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Abstract 
 

 Considerable evidence indicates that student motivation and use of learning 

strategies are related. There is insufficient understanding, however, about their reciprocal 

effects—whether motivation affects strategy use, the converse, or whether the effects are 

bidirectional—and which components of motivation and strategies are involved. A two-

wave longitudinal design was used to examine this issue among 9th grade students (N = 

306) enrolled in high school mathematics classes during an academic term. A cross-

lagged structural model found that students’ self-efficacy in mathematics and value 

predicted their reported use of learning strategies. There was no evidence, however, that 

learning strategy use predicted motivation and, thus, support for unidirectional effect of 

motivation during that time interval. Implications for models of self-regulated learning 

and instruction are discussed. 
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1. Introduction 

 

 Boekaerts (2010) has described motivation and self-regulation as “two close 

friends” that are inextricably related. That relationship is reflected in descriptions of self-

regulated learning (SRL) as an active, constructive process that involves setting learning 

goals, then monitoring, regulating, and controlling motivation and behavior to 

accomplish them (Boekaerts, Pintrich, & Zeidner, 2000; Pintrich, 2000; Zimmerman, 

2008). According to this view, motivation is among the components of SRL subject to 

regulation (Dansereau et al., 1979; Pintrich, 2000; Weinstein & Mayer, 1986; Wolters, 

2003; Wolters, Pintrich, & Karabenick, 2005; Zimmerman, 2000). Recent models of SRL 

include motivational beliefs together with self-regulatory strategies; for example, the 

activation of task value as part of the forethought phase of Pintrich’s SRL model 

(Pintrich, 2000).1  

 Rather than motivation being considered a component of self-regulation, others 

have focused on relations between motivation and self-regulatory strategies, most 

prominently operationalized by the Motivated Strategy for Learning Questionnaire 

(MSLQ; Pintrich, 1989; Pintrich, Smith, Garcia, & McKeachie, 1993). The MSLQ self-

regulatory strategies are distinguished in cognitive (rehearsal, organization and 

elaboration), metacognitive (planning, monitoring and regulating), and resource 

management strategies (help seeking, time and study environment management) (Liu, 

2009; Pintrich, et al., 1993; Pintrich, Wolters, & Baxter, 2000; Weinstein, Husman, & 

Dierking, 2000; Weinstein & Mayer, 1986; Wolters et al., 2005). By assessing different 

facets of motivation (e.g., expectancy, value, control beliefs), the MSLQ made it possible 

to examine associations between motivation and self-regulation with a greater degree of 

precision. There is now considerable support for the association between students’ 

motivational beliefs and use of learning strategies (Elliot, McGregor, & Gable, 1999; 

Lens, Simons, & Dewitte, 2002; Pintrich, 1999; Pintrich & De Groot, 1990; Schiefele, 

2001).  

 The direction of effects between motivation and strategy use, however, remains 

unresolved. First, there is the tacit assumption that since more motivated students are 

more likely to use learning strategies (Pintrich & De Groot, 1990), motivation predicts 

learners’ self-regulatory strategies (or alternatively, that the motivational component of 

self-regulation predicts the use of strategies). That is, students who are more motivated to 

engage in learning tasks generally, or who become more motivationally engaged in given 

learning contexts such as a mathematics or science class, will opt to be more strategic. 

The converse assumption is that students’ use of strategies predicts their motivation; that 

is, the successful application of rehearsal or elaboration, for example, could predict 

students’ self-efficacy and, thus, their motivational engagement in mathematics or 

science. 

 One reason this issue remains unresolved is that studies examining motivation and 

strategy use have largely employed correlational cross-sectional designs. This approach 

inherently restricts inferences regarding the direction of effects, even with the use of 

structural equation modeling (SEM) and its directional assumptions. A stronger test of 

                                                           
1 Note that the terms learning strategies and SRL are often used interchangeably (Dinsmore, Alexander, & 

Loughlin, 2008). 
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directional effects would require a longitudinal study to test whether motivation affects 

students’ use of learning strategies, and the converse, over time. Specifically, time-lagged 

effects in longitudinal models could determine whether motivation at an initial point in 

time predicts reported strategy use at a subsequent time point, controlling for initial 

strategy use, and the converse. Adopting this approach requires specification of an 

appropriate period of time needed for the detection of these effects. A plausible period is 

the interval of an academic term, which has a natural entry and end point. The research 

question would thus be whether motivation and strategy use assessed at the beginning of 

the term would affect each other during the term, detected as described above, by cross-

lagged paths between the two time points. 

 

1.1. SRL and expectancy-value theory 
 

 The above effects were examined through the lens of expectancy-value theory 

since this approach has been the basis of most of the previous work on motivation and 

SRL (cf. Wolters et al., 2005). In Eccles and Wigfield’s expectancy-value model (Eccles 

et al., 1983; Wigfield & Eccles, 1992), expectancies for success and task value are the 

proximal determinants of such outcomes as effort, choice and persistence. Expectancy is 

represented by self-concept of ability and self-efficacy (Eccles & Wigfield, 1995). The 

four components of value are: (a) intrinsic interest, that is, the enjoyment gained from 

doing the task; (b) attainment value that captures the importance of doing well on the 

task; (c) utility, which is defined as how useful the task is for the student’s future; and (d) 

cost, that is, the effort and lost opportunities for engagement in an activity.  

