by the semantics of the source program. Differ-
ential random testing proved successful at hunting compiler bugs.
The idea is simple: a test harness generates random, well-defined,
source programs, compiles them using several compilers, runs the
executables, and compares the outputs. The state of the art is rep-
resented by the Csmith tool by Yang, Chen, Eide and Regehr [24],
which over the last four years has discovered several hundred bugs
in widely used compilers, including gcc and clang. However this
work cannot find concurrency compiler bugs like the one we de-
scribed above: despite being miscompiled, the code of th_1 still
has correct behaviour in a sequential setting.

A naive approach to extend differential random testing to con-
currency bugs would be to generate concurrent random programs,
compile them with different compilers, record all the possible out-
comes of each program, and compare these sets. This works well
in some settings, such as the generation and comparison of litmus
tests to test hardware memory models; see for instance the work by
Alglave et al. [3]. However this approach is unlikely to scale to the
complexity of hunting C11/C++11 compiler bugs. Concurrent pro-
grams are inherently non-deterministic and optimisers can compile
away non-determism. In an extreme case, two executables might
have disjoint sets of observable behaviours, and yet both be correct
with respect to a source C11 or C++11 program. To establish cor-
rectness comparing the final checksum of the different binaries is
not enough: we must ensure that all the behaviours of a compiled
executable are allowed by the semantics of the source program.
The Csmith experience suggests that large program sizes (∼80KB)
are needed to maximise the chance of hitting corner cases of the
optimisers; at the same time they must exhibit subtle interaction
patterns (often unexpected, as in the example above) while being
well-defined (in particular data-race free). Capturing the set of all
the behaviours of such large concurrent programs is tricky as it can
depend on rare interactions between threads; computing all the be-
haviours allowed by the C11/C++11 semantics is even harder.

Despite this, we show that differential random testing can be
used successfully for hunting concurrency compiler bugs. First, C
and C++ compilers must support separate compilation and the con-

currency model allows any function to be spawned as an indepen-
dent thread. As a consequence compilers must always assume that
the sequential code they are optimising can be run in an arbitrary
concurrent context, subject only to the constraint that the whole
program is well-defined (race-free on non-atomic accesses, etc.),
and can only apply optimisations that are sound with respect to
the concurrency model. Second, it is possible to characterise which
optimisations are correct in a concurrent setting by observing how
they eliminate, reorder, or introduce, memory accesses in the traces
of the sequential code with respect to a reference trace. Combined,
these two remarks imply that testing the correctness of compilation
of concurrent code can be reduced to validating the traces generated
by running optimised sequential code against a reference (unopti-
mised) trace for the same code.

We illustrate this idea with program foo.c from Figure 1.
Traces only report accesses to global (potentially shared) memory
locations: optimisations affecting only the thread-local state cannot
induce concurrency compiler bugs. On the left below, the reference
trace for th_1 initialises g1 and g2 and loads the value 1 from g1:

Init g1 1
Init g2 0
Load g1 1

Init g1 1
Init g2 0
Load g1 1
Load g2 0
Store g2 0

On the right above, the trace of the gcc -O2 generated code per-
forms an extra load and store to g2 and, since arbitrary store intro-
duction is provably incorrect in the C11/C++11 concurrency model
we can detect that a miscompilation happened. Figure 2 shows an-
other example, of a randomly generated C function together with
its reference trace and an optimised trace. In this case it is possible
to match the reference trace (on the left) against the optimised trace
(on the right) by a series of sound eliminations and reordering of
actions.

Contributions This approach to compiler testing crucially relies
on a theory of sound optimisations over executions of C11/C++11
programs. Building on the work by Ševčı́k [17, 19] for an idealised
DRF model, our first contribution is the study and correctness
proof of several criteria for sound optimisations in the C11/C++11
model, covering all the optimisations we observed in testing real
compilers (with the exception of irrelevant read introductions and
merging of accesses), presented in Section 3. The second contri-
bution of this work is a strategy to perform differential testing of
compilers against a memory model, reducing the hard problem of
hunting concurrency compiler bugs to matching memory traces re-
alised by sequential code. The cmmtest tool, which we designed
and developed, puts the testing strategy to work building on our the-
ory of C11/C++11 optimisations. These are presented in Section 4.
Our third contribution, in Section 5, is a report on some concur-
rency compiler bugs and other unexpected behaviours caught by
preliminary testing of gcc. The gcc developers promptly fixed all
the reported bugs and are integrating our soundness criteria in the
gcc optimiser. We begin in Section 2 by introducing our theory
of semantic optimisations and recalling the C11/C++11 memory
model and conclude with a discussion of related work. Complete
proofs and an evaluation release of cmmtest are on the web [1].

2. Program Transformations and the C11/C++11
Memory Model

Compiler optimisations are usually described as program transfor-
mations over an intermediate representation of the source code; a
typical compiler performs literally hundreds of optimisation passes.
Although it is possible to prove the correctness of individual trans-
formations, this presentation does not lend itself to a thorough char-
acterisation of what program transformations are valid.

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
unsigned int g5 = 1UL;

void f(){
int *l8 = &g6;
int l36 = 0x5E9D070FL;
unsigned int l107 = 0xAA37C3ACL;
g4 &= g3;
g5++;
int *l102 = &l36;
for (g6 = 4; g6 < (-3); g6 += 1);
l102 = &g6;
*l102 = ((*l8) && (l107 << 7)*(*l102));

}

This randomly generated function generates the following traces if
compiled with gcc -O0 and gcc -O2.

Init g6 6 Init g4 1 Init g5 1
RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaW* Load g6 4
RaW* Load g6 4
 Store g6 1
RaW* Load g4 0

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

All the events in the optimised trace can be matched with events in
the reference trace by performing valid eliminations and reorder-
ings of events. Eliminated events are struck-off while the reorder-
ings are represented by the arrows.

Figure 2: successful matching of reference and optimised traces

In a source program each thread consists of a sequence of
instructions. During the execution of a program, any given static
instruction may be iterated multiple times (for example due to
looping) and display many behaviours. For example reads may
read from different writes and conditional branches may be taken
or not. We refer to each such instance of the dynamic execution
of an instruction as an instruction instance. More precisely, each
instruction instance performs zero, one, or more shared memory
accesses, which we call actions. We account for all the differing
ways a given program can execute by identifying a source program
with the set of sets of all the actions (annotated with additional
information as described below) it can perform when it executes in
an arbitrary context. We call the set of the actions of a particular
execution an opsem and the set of all the opsems of a program an
opsemset. For instance, the snippet of code below:

x = 1; y = 1; if (x == y){x = 42;}

has, among others, the two opsems below:

WNA x 1

WNA y 1

RNA x 1 RNA y 1

WNA x 42

WNA x 1

WNA y 1

RNA x 1 RNA y 2

The opsem on the left corresponds to an execution where the reads
read the last values written by the thread itself; the opsem on the
right accounts for an arbitrary context that concurrently updated
the value of y to 2. Nodes represent actions and black arrows show

for (i=0; i<2; i++) {
z = z + y + i;
x = y;

}

⇒
t = y; x = t;
for (i=0; i<2; i++) {

z = z + t + i;
}

WNA z 3

WNA x 3

RNA y 3 RNA z 3

WNA z 7

RNA z 0 RNA y 3

RNA y 3

RNA y 3

WNA x 3

WNA x 3

WNA z 3

RNA z 3

WNA z 7

RNA y 3

RNA z 0

Figure 3: effect of loop invariant code motion (LIM) on an opsem

the sequenced-before relation, which orders actions (by the same
thread) according to their program order. The sequenced-before
relation is not total because the order of evaluation of the arguments
of functions, or of the operands of most operators, is underspecified
in C and C++. The memory accesses are non-atomic, as denoted by
the NA label.

