Journal article Open Access
Le Gallo, Manuel; Sebastian, Abu; Cherubini, Giovanni; Giefers, Heiner; Eleftheriou, Evangelos
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/90ec87b1-e208-449a-8e95-ff396ceef2aa/LeGallo18.pdf" }, "checksum": "md5:77eb782ef6baab0f8b8ae06eb59a73fa", "bucket": "90ec87b1-e208-449a-8e95-ff396ceef2aa", "key": "LeGallo18.pdf", "type": "pdf", "size": 586406 } ], "owners": [ 55780 ], "doi": "10.1109/TED.2018.2865352", "stats": { "version_unique_downloads": 125.0, "unique_views": 83.0, "views": 84.0, "version_views": 84.0, "unique_downloads": 125.0, "version_unique_views": 83.0, "volume": 73887156.0, "version_downloads": 126.0, "downloads": 126.0, "version_volume": 73887156.0 }, "links": { "doi": "https://doi.org/10.1109/TED.2018.2865352", "latest_html": "https://zenodo.org/record/3249877", "bucket": "https://zenodo.org/api/files/90ec87b1-e208-449a-8e95-ff396ceef2aa", "badge": "https://zenodo.org/badge/doi/10.1109/TED.2018.2865352.svg", "html": "https://zenodo.org/record/3249877", "latest": "https://zenodo.org/api/records/3249877" }, "created": "2019-06-19T08:54:34.182222+00:00", "updated": "2020-01-20T16:10:34.966723+00:00", "conceptrecid": "3249876", "revision": 5, "id": 3249877, "metadata": { "access_right_category": "success", "doi": "10.1109/TED.2018.2865352", "description": "<p>In-memory computing is a promising non-von Neumann approach where certain computational tasks are performed within resistive memory units by exploiting their physical attributes. In this paper, we propose a new method for fast and robust compressed sensing of sparse signals with approximate message passing recovery using in-memory computing. The measurement matrix for compressed sensing is encoded in the conductance states of resistive memory devices organized in a crossbar array. This way, the matrix-vector multiplications associated with both the compression and recovery tasks can be performed by the same crossbar array without intermediate data movements at potential O(1) time complexity. For a signal of size N, the proposed method achieves a potential O(N)-fold recovery complexity reduction compared with a standard software approach. We show the array-level robustness of the scheme through large-scale experimental demonstrations using more than 256k phase-change memory devices.</p>", "license": { "id": "CC-BY-NC-ND-4.0" }, "title": "Compressed sensing with approximate message passing using in-memory computing", "journal": { "volume": "65", "issue": "10", "pages": "4304-4312", "title": "IEEE Transactions on Electron Devices" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3249876" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3249877" } } ] }, "grants": [ { "code": "682675", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::682675" }, "title": "PROJECTED MEMRISTOR: A nanoscale device for cognitive computing", "acronym": "PROJESTOR", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } }, { "code": "780215", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::780215" }, "title": "Computation-in-memory architecture based on resistive devices", "acronym": "MNEMOSENE", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Approximate message passing", "Compressed sensing", "In-memory computing", "Phase-change memory" ], "publication_date": "2018-08-29", "creators": [ { "affiliation": "IBM Research - Zurich, 8803 R\u00fcschlikon, Switzerland", "name": "Le Gallo, Manuel" }, { "affiliation": "IBM Research - Zurich, 8803 R\u00fcschlikon, Switzerland", "name": "Sebastian, Abu" }, { "affiliation": "IBM Research - Zurich, 8803 R\u00fcschlikon, Switzerland", "name": "Cherubini, Giovanni" }, { "name": "Giefers, Heiner" }, { "name": "Eleftheriou, Evangelos" } ], "access_right": "open", "resource_type": { "subtype": "article", "type": "publication", "title": "Journal article" } } }
Views | 84 |
Downloads | 126 |
Data volume | 73.9 MB |
Unique views | 83 |
Unique downloads | 125 |