Dataset Open Access

Wikidata Vandalism Corpus 2015 (WDVC-15)

Heindorf, Stefan; Potthast, Martin; Stein, Benno; Engels, Gregor


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/01370d32-cf3f-463e-b265-57573422ed98/wikidata-vandalism-corpus-2015.tar.bz2"
      }, 
      "checksum": "md5:34a68c8bb6023911d71539beeae001fa", 
      "bucket": "01370d32-cf3f-463e-b265-57573422ed98", 
      "key": "wikidata-vandalism-corpus-2015.tar.bz2", 
      "type": "bz2", 
      "size": 4815698116
    }
  ], 
  "owners": [
    65747
  ], 
  "doi": "10.5281/zenodo.3250651", 
  "stats": {
    "version_unique_downloads": 44.0, 
    "unique_views": 532.0, 
    "views": 609.0, 
    "version_views": 609.0, 
    "unique_downloads": 44.0, 
    "version_unique_views": 532.0, 
    "volume": 264863396380.0, 
    "version_downloads": 55.0, 
    "downloads": 55.0, 
    "version_volume": 264863396380.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3250651", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3250650", 
    "bucket": "https://zenodo.org/api/files/01370d32-cf3f-463e-b265-57573422ed98", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3250650.svg", 
    "html": "https://zenodo.org/record/3250651", 
    "latest_html": "https://zenodo.org/record/3250651", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3250651.svg", 
    "latest": "https://zenodo.org/api/records/3250651"
  }, 
  "conceptdoi": "10.5281/zenodo.3250650", 
  "created": "2019-06-20T09:39:53.953773+00:00", 
  "updated": "2020-06-16T07:42:03.203556+00:00", 
  "conceptrecid": "3250650", 
  "revision": 11, 
  "id": 3250651, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3250651", 
    "description": "<p>The Wikidata vandalism corpus 2015 (WDVC-15) is a corpus for the evaluation of automatic vandalism detectors for Wikidata. For research purposes the corpus can be used free of charge.</p>", 
    "language": "eng", 
    "title": "Wikidata Vandalism Corpus 2015 (WDVC-15)", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3250650"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3250651"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "webis"
      }
    ], 
    "references": [
      "Stefan Heindorf, Martin Potthast, Benno Stein, and Gregor Engels. Towards Vandalism Detection in Knowledge Bases: Corpus Construction and Analysis. In Ricardo Baeza-Yates, Mounia Lalmas, Alistair Moffat, and Berthier Ribeiro-Neto, editors, 38th International ACM Conference on Research and Development in Information Retrieval (SIGIR 2015), pages 831-834, August 2015. ACM. ISBN 978-1-4503-3621-5"
    ], 
    "keywords": [
      "wikidata", 
      "wikipedia", 
      "vandalism", 
      "detector"
    ], 
    "publication_date": "2015-08-13", 
    "creators": [
      {
        "orcid": "0000-0002-4525-6865", 
        "affiliation": "Universit\u00e4t Paderborn", 
        "name": "Heindorf, Stefan"
      }, 
      {
        "orcid": "0000-0003-2451-0665", 
        "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
        "name": "Potthast, Martin"
      }, 
      {
        "orcid": "0000-0001-9033-2217", 
        "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
        "name": "Stein, Benno"
      }, 
      {
        "affiliation": "Universit\u00e4t Paderborn", 
        "name": "Engels, Gregor"
      }
    ], 
    "meeting": {
      "acronym": "SIGIR 2015", 
      "title": "38th International ACM Conference on Research and Development in Information Retrieval"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3250650", 
        "relation": "isVersionOf"
      }
    ]
  }
}
609
55
views
downloads
All versions This version
Views 609609
Downloads 5555
Data volume 264.9 GB264.9 GB
Unique views 532532
Unique downloads 4444

Share

Cite as