We can then characterise the effect of arbitrary optimisations of
source code directly on opsemsets. On a given opsem, the effect of
any transformation of the source code is to eliminate, reorder, or
introduce actions. If the optimiser performs constant propagation,
the previous code is rewritten as:

x = 1; y = 1; if (1 == 1){x = 42;}

and its unique opsem is depicted here on the right. This opsem

WNA x 1

WNA y 1

WNA x 42

can be obtained from the one above on the left by
eliminating the two read actions. A more complex
example is shown in Figure 3, where the loop on the
left is optimised by LIM. The figure shows opsems
for the initial state z=0, y=3 assuming that the code
is not run in parallel with an interfering context.
Here the effect of the LIM optimisation is not only
to remove some actions (in blue) but also to reorder the write to x.

An opsem captures a possible execution of the program, so by
applying a transformation to an opsem we are actually optimising
one particular execution. Lifting pointwise this definition of seman-
tic transformations to opsemsets enables optimising all the execu-
tion paths of a program, one at a time, thus abstracting from actual
source program transformation.

In the rest of this section we give a high-level overview of the
C11/C++11 memory model as formalised by Batty et al. [4], defin-
ing opsems, opsemsets and executions, while in the next section we
formalise program transformations and prove their correctness.

2.1 Background: overview of the C11/C++11 memory model
Let l range over locations (which are partitioned into non-atomic
and atomic), v over values and tid ∈ {1..n} over thread identifiers.
We consider the following actions:
mem ord, µ ::= NA | SC | ACQ | REL | R/A | RLX
φ ::= Rµ l v |Wµ l v | Lock l | Unlock l | Fenceµ | RMWµ l v1 v2

actions ::= aid, tid:φ

The possible actions are loads from and stores to memory, lock and
unlock of a mutex, fences, and read-modify-writes of memory lo-
cations. Each action is identified by an action identifier aid (ranged

over by r, w, . . .) and specifies its thread identifier tid, the location
l it affects, the value read or written v (when applicable), and the
memory-order µ (when applicable).2 In the drawings we omit the
action and thread identifiers.

The thread-local semantics identifies a program with a set
of opsems (ranged over by O): triples (A, sb, asw) where A ∈
P(actions) and sb, asw ⊆ A × A are the sequenced-before
and additional-synchronised-with relations. Sequenced-before (de-
noted sb) was introduced above; it is transitive and irreflexive and
only relates actions by the same thread; additional-synchronised-
with (denoted asw) contains additional edges from thread creation
and thread join, and in particular orders initial writes to memory
locations before all other actions in the execution.

The thread-local semantics assumes that all threads run in an
arbitrary concurrent context which can update the shared memory
at will. This is modelled by reads taking unconstrained values. We
say that a set of opsems S is receptive if, for every opsem O, for
every read action r, t:Rµ l v in the opsem O, for all values v′ there
is an opsem O′ in S which only differs from O because the read r
returns v′ rather than v, and for the actions that are sequenced-after
r. Intuitively a set of opsems is receptive if it defines a behaviour
for each possible value returned by each read.

We call the set of all the opsems of a program an opsemset,
ranged over by P . The thread local semantics ensures that opsem-
sets are receptive. Opsems and opsemsets are subject to several
well-formedness conditions, e.g. atomic accesses must access only
atomic locations, which we omit here and can be found in [4]. We
additionally require opsemsets to be sb-prefix closed, assuming that
a program can halt at any time. Formally, we say that an opsem O′

is an sb-prefix of an opsem O if there is an injection of the ac-
tions of O′ into the actions of O that behaves as the identity on
actions, preserves sb and asw, and, for each action x ∈ O′, when-
ever x ∈ O and y <sb x, it holds that y ∈ O′.

Executions The denotation of each thread in an opsem is ag-
nostic to the behaviour of the other threads of the program: the
thread-local semantics takes into account only the structure of ev-
ery thread’s statements, not the semantics of memory operations. In
particular, the values of reads are chosen arbitrarily, without regard
for writes that have taken place. The memory model filters inconsis-
tent opsems by constructing additional relations and checking the
resulting candidate executions against the axioms of the model. For
this an execution witness (denoted byW) for an opsem specifies an
interrelationship between memory actions of different threads via
three relations: reads-from (rf) relates a write to all the reads that
read from it; the sequential consistent order (sc) is a total order over
all SC actions; and modification order (mo) – or coherence – is the
union of a per-location total order over writes to each atomic loca-
tion. From these, the model infers the relations synchronises-with
(denoted sw), which defines synchronisation and is described in
detail below, and happens-before (denoted hb), showing the prece-
dence of actions in the execution. Key constraints on executions
depend on the happens-before relation, in particular a non-atomic
read must not read any write related to it in hb other than its im-
mediate predecessor. This property is called consistent non-atomic
read values, and for writes w1 and w2 and a read r accessing the
same non-atomic location, the following shapes are forbidden:

hb

rf

w1 w2 r
hb hb

rf

r w

2 we omit consume atomics: their semantics is intricate (e.g. happens-before
is not transitive in the full model) and at the time of writing no major
compiler profits from the their weaker semantics, treating consume as
acquire. By general theorems [5], our results remain valid in the full model.

For atomic accesses the situation is more complex, and atomic
reads can read from hb-unrelated writes.

Happens-before is a partial relation defined as the transitive
closure of sb, asw and sw: hb = (sb ∪ asw ∪ sw)+.

We refer to a pair of an opsem and witness (O,W) as a can-
didate execution. A pair (O,W) that satisfies a list of consistency
predicates on these relations (including consistent non-atomic read
values) is called a pre-execution. The model finally checks if none
of the pre-executions contain an undefined behaviour. Undefined
behaviours arise from unsequenced races (two conflicting accesses
performed by the same thread not related by sb), indeterminate
reads (an access that does not read a written value), or data races
(two conflicting accesses not related by hb), where two accesses are
conflicting if they are to the same address and at least one is a non-
atomic write. Programs that exhibit an undefined behaviour (e.g. a
data-race) in one of their pre-executions are undefined; programs
that do not exhibit any undefined behaviour are called well-defined,
and their semantics is given by the set of their pre-executions.