 According to Pintrich and Zusho (2002) and Zimmerman (2000), given that 

strategy use is an effortful and time-consuming activity, students who value a task or 

domain will be more likely to employ strategies to increase the likelihood of success, 

with such as cognitive and metacognitive strategies requiring more concentration, effort 

and self-reflection and, hence, higher levels of motivation. Conversely, learners would 

use fewer strategies when outcomes are not considered valuable (Zimmerman, 2000). 

Following Wigfield, Hoa, and Klauda (2008), the role of value in the use of learning 

strategies is to favor or restrain students’ cognitive engagement in the task and the 

regulation of that engagement. 

 Among the components of value, perceived utility (or instrumentality) of an 

outcome predicts the use of deep-processing learning strategies (e.g., elaboration, critical 

thinking) even after controlling for the effect of achievement goals and perceived 

competence (Miller, Greene, Montalvo, Ravindran, & Nichols, 1996). Moreover, students 

choosing a class because of its relevance for their future (and for personal development) 

tend to use fewer surface-processing strategies and more deep-processing strategies than 

do students choosing a class in order to obtain extrinsic rewards (e.g., course credits) 

(Lens et al., 2002). College students’ use of deep-processing strategies, but not rehearsal, 

organization, and time management, was positively and moderately related to intrinsic 

task interest (Schiefele, 1991).2 To date, cost is the most understudied component of 

value (Wigfield & Cambria, 2010), including its relation to SRL. Cost may constrain 

                                                           
2 Note that whereas Schiefele (1991) considered organization as a surface-processing strategy, Linnenbrink 

and Pintrich (2003) considered it as a deep-processing strategy. 
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students’ use of strategies to learn or guide them toward the use of more surface-

processing strategies (e.g., rehearsal) that require less cognitive engagement even if it 

requires the same amount of time as higher-order strategies.  

 There is also considerable evidence for the relationship between expectancy for 

success (typically assessed as self-efficacy beliefs) and the adaptive use of cognitive and 

metacognitive strategies (Linnenbrink & Pintrich, 2003). Linnenbrink and Pintrich (2003) 

emphasized that in longitudinal studies self-efficacy explained additional variance over 

time in higher-order cognitive and metacognitive strategy use; that is, higher self-efficacy 

is related to an increased use of deep-processing strategies over time (Pintrich, 1999). 

Borkowski, Chan, and Muthukrishna (2000) have described reciprocal effects of 

motivational beliefs and cognitive and metacognitive strategy use in a heuristic 

developmental model. According to this model, self-efficacy beliefs lead to the efficient 

use of learning strategies and improve performance, including the increased use of 

metacognitive strategies (planning and monitoring). Furthermore, they propose that the 

effect of learning strategies on self-efficacy is mediated by performance and subsequent 

self- or teacher-provided feedback following performance. Zusho, Pintrich, and Coppola 

(2003) assessed the motivational beliefs at three points, and learning strategies twice, 

during a college chemistry course. Associations between efficacy, strategies and 

performance suggested support for the Borkowski et al. (2000) model, but analyses 

reported by Zusho et al. (2003) were not sufficient for a definitive test, and performance 

was only obtained at the end of the course. 

 

1.2. The present study – Hypotheses  

 

 In sum, research to date indicates that motivation in the form of expectancy and 

value beliefs is related to the use of learning strategies. There is insufficient evidence, 

however, regarding the direction of effects, as well as an incomplete specification of the 

components of motivation involved, notably that of cost. Accordingly, we employed a 

two-wave longitudinal design that afforded a test for both direct and reciprocal effects of 

each set of variables within a single academic term in mathematics classes. As in prior 

studies (Linnenbrink & Pintrich, 2003; Pintrich & De Groot, 1990; Zusho et al., 2003), in 

addition to relations at the beginning and end of the term, it was possible to examine: (a) 

whether students’ initial motivation toward mathematics predicted the use of learning 

strategies reported at the end of the term, controlling for use of learning strategies 

reported at the beginning of the term; (b) whether the initial use of learning strategies 

predicted the motivation reported at the end of the term, controlling for motivation 

reported at the beginning of the term; (c) the relative strength of these effects; (d) the 

stability of self-reported motivation and use of learning strategies; and (e) differences in 

the levels of motivation and strategy use from the beginning to the end of the term.  

