Journal article Open Access
Le Gallo, Manuel; Sebastian, Abu; Cherubini, Giovanni; Giefers, Heiner; Eleftheriou, Evangelos
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3249877</identifier> <creators> <creator> <creatorName>Le Gallo, Manuel</creatorName> <givenName>Manuel</givenName> <familyName>Le Gallo</familyName> <affiliation>IBM Research - Zurich, 8803 Rüschlikon, Switzerland</affiliation> </creator> <creator> <creatorName>Sebastian, Abu</creatorName> <givenName>Abu</givenName> <familyName>Sebastian</familyName> <affiliation>IBM Research - Zurich, 8803 Rüschlikon, Switzerland</affiliation> </creator> <creator> <creatorName>Cherubini, Giovanni</creatorName> <givenName>Giovanni</givenName> <familyName>Cherubini</familyName> <affiliation>IBM Research - Zurich, 8803 Rüschlikon, Switzerland</affiliation> </creator> <creator> <creatorName>Giefers, Heiner</creatorName> <givenName>Heiner</givenName> <familyName>Giefers</familyName> </creator> <creator> <creatorName>Eleftheriou, Evangelos</creatorName> <givenName>Evangelos</givenName> <familyName>Eleftheriou</familyName> </creator> </creators> <titles> <title>Compressed sensing with approximate message passing using in-memory computing</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>Approximate message passing</subject> <subject>Compressed sensing</subject> <subject>In-memory computing</subject> <subject>Phase-change memory</subject> </subjects> <dates> <date dateType="Issued">2018-08-29</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3249877</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TED.2018.2865352</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>In-memory computing is a promising non-von Neumann approach where certain computational tasks are performed within resistive memory units by exploiting their physical attributes. In this paper, we propose a new method for fast and robust compressed sensing of sparse signals with approximate message passing recovery using in-memory computing. The measurement matrix for compressed sensing is encoded in the conductance states of resistive memory devices organized in a crossbar array. This way, the matrix-vector multiplications associated with both the compression and recovery tasks can be performed by the same crossbar array without intermediate data movements at potential O(1) time complexity. For a signal of size N, the proposed method achieves a potential O(N)-fold recovery complexity reduction compared with a standard software approach. We show the array-level robustness of the scheme through large-scale experimental demonstrations using more than 256k phase-change memory devices.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/682675/">682675</awardNumber> <awardTitle>PROJECTED MEMRISTOR: A nanoscale device for cognitive computing</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780215/">780215</awardNumber> <awardTitle>Computation-in-memory architecture based on resistive devices</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 84 |
Downloads | 126 |
Data volume | 73.9 MB |
Unique views | 83 |
Unique downloads | 125 |