Synchronisation Synchronisation between threads is captured by
the sw relation. The language provides two mechanisms for es-
tablishing synchronisation between threads and enabling race-free
concurrent programming: mutex locks and low-level atomics. The
semantics of mutexes is intuitive: the sc relation, part of the wit-
ness, imposes a total order over all lock and unlock accesses, and
a synchronised-with (sw) edge is added between every unlock ac-
tion, and every lock of the same mutex that follows it in sc-order.
Low-level atomics are specific to C/C++ and designed as an escape
hatch to implement high-performance racy algorithms. Atomic op-
erations do not race with each other, by definition, and their seman-
tics is specified by a memory-order attribute. Sequentially consis-
tent atomics have the strongest semantics: all SC reads and writes
are part of the total order sc (acyclic with hb). An SC read can
only read from the closest sc-preceding write to the same loca-
tion. A subtlety of the model is that, although sc and hb must be
compatible, sc is not included in hb. Sequentially consistent atom-
ics, as well as release-acquire atomics, generate synchronisation
edges, which are included in hb. This is best explained for a classic
message-passing idiom. Imagine that one thread writes some (per-
haps multi-word) data x and then an atomic flag a, while another
waits to see that flag write before reading the data:

x=0; atomic a=0

x = 1;
a.store(1, rel);

while (0 == a.load(acq)) {};
int r = x;

The synchronisation between the release and acquire ensures that
the sender’s write of x will be seen by the receiver. Below we depict
a typical opsem for this program; we represent the asw relation
with the double horizontal line: the init actions are asw-before

WNA x 1

WREL a 1

RACQ a 0

RACQ a 1

RNA x 1

sb

sb

sb

sb
rf,sw,hb

rf,hb

WNA x 0 WNA a 0
all other events. The witness has
an rf arrow between the write-
release and read-acquire on a to
justify that the read returns 1. A
read between a write-release and
a read-acquire generates an sw
edge. Since hb includes sb and
sw, the write of 1 to x is the last
write in the hb order before the
read of the second thread, which
is then forced to return 1. Relaxed atomics instead do not generate
synchronisation edges sw; they are only forbidden to read from the
future, i.e. from writes later in hb.

Observable behaviour The C11/C++11 memory model does not
explicitly define the observable behaviour of an execution. We ex-
tend the model with a special atomic location called world, and
model the observable side-effects of the program (e.g., writes on

stdout) by relaxed writes to that location. The relaxed attribute
guarantees that these accesses are totally ordered with each other, as
captured by the mo relation. As a result, the observable behaviour
of a pre-execution is the restriction of the mo relation to the dis-
tinguished world location. If none of its pre-executions exhibit an
undefined behaviour, then the observable behaviour of a program is
the set of all observable behaviours of its executions.

3. Sound Optimisations in the C Memory Model
C and C++ are shared-memory-concurrency languages with ex-
plicit thread creation and implicit sharing: any location might be
read or written by any thread for which it is reachable from vari-
ables in scope. It is the programmer’s responsibility to ensure that
such accesses are race-free. This implies that compilers can per-
form optimisations that are not sound for racy programs and com-
mon thread-local optimisations can still be done without the com-
piler needing to determine which accesses might be shared.

Ševčı́k showed that a large class of elimination and reordering
transformations are correct (that is, do not introduce any new be-
haviour when the optimised code is put in an arbitrary data-race
free context) in an idealised DRF model [17, 19]. In this section
we adapt and extend his results to optimise non-atomic accesses in
the C11/C++11 memory model. As we have discussed, we classify
program transformations as eliminations, reorderings, and intro-
ductions over opsemsets.

3.1 Eliminations of actions
The semantic elimination transformation is general enough to cover
optimisations that eliminate memory accesses based on data-flow
analysis, such as common subexpression elimination, induction
variable elimination, and global value numbering, including the
cases when these are combined with loop unrolling.

We define semantic elimination and discuss informally its
soundness criterion; we then state the soundness theorems and
briefly describe the proof structure.

Definition 3.1. An action is a release if it is an unlock action,
an atomic write with memory-order REL or SC, a fence or read-
modify-write with memory-order REL, R/A or SC.

Semantically, release actions can be seen as potential sources of
sw edges. The intuition is that they “release” permissions to access
shared memory to other threads.

Definition 3.2. An action is an acquire if it is a lock action, or
an atomic read with memory-order ACQ or SC, or a fence or read-
modify-write with memory order ACQ, R/A or SC.

Acquire actions can be seen as potential targets of sw edges; the in-
tuition is that they “acquire” permissions to access shared memory
from other threads.

To simplify the presentation we omit dynamic thread creation.
This is easily taken into account by stating that spawning a thread
has release semantics, while the first accesses in sb-order of the
spawned function have acquire semantics. Reciprocally, the last
actions of a thread have release semantics and a thread-join has
acquire semantics.

A key concept is that of a same-thread release-acquire pair:

Definition 3.3. A same-thread release-acquire pair (shortened st-
release-acquire pair) is a pair of actions (r, a) such that r is a
release, a is an acquire, and r <sb a.

Note that these may be to different locations and never syn-
chronise together. To understand the role they play in optimisation
soundness, consider the code on the left, running in the concurrent
context on the right:

x=0; atomic a1,a2=0

x = 1;
a1.store(1,rel);
while(0==a2.load(acq)) {};
x = 2;

while(0==a1.load(acq)) {};
printf("%i",x);
a2.store(1,rel);

All executions have similar opsems and witnesses, depicted below
(we omitted rf arrows from initialisation writes). No consistent ex-
ecution has a race and the only observable behaviour is printing 1.

WNA x 1

WREL a1 1

RACQ a 0

RACQ a 1

WREL a2 1

sb

sb

sb

sbrf,sw,hb

WNA x 0 WNA a1 0

RACQ a2 0

RACQ a2 1

WNA x 2

sb

sb

sb

WNA a2 0

rf,sw,hb

WRLX world 1

RNA x 1
sb

rf

Eliminating the first store to
x (which might appear redun-
dant as x is later overwritten by
the same thread) would preserve
DRF but would introduce a new
behaviour where 0 is printed.
However, if either the release or
the acquire were not in between
the two stores, then this context
would be racy (respectively be-
tween the load performed by the
print and the first store, or be-
tween the load and the second
store) and it would be correct to
optimise away the first write. More generally, the proof of the The-
orem 3.1 below clearly shows that the presence of an intervening
same-thread release-acquire is a necessary condition to allow a dis-
criminating context to interact with a thread without introducing
data races.

