Journal article Open Access

Compressed sensing with approximate message passing using in-memory computing

Le Gallo, Manuel; Sebastian, Abu; Cherubini, Giovanni; Giefers, Heiner; Eleftheriou, Evangelos


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Le Gallo, Manuel</dc:creator>
  <dc:creator>Sebastian, Abu</dc:creator>
  <dc:creator>Cherubini, Giovanni</dc:creator>
  <dc:creator>Giefers, Heiner</dc:creator>
  <dc:creator>Eleftheriou, Evangelos</dc:creator>
  <dc:date>2018-08-29</dc:date>
  <dc:description>In-memory computing is a promising non-von Neumann approach where certain computational tasks are performed within resistive memory units by exploiting their physical attributes. In this paper, we propose a new method for fast and robust compressed sensing of sparse signals with approximate message passing recovery using in-memory computing. The measurement matrix for compressed sensing is encoded in the conductance states of resistive memory devices organized in a crossbar array. This way, the matrix-vector multiplications associated with both the compression and recovery tasks can be performed by the same crossbar array without intermediate data movements at potential O(1) time complexity. For a signal of size N, the proposed method achieves a potential O(N)-fold recovery complexity reduction compared with a standard software approach. We show the array-level robustness of the scheme through large-scale experimental demonstrations using more than 256k phase-change memory devices.</dc:description>
  <dc:identifier>https://zenodo.org/record/3249877</dc:identifier>
  <dc:identifier>10.1109/TED.2018.2865352</dc:identifier>
  <dc:identifier>oai:zenodo.org:3249877</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/682675/</dc:relation>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/780215/</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</dc:rights>
  <dc:source>IEEE Transactions on Electron Devices 65(10) 4304-4312</dc:source>
  <dc:subject>Approximate message passing</dc:subject>
  <dc:subject>Compressed sensing</dc:subject>
  <dc:subject>In-memory computing</dc:subject>
  <dc:subject>Phase-change memory</dc:subject>
  <dc:title>Compressed sensing with approximate message passing using in-memory computing</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
84
126
views
downloads
Views 84
Downloads 126
Data volume 73.9 MB
Unique views 83
Unique downloads 125

Share

Cite as