Definition 3.4. A read action a, t:RNA l v is eliminable in an opsem
O of the opsemset P if one of the following applies:

Read after Read (RaR): there exists another action r, t:RNA l v
such that r <sb a, and there does not exist a memory access
to location l or a st-release-acquire pair sb-between r and a;

Read after Write (RaW): there exists an action w, t:WNA l v such
that w <sb a, and there does not exist a memory access to
location l or a st-release-acquire pair sb-between w and a;

Irrelevant Read (IR): for all values v′ there exists an opsem O′ ∈
P and a bijection f between actions in O and actions in O′,
such that f(a) = a′, t:RNA l v

′, for all actions u ∈ O different
from a, f(u) = u, and f preserves sb and asw.

A write action a, t:WNA l v is eliminable in an opsem O of the
opsemset P if one of the following applies:

Write after Read (WaR): there exists an action r, t:Rl v such that
r <sb a, and there does not exist a memory access to location l
or a st-release-acquire pair sb-between r and a;

Overwritten Write (OW): there exists another actionw, t:WNA l v
′

such that a <sb w, and there does not exist a memory access to
location l or a st-release-acquire pair sb-between a and w;

Write after Write (WaW): there exists another action w, t:WNA l v
such that w <sb a, and there does not exist a memory access to
location l or a st-release-acquire pair sb-between w and a.

Note that the OW rule is the only rule where the value can differ
between the action eliminated and the action that justifies the elim-
ination. The IR rule can be rephrased as “a read in an execution
is irrelevant if the program admits other executions (one for each
value) that only differ for the value returned by the irrelevant read”.

Definition 3.5. An opsemO′ is an elimination of an opsemsetO if
there exists a injection f : O′ → O that preserves actions, sb, and
asw, and such that the setO\f(O′) contains exactly one eliminable
action. The function f is called an unelimination.

To simplify the proof of Theorem 3.1 the definition above al-
lows only one elimination at a time (this avoids a critical pair be-
tween the rules OW and WaW whenever we have two writes of

the same value to the same location), but, as the theorem shows,
this definition can be iterated to eliminate several actions from one
opsem while retaining soundness. The definition of eliminations
lifts pointwise to opsemsets:

Definition 3.6. An opsemset P ′ is an elimination of an opsemset
P if for all opsem O′ ∈ P ′ there exists an opsem O ∈ P such that
O′ is an elimination of O.

In the previous section we did not describe all the intricacies
of the C11/C++11 model but our theory takes all of them into
account. For example, a release fence followed by an atomic write
behaves as if the write had the REL attribute, except that the sw edge
starts from the fence action. Another example is given by release

rf

WREL a 1

WRLX a 2

WRLX a 3

sb,mo

RACQ a 3
sb,mo

sw,hb

sequences: if an atomic write with
attribute release is followed im-
mediately in mo-order by one or
more relaxed writes in the same
thread (to the same location), and an
atomic load with attribute acquire
reads-from one of these relaxed
stores, an sw edge is created between the write release and the load
acquire, analogously to the case where the acquire reads directly
from the first write. These subtleties must be taken into account in
the elimination correctness proof but do not invalidate the interven-
ing same-thread release-acquire pair criterion. This follows from a
property of the C11/C++11 design that makes every sw edge relate
a release action to an acquire action. For instance, in the program
below it is safe to remove the first write to x as OW, because all
discriminating contexts will be necessarily racy:

a1.store(1,rel);
x = 1;
a1.store(2,rlx);
while(0==a2.load(acq)) {};
x = 2;

WNA x 1

WRLX a1 2

RACQ a 2

WREL a2 1

sb

sb

sb

sw,hb

RACQ a2 1

WNA x 2
sb rf,sw,hb

WRLX world 1

RNA x 1
sbrf

WREL a1 1

sb

sb

We establish that our semantic transformations have the fol-
lowing properties: any execution of the transformed opsemset has
the same observable behaviour of some execution of the original
opsemset, and the transformation preserves data-race freedom. As
C11 and C++11 do not provide any guarantee for racy programs we
cannot prove any result about out-of-thin-air value introduction.

Theorem 3.1. Let the opsemset P ′ be an elimination of the opsem-
set P . If P is well-defined, then so is P ′, and any execution of P ′

has the same observable behaviour of some execution of P .

We sketch the structure of the proof; details can be found on-
line [1]. Let the opsemset P ′ be an elimination of the opsemset P ,
and let (O′,W ′) be an execution of P ′ (that is, a pair of an opsem
and a witness). Since P ′ is an elimination of P , there is at least one
opsem O ∈ P such that O′ is an elimination of O, and an unelimi-
nation function f that injects the events of the optimised opsem into
the events of the unoptimised opsem. We build the mo and sc rela-
tions of the witness of O by lifting the mo′ and sc′ relations of the
witness W ′: this is always possible because our program transfor-
mations do not alter any atomic access. Analogously it is possible
to build the rf relation on atomic accesses by lifting the rf′ one. To
complete the construction of the witness we lift the rf′ relation on
non-atomic events as well, and complete the rf relation following
the case analysis below on the eliminated events in O:

• RaR: if i is a read action eliminated with the RaR rule because
of a preceding read action r, and w <rf r, then add w <rf i;

• RaW: if i is a read action eliminated with the RaW rule because
of a preceding write action w, then add w <rf i;
• IR: if i is an irrelevant read, and there is a write event to the same

location that happens before it, then letw be a write event to the
same location maximal with respect to hb and add w <rf i;
• OW: rf is unchanged;
• WaW: if i is a write event eliminated by the WaW rule because

of the preceding write event w, then for all actions r such that
w <rf′ r and i <hb r, replace w <rf r by i <rf r;
• WaR: if i is a read event eliminated by the WaR rule, then every

read of the same value at the same location, that happens-after i
and that either read from a write w <hb i or does not read from
any write, now reads from i.

This completes the construction of the witness W and in turn of
the candidate execution (O,W) of P . We must now prove that
(O,W) is consistent, in particular that it satisfies consistent non-
atomic read values, for which the construction has been tailored.
This proceeds by a long case disjunction that relies on the following
constructions:

• the absence of a release-acquire pair between two accesses a
and b in the same thread guarantees the absence of an access c
in another thread with a <hb c <hb b.
• in some cases the candidate execution (O,W) turns out to have

conflicting accesses a and b that are not ordered by hb. We use
the fact that opsemsets are receptive and closed under sb-prefix
to build another candidate pre-execution of P where a and b
are still hb-unordered, but for which we can prove it is a pre-
execution (not necessarily with the same observable behaviour).
From this we deduce that P is not data-race free and ignore
these cases.

By construction the pre-execution (O,W) has the same observable
behaviour as (O′,W ′); we conclude by showing that (O′,W ′) can
not have undefined behaviours that (O,W) does not have.

3.2 Reorderings of actions
Most compiler optimisations do not limit themselves to eliminating
memory accesses, but also reorder some of them. In this category
fall all the code motion optimisations. Of course not all accesses are
reorderable without introducing new behaviours. In this section we
state and prove the correctness of the class of reorderings we have
observed being performed by gcc and clang, ignoring more com-
plex reordering schemes. In particular we omit reorderings across
synchronisation actions: neither gcc or clang perform them and a
more complex statement taking into account partial reorderings on
prefix-closures of an opsemset would be needed.

Definition 3.7. Two actions a and b are reorderable if they access
different memory locations and neither is a synchronisation action
(that is a lock, unlock, atomic access, rmw, or fence action).

Definition 3.8. An opsem O′ is a reordering of an opsem O if:
(i) the set of actions in O and O′ are equal; (ii) O and O′ define
the same asw; (iii) for all actions a, b ∈ O, if a <sb b then either
a <sb′ b or b <sb′ a and a is reorderable with b.

Like for eliminations, the definition of reorderings lifts point-
wise to opsemsets:

Definition 3.9. An opsemset P ′ is a reordering of an opsemset P
if for all opsems O′ ∈ P ′ there exists an opsem O ∈ P such that
O′ is a reordering of O.

The soundness theorem for reorderings can be stated analo-
gously to the one for eliminations and, although the details are dif-
ferent, the proofs follow the same structure. In particular the proof
shows that, given a witness for an execution of a reordered opsem,

it is possible to build the happens-before relation for the witness for
the corresponding source opsem by lifting the synchronise-with re-
lation, which is unchanged by the reorderings and relates the same
release/acquire events in the two witnesses.

Theorem 3.2. Let the opsemset P ′ be a reordering of the opsemset
P . If P is well-defined, then so is P ′, and any execution of P ′ has
the same observable behaviour of some execution of P .

As the sb relation is partial, reordering instructions in the source
code can occasionally introduce sb arrows between reordered ac-
tions. For instance, the optimised trace of Figure 3 not only re-
orders the WNA x 3 with the RNA z 0 and WNA z 3 actions but also
introduces an sb arrow between the first two events RNA y 3 and
RNA z 0. Unsurprisingly, adding sb arrows to an opsem reduces the
non-determinism of the candidate executions and does not intro-
duce new behaviours on well-defined programs.

Definition 3.10. We say that an opsem O′ is a linearisation of an
opsem O if they contain the same actions and asw relation, and
whenever x <sb y ∈ O′ it holds that x <sb y ∈ O. This definition
lifts pointwise to opsemsets.

Theorem 3.3. Let the opsemset P ′ be a linearisation of the opsem-
set P . If P is well-defined then so is P ′, and any execution of P ′

has the same observable behaviour of some execution of P .

3.3 Introductions of actions
Even if it seems counterintuitive, compilers tend to introduce loads
when optimising code (introducing writes is incorrect in DRF mod-
els most of the time [7], and always dubious — see the final exam-
ple in Section 5). Usually the introduced loads are irrelevant, that
is their value is never used. This program transformation sounds
harmless but it can introduce data races and does not lend itself
to a theorem analogous to those for eliminations and reorderings.
Worse than that, if combined with DRF-friendly optimisations it
can introduce unexpected behaviours [19]. We conjecture that a
soundness property can be stated relating the source semantics
to the actual hardware behaviour, along the lines of: if an opsem
O′ is obtained from an opsem O by introducing irrelevant reads,
and it is then compiled naively following the standard compilation
schemes for a given architecture [15, 23], then all the behaviours
observable on the architecture are allowed by the original opsem.
In some cases the introduced loads are not irrelevant, but are RaR-
eliminable or RaW-eliminable. We proved that RaR-eliminable and
RaW-eliminable introductions preserve DRF and do not introduce
new behaviours under the hypothesis that there is no release action
in sb order between the introduced read and the action that justifies
it. Details are available online [1].

4. Compiler Testing
Building on the theory of the previous section, we designed and
implemented a bug-hunting tool called cmmtest. The tool performs
random testing of C and C++ compilers, implementing a variant of
Eide and Regehr’s access summary testing [10]. A test case is any
well-defined, sequential C program; for each test case, cmmtest:

1. compiles the program using the compiler and compiler optimi-
sations that are being tested;

2. runs the compiled program in an instrumented execution envi-
ronment that logs all memory accesses to global variables and
synchronisations;

3. compares the recorded trace with a reference trace for the same
program, checking if the recorded trace can be obtained from
the reference trace by valid eliminations, reorderings and intro-
ductions.

Test-case generation We rely on a small extension of Csmith [24]
to generate random programs that cover a large subset of C
while avoiding undefined and unspecified behaviours. We added
mutex variables (as defined in pthread.h) and system calls to
pthread mutex lock and pthread mutex unlock. Enforcing
balancing of calls to lock and unlock along all possible execution
paths of the generated test-cases is difficult, so mutex variables are
declared with the attribute PTHREAD MUTEX RECURSIVE. We also
added atomic variables and atomic accesses to atomic variables,
labelled with a memory order attribute. For atomic variables we
support both the C and the C++ syntax, the former not yet being
widely supported by today’s compilers. Due to limitations of our
tracing infrastructure, for now we instruct Csmith to not generate
programs with unions or consts.

Compilation Compilation is straightforward provided that the
compiler does not attempt to perform whole-program optimisa-
tions. With whole-program optimisation, the compiler can deduce
that some functions will never run in a concurrent context and per-
form more aggressive optimisations, such as eliminating all mem-
ory accesses after the last I/O or synchronisation. It is very hard to
determine precise conditions under which these aggressive whole-
program optimisations remain sound; for instance Ševčı́k’s criteria
are overly conservative and result in false positives when testing
Intel’s icc -O3. Neither gcc nor clang perform whole-program
optimisations at the typical optimisation levels -O2 or -O3.

Test case execution and tracing The goal of this phase is to
record an execution trace for the compiled object file, that is the
linearly-ordered sets of actions it performs. For the x86 64 ar-
chitecture we implemented a tracing framework by binary instru-
mentation using the Pin tool [13]. Our Pin application intercepts
all memory reads and writes performed by the program and for
each records the address accessed, the value read or written, and
the size. In addition it also traces calls to pthread mutex lock
and pthread mutex unlock, recording the address of the mutex.
With the exception of access size information, entries in the ex-
ecution trace correspond to the actions of Section 2. Access size
information is needed to analyse optimisations that merge adjacent
accesses, discussed below.

The “raw” trace depends on the actual addresses where the
global variables have been allocated, which is impractical for our
purposes. The trace is thus processed with additional informations
obtained from the ELF object file (directly via objdump or by
parsing the debugging informations). The addresses of the accesses
are mapped to variable names and similarly for values that refer to
addresses of variables; in doing so we also recover array and struct
access information. For example, if the global variable int g[10]
is allocated at 0x1000, the raw action Store 0x1008 0x1004 4
is mapped to the action Store g[2] &g[1] 4. After this analysis
execution traces are independent of the actual allocation addresses
of the global variables. Finally, information about the initialisation
of the global variables is added to the trace with the Init tag.

Irrelevant reads The Pin application also computes some data-
flow information about the execution, recording all the store actions
which depend on each read. This is done by tracking the flow
of each read value across registers and thread-local memory. A
dependency is reported if either the value read is used to compute
the value written or used to determine the control that leads to a
later write or synchronisation. With this information we reconstruct
an approximation of the set of irrelevant reads of the execution: all
reads whose returned value is never used to perform a write (or
synchronisation) are labelled as irrelevant.

In addition, we use a second algorithm to identify irrelevant
reads following their characterisation on the opsems: the program
is replayed and its trace recorded again but binary instrumentation

injects a different value for the read action being tested. The read is
irrelevant if, despite the different value read, the rest of the trace is
unchanged. This approach is slower but accurately identifies irrele-
vant reads inserted by the optimiser (for instance when reorganising
chains of conditions on global variables).

Reference trace In the absence of a reference interpreter for C11,
we reuse our tracing infrastructure to generate a trace of the pro-
gram compiled at -O0 and use this as the reference trace. By doing
so our tool might miss potential front-end concurrency bugs but
there is no obvious alternative.

Trace matching Trace matching is performed in two phases. Ini-
tially, eliminable actions in the reference trace are identified and
labelled as such. The labelling algorithm linearly scans the trace,
recording the last action performed at any location and whether
release/acquire actions have been encountered since; using this in-
formation each action is analysed and labelled following the defini-
tion of eliminable actions of Section 3.1. Irrelevant reads reported
by the tracing infrastructure are labelled as such. To get an intuition
for the occurrences of eliminable actions in program traces, out of
200 functions generated by Csmith with -expr complexity 3,
the average trace has 384 actions (max 15511) of which 280 (max
14096) are eliminable, distributed as follows:

IR RaW RaR OW WaR WaW
8 (94) 94 (1965) 95 (10340) 75 (1232) 5 (305) 1 (310)

Additional complexity in labelling eliminable actions is due to the
fact that a compiler performs many passes over the program and
some actions may become eliminable only once other actions have
been eliminated. Consider for instance this sequence of optimisa-
tions from the example in Figure 2:
Store g6 4
Load g6 4
Load g6 4
Load g6 4
Store g6 1

RaW−−−→ Store g6 4
Store g6 1

OW−−→ Store g6 1

In the original trace, the first store cannot be labelled as OW due to
the intervening loads. However, if the optimiser first removes these
loads (which is correct since they are RaW), it can subsequently
remove the first store (which becomes an OW). Our analysis thus
keeps track of the critical pairs between eliminations and can la-
bel actions eliminable under the assumption that other actions are
themselves eliminated. Irrelevant and eliminable reads are also la-
belled in the optimised trace, to account for potential introductions.

Before describing the matching algorithm, we must account for
one extra optimisation family we omitted in the previous section:
merging of adjacent accesses. Consider the following loop updat-
ing the global array char g[10]:

for (int l=0; l<10; l++) g[l] = 1;

The reference trace performs ten writes of one byte to the array g.
The object code generated by gcc -O3 performs only two mem-
ory accesses: Store g 101010101010101 8 and Store g[8]
101 2. This optimisation is sound under hypothesis similar to
those of eliminations: there must not be intervined accesses or re-
lease/acquire pairs between the merged accesses; additionally the
size of the merged access must be a power of two and the merged
store must be aligned. Since the C11/C++11 memory model, as for-
malised by Batty et al., is agnostic to the size of accesses, we could
not formally prove the soundness of this optimisation.

The matching algorithm takes two annotated traces and scans
them linearly, comparing one annotated action of the reference
trace and one of the optimised trace at a time. It performs a depth-
first search exploring at each step the following options:

• if the reference and optimised actions are equal, then consider
them as matched and move to the next actions in the traces;

• if the reference action is eliminable, delete it from the refer-
ence trace and match the next reference action; similarly if the
optimised action is eliminable;
• if the reference action merges with later reference actions to

match the the optimised action, then consider the merged ac-
tions as matched and move to the next actions in the traces; and
• if the optimised action can be matched by reordering actions in

the reference trace, reorder the reference trace and match again.

The algorithm succeeds if it reaches a state where all the actions in
the two input traces are either deleted or matched.

Some of these options are very expensive to explore (for in-
stance when combinations of reordering, merging and eliminations
must be considered), and we guide the depth-first search with a crit-
ical heuristic to decide the order in which the tree must be explored.
The heuristic is dependent on the compiler being tested. The cur-
rent implementation can match in a few minutes gcc traces of up
to a few hundreds of actions on commodity hardware; these traces
are well beyond manual analysis.

Outcome During tracing, cmmtest records one “execution” of a
C or C++ program; using the terminology of the previous section,
it should observe a witness for an opsem of the program. Since
cmmtest traces sequential deterministic code in an empty concur-
rent environment, all reads of the opsem always return the last (in
sb order) value written by the same thread to the same location. The
witness is thus trivial: reads-from derives from sb while mo and sc
are both included in sb. Note that the tool traces an execution of
the generated assembler and as such it records a linearisation of
the opsem’s sb. Theorem 3.3 guarantees that this cannot introduce
false positives due to extra sb arrows added between non-atomic
accesses. Overestimating the sb relation between atomic accesses
might induce false positives because cmmtest cannot reconstruct
the original sb relation and considers all atomic accesses as un-
reorderable. To prevent this our version of Csmith never generates
programs with atomic accesses not related by sb.

The cmmtest tool compares two opsems and returns true if the
optimised opsem can be obtained from the reference opsem by a se-
quence of sound eliminations/reorderings/introductions, and false
otherwise. If cmmtest returns true then we deduce that this opsem
(that is, this execution path of the program) has been compiled cor-
rectly, even if we cannot conclude that the whole program has been
compiled correctly (which would require exploring all the opsems
of the opsemset, or, equivalently, all the execution paths of the pro-
gram). More interestingly, whenever cmmtest returns false, then
either the code has been miscompiled, or an exotic optimisation
has been applied (since our theory of sound optimisations is not
complete). In this case we perform test-case reduction using CRe-
duce [16], and manually inspect the assembler. Reduced test-cases
have short traces (typically less than 20 events) and it is immediate
to build discriminating contexts and produce bug-reports. Currently
the tool reports no false positives for gcc on any of the many thou-
sands of test-cases we have tried without structs and atomics; we
are getting closer to a similar result for arbitrary programs (with
the restriction of a single atomic access per expression).

Stability against the HW memory model Compiled programs are
executed on shared-memory multiprocessors which may expose
behaviours that arise from hardware optimisations. Reference map-
pings of atomics instructions to x86 and ARM/POWER architec-
tures have been proved correct [4, 5]: these mappings insert all the
necessary assembly synchronisation instructions to prevent hard-
ware optimisations from breaking the C11/C++11 semantics. On
x86 64, cmmtest additionally traces memory fences and locked
instructions, and under the hypothesis that the reference trace is ob-
tained by applying a correct mapping (e.g., by putting fence instruc-
tions after all SCatomic writes), then cmmtest additionally ensures

that the optimiser does not make hardware behaviours observable
(for instance by moving a write after a fence).

5. Impact on compiler development
Concurrency compiler bugs While developing cmmtest and tun-
ing the matching heuristic, we tested the latest svn version of the
4.7 and 4.8 branches of the gcc compiler. During these months
we reported several concurrency bugs (including bugs no. 52558,
54149, 54900, and 54906 in the gcc bugzilla), which have all been
promptly fixed by the gcc developers. In one case the bug report
highlights an obscure corner case of the gcc optimiser, as shown
by a discussion on the gcc-patches mailing list;3 even though the
reported test-case has been fixed, the bug has been left open until
a general solution is found. In all cases the bugs were wrongly in-
troduced writes, speculated by the LIM or IFCVT (if-conversion)
phases, similar to the example in Figure 1. These bugs do not only
break the C11/C++11 memory model, but also the Posix DRF-
guarantee which is assumed by most concurrent software written
in C and C++. The corresponding patches are activated via the
---param allow-store-data-races=0 flag, which will even-
tually become default standard for -std=c11 or -std=c++11 flags.
All these are silent wrong-code bugs for which the compiler issues
no warning.

Unexpected behaviours Each compiler has its own set of inter-
nal invariants. If we tune the matching algorithm of cmmtest to
check for compiler invariants rather than for the most permissive
sound optimisations, it is possible to catch unexpected compiler
behaviours. For instance, in the current phase of development, gcc
forbids all reorderings of a memory access with an atomic one. We
baked this invariant into cmmtest and in less than two hours of
testing on an 8-core machine we found the following testcase:

atomic_uint a; int32_t g1, g2;

int main (int, char *[]) {
a.load () & a.load ();
g2 = g1 != 0;

}

whose traces for the function main compiled with gcc 4.8.0
20120627 (experimental) at optimisation levels -O0 and -O2
(or -O3) are:

ALoad a 0 4
ALoad a 0 4
Load g1 0 4
Store g2 0 4

Load g1 0 4
ALoad a 0 4
ALoad a 0 4
Store g2 0 4

As we can observe, the optimiser moved the load of g1 before
the two atomic SC loads. Even though we conjecture that this
reordering is not observable by a non-racy context, this unexpected
compiler behaviour was fixed nevertheless (rr190941).

Interestingly, cmmtest found one unexpected compiler be-
haviour whose legitimacy is arguable. Consider the program below:

atomic_int a; uint16_t g;

void func_1 () {
for (; a.load () <= 0; a.store (a.load () + 1))

for (; g; g--);
}

Traces for the func_1 function, compiled with gcc 4.8.0 20120911
(experimental) at optimisation levels -O0 and -O2 (or -O3), are:

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

3 http://gcc.gnu.org/ml/gcc-patches/2012-10/msg01411.html

The optimiser here replaced the inner loop with a single write:
for (; g; g--); −→ g = 0;

thus substituting a read access with a write access in the execution
path where g already contains 0. The introduced store is idempo-
tent, as it rewrites the value that is already stored in memory. Since
in the unoptimised trace there is already a load at the same location,
this extra write cannot be observed by a non-racy context. Strictly
speaking, this is not a compiler bug. However, whether this should
be allowed or not is subject to debate. Although we believe no ar-
chitecture can detect this introduced write, in a world with hard-
ware or software race detection it might fire a false positive. Also,
possibly a bigger issue, the introduced write can introduce cache
contention where there should not be any, potentially resulting in
an unexpected performance loss.

6. Related work
Randomised techniques for testing compilers have been popular
since the 60’s and have been applied to a variety of languages,
ranging from Cobol [22] and Fortran [9] to C [12, 14, 21] and
C++ [25]. A survey (up to 1997) can be found in Boujarwah and
Saleh [8], while today the state of art is represented by Yang et al.’s
work on Csmith [24]. None of these works addresses concurrency
compiler bugs and the techniques presented are unable to detect any
of our bug reports.

The notable exception is Eide and Regehr’s work [10] on hunt-
ing miscompilation of the volatile qualifier in production-quality
C compilers. Eide and Regehr generate random well-defined de-
terministic, sequential programs with volatile memory accesses:
miscompilations are detected by counting how many accesses to
volatile variables are performed during the execution of an unop-
timised and an optimised binary of the program. The semantics
of the volatile attribute requires that accesses to volatile variables
are never optimised away, so comparing the number of runtime
accesses is enough to detect bugs in the optimiser. We were in-
spired by Eide and Regehr’s approach to reduce hunting concur-
rency compilation bugs to analysis to differential testing of sequen-
tial code, but the complexity of the C11/C+11 memory model re-
quires us to build a theory of sound optimisations and makes the
analysis phase far more complicated.

As we discussed in Section 3, soundness of optimisations in
an idealised DRF model was studied by Ševčı́k [17, 19]. We reuse
Ševčı́k’s classification of optimisations as eliminations, reorderings
and introductions, but moving from an idealised DRF model to the
full C11/C++11 memory model brings new challenges:

• we cannot identify a program with the set of linear orders of ac-
tions it can realise because in C and C++ the sequenced-before
order is not total; although reasoning about opsems seems un-
intuitive, partial orders turn out be be easier to work with than
the explicit manipulation of trace indices that Ševčı́k performs;
• the semantics of low-level atomic accesses and fences must

be taken into account when computing synchronisations; in
particular the weaker consistency and coherency conditions of
the release/acquire/relaxed attributes made the soundness proof
much more complex.

There are other minor differences, for instance Ševčı́k assumes that
every variable has a default value, while C/C++ forbids accessing
an uninitialised variable. Initially Ševčı́k gave a more restrictive
condition for soundness of eliminations [17], namely eliminations
are forbidden if there is an intervening release or acquire operation
rather than a release/acquire pair. This simpler condition appears
to be too strong as we have observed compilers eliminate accesses
across a release or acquire access. All our analysis was driven by
what optimisations we could actually observe: this led to identify-

http://gcc.gnu.org/ml/gcc-patches/2012-10/msg01411.html

ing WaW eliminations and RaR/RaW introductions, and motivated
us to omit roach-motel reorderings.

More generally, reasoning about the C11/C++11 memory model
is in its infancy. We follow the formalisation of the C11/C++11
memory model given in [4]; the original presentation of the model
design [7] mentions (Sec. 2.1) that the soundness of reorderings
under some conditions follows from previous work [2], with no
mention of eliminations or introductions. Although the C11/C++11
model is based on the DRF design, we do believe that its complex-
ity deserves careful proofs taking into account its whole design.

There is a long tradition of research on compiler optimisations
that preserve sequential consistency dating back to Shasha and
Snir [20], mostly focusing on whole program analyses. While these
works show that a restricted class of optimisations can maintain
the illusion of sequential consistency for all programs, we show
that common compiler transformations maintain the illusion of
sequential consistency for correctly synchronised programs.

7. Conclusion
This paper validates the belief that common compiler optimisations
are sound in C11/C++11 memory model, contrary to what happens
in the Java Memory Model [18]. With the exception of optimisa-
tions that change the size of memory accesses (which cannot be
expressed in the current formalisation of the memory model) and
irrelevant read introduction (which does not preserve DRF), we
proved correct all the classes of optimisations performed by widely
used optimising compilers (under the hypothesis that a program
can halt at any time). We presented a general strategy to perform
differential testing of real compilers against memory models, and
designed and implemented a bug-hunting tool, cmmtest, building
on our theory of optimisations in the C11/C++11 memory model.
Subtle concurrency bugs and unexpected behaviours of the latest
gcc optimiser have been discovered using cmmtest. None of these
could have been found using the existing compiler testing methods.

Future work Bug-hunting via random testing is a slow process:
each reported bug must be fixed before continuing testing, other-
wise with high probability the tool keeps on rediscovering the same
bug. Our priority now is to complete the tracing infrastructure to
support all the features of the C language, most notably bit-fields,
and to put cmmtest to work conducting extensive testing of gcc
and clang. Since our testing strategy considers the compiler as a
black-box, it is easy to extend the tool to test other compilers. A
preliminary trial run with clang suggests that only minor changes
to the matching heuristic are required; contrary to gcc, clang sys-
tematically reorders accesses around relaxed atomic accesses and
performs simultaneous merge and reorder of memory actions. Al-
though this article focuses on the x86 64 architecture and x86 64
compiler backends, only the tracer module (and IR data-flow anal-
ysis) of the tool are dependent on the binary architecture. Building
on Fox’s ARM emulator [11], we are implementing a tracing infras-
tructure for ARMv7 binaries that will allow testing the ARM back-
ends of compilers. By instrumenting an executable semantics for
the LLVM IR (e.g., [26]), it would even be possible to run our anal-
ysis internally within the LLVM optimisers, comparing the traces
before and after each optimisation pass.

Last but not least, the gcc developers expressed a keen interest
in adopting our cmmtest tool as part of their testing infrastructure.

Acknowledgments We are grateful to Jaroslav Ševčı́k, Kayvan
Memarian, and Peter Sewell for enlightening discussions, to John
Regehr and Xuejun Yang for help with Csmith, to Aldy Hernandez,
Andrew MacLeod and Torvald Riegel for promptly fixing our bug-
reports. This work was partially supported by IRILL and ANR
grant WMC (ANR-11-JS02-011).

References
[1] The cmmtest tool. http://www.di.ens.fr/~zappa/projects/

cmmtest/.
[2] S. V. Adve and M. D. Hill. Weak ordering - a new definition. In ISCA,

1990.
[3] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running

tests against hardware. In TACAS, 2011.
[4] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing

C++ concurrency. In POPL, 2011.
[5] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying

and compiling C/C++ concurrency: from C++11 to POWER. In
POPL, 2012.

[6] P. Becker. Standard for Programming Language C++ - ISO/IEC
14882, 2011.

[7] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In PLDI, 2008.

[8] A. S. Boujarwah and K. Saleh. Compiler test case generation methods:
a survey and assessment. Information & Software Technology, 39(9):
617–625, 1997.

[9] C. J. Burgess and M. Saidi. The automatic generation of test cases for
optimizing fortran compilers. Information & Software Technology, 38
(2):111–119, 1996.

[10] E. Eide and J. Regehr. Volatiles are miscompiled and what to do about
it. EMSOFT, 2008.

[11] A. C. J. Fox and M. O. Myreen. A trustworthy monadic formalization
of the ARMv7 instruction set architecture. In ITP, 2010.

[12] C. Lindig. Random testing of C calling conventions. In AADEBUG,
2005.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[14] W. M. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100–107, 1998.

[15] P. E. McKenney and R. Silvera, 2011. http://www.rdrop.com/
users/paulmck/scalability/!paper/N2745r.2011.03.04a.
html.

[16] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-
case reduction for C compiler bugs. In PLDI, 2012.

[17] J. Ševčı́k. Program Transformations in Weak Memory Models. PhD
thesis, University of Edinburgh, 2008.

[18] J. Ševčı́k. The Sun Hotspot JVM does not conform with the Java
memory model. Technical Report EDI-INF-RR-1252, School of In-
formatics, University of Edinburgh, 2008.

[19] J. Ševčı́k. Safe optimisations for shared-memory concurrent programs.
In PLDI, 2011.

[20] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Transactions on Programming
Languages and Systems, 10(2), 1988.

[21] F. Sheridan. Practical testing of a C99 compiler using output compar-
ison. Software: Practice and Experience, 37(14):1475–1488, 2007.

[22] R. L. Solder. A general test data generator for COBOL. In AFIPS
Joint Computer Conferences, 1962.

[23] A. Terekhov. Brief tentative example x86 implementation for
C/C++ memory model, 2008. http://www.decadent.org.uk/
pipermail/~cpp-threads/2008-December/001933.html.

[24] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In PLDI, 2011.

[25] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang. Automated test
program generation for an industrial optimizing compiler. In AST,
2009.

[26] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. For-
malizing the LLVM intermediate representation for verified program
transformations. In POPL, 2012.

http://www.di.ens.fr/~zappa/projects/cmmtest/
http://www.di.ens.fr/~zappa/projects/cmmtest/
http://www.rdrop.com/users/paulmck/scalability/!paper/N2745r.2011.03.04a.html
http://www.rdrop.com/users/paulmck/scalability/!paper/N2745r.2011.03.04a.html
http://www.rdrop.com/users/paulmck/scalability/!paper/N2745r.2011.03.04a.html
http://www.decadent.org.uk/pipermail/~cpp-threads/2008-December/001933.html
http://www.decadent.org.uk/pipermail/~cpp-threads/2008-December/001933.html

	Random testing for concurrency compiler bugs
	Program Transformations and the C11/C++11 Memory Model
	Background: overview of the C11/C++11 memory model

	Sound Optimisations in the C Memory Model
	Eliminations of actions
	Reorderings of actions
	Introductions of actions

	Compiler Testing
	Impact on compiler development
	Related work
	Conclusion