 Framed within expectancy-value theory (Wigfield et al., 2008; Wigfield & 

Cambria, 2010), both initial self-efficacy and the three components of value (liking, 

utility, and importance) were expected to be directly related to and predict strategy use at 

the end of the term (Hypothesis 1). Given the sparse evidence regarding cost, however, 

no predictions were advanced. Concerning the effects of strategy use on motivation, 

based on Borkowski et al. (2000) and Linnenbrink and Pintrich (2003), it was expected 

that the self-reported use of cognitive and metacognitive strategies will predict students’ 
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mathematics-related self-efficacy at the end of the term; on the other hand, resource 

management strategies were not expected to predict mathematics-related self-efficacy 

(Hypothesis 2).  

 For continuity with prior research, the present study adopted the assessment of 

learning strategies used by Weinstein and Mayer (1986) and Pintrich and colleagues 

(Pintrich & De Groot, 1990; Pintrich et al., 1993; Wolters et al., 2003). This permitted 

testing effects of motivation on the complete set of cognitive, metacognitive and resource 

management strategies, as well as the potential effects of each strategy on each 

component of motivation. Taking into consideration the issues and limitations of current 

self-report inventories of learning strategies and SRL raised primarily by Winne and 

colleagues (Winne, Jamieson-Noel, & Muis, 2002; Winne & Perry, 2000), techniques to 

improve the assessment of self-reported learning strategies were employed by revising 

MSLQ scales to increase their construct validity, discriminant validity and, thus, the 

likelihood of detecting the predicted effects. 

 

2. Method 

 

2.1. Participants 

 

 Participants were 306 ninth grade students (50% female) enrolled in one of 15 

algebra classes in a Midwest urban high school in the U.S.A. Although students are not 

formally tracked in the school system, they were distributed across the following types of 

classes that increased in difficulty, respectively: (a) Algebra I support (16%), (b) Algebra 

I - 2/3 (material covered in three trimesters instead of the normal two; 7%), (c) Algebra I 

normal (42%), (d) Geometry advanced (30%), and (e) Algebra II (5%). Of the whole 

sample, 288 were surveyed at the beginning (Time 1, designated as T1) and 286 at the 

end (Time 2, designated as T2) of a 12-week term. The final sample consisted of the 253 

students who participated in both sessions. 

 Students were unaware that the survey would be administered during a specific 

class session, and thus participation was a function of attendance on the day of testing 

and unlikely to reflect unintended sample selectivity (e.g., students not attending class to 

avoid having to complete the survey). Of those who were present when assessment 

occurred only five students declined to participate. 

 

2.2. Material 

 

 The 44-item survey was divided into sections that assessed students’ use of 

learning strategies in their mathematics class (33 items), followed by their motivation for 

mathematics (11 items). Students responded to all items on a 5-point scale with anchors 

of 1 (Not at all true of me) and 5 (Very true of me). The scales were based on a selection 

of those in the college version of the MSLQ (Garcia Duncan & McKeachie, 2005; 

Pintrich, Smith, Garcia, & McKeachie, 1991), with modifications (described 

subsequently) for the present study. 

 

2.2.1. General MSLQ item revision principles 
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 Several design principles were employed in the present study to improve the 

MSLQ scales and their constituent items, including suggestions based on cognitive 

interviews of several motivation-related scales (Karabenick et al., 2007). First, several 

items were abbreviated to make them easier for high school students to comprehend. 

Second, words such as “concept” were removed, and “the material” was clarified by 

referencing “what I have/need to learn/know.” Third, the items were made subject-

specific to fit the context of mathematics learning in high school. Hence, references to 

reading activities were omitted and “lectures” was replaced by the word “class.” Fourth, 

terms referring to frequency or quantity (e.g., “each time”, “often”, “a lot”) were removed 

given that the response scale provided the necessary alternatives to capture that meaning.  

 

2.2.2. Learning Strategies Scale 

 Several learning strategy items were judged by the authors to contain terms that 

potentially confounded learning strategies and motivational beliefs. For example, the 

statement “I find it hard to stick to a study schedule” which suggests self-efficacy 

regarding time and study environment management, was replaced with “I use a study 

schedule when preparing for math exams.” In another example of an item in need of 

revision, “I try to understand the material in this class by making connections between 

the readings and the concepts from the lectures,” the inclusion of understanding 

potentially focused attention on the motivational goal of mastery as well an elaboration 

strategy. Additional revision principles were employed for the cognitive and 

metacognitive learning strategy items in an effort to adhere as closely as possible to the 

theoretical constructs they were assumed to operationalize. For example, items that 

implied two different strategies were revised. For example, the statement “Before I study 

new course material thoroughly, I often skim it to see how it is organized,” potentially 

describes metacognitive planning in the first phrase and organization in the second. The 

items included in the Learning Strategies Scale are given in Appendix A. 

 2.2.2.1 Cognitive strategies. Rehearsal was assessed by four items (e.g., “When I 

study math, I memorize what I need to learn by repeating it over and over to myself”). 

Organization was assessed by four items (e.g., “When I study math, I make outlines to 

organize what I have to learn”). Elaboration was assessed by four items (e.g., “I connect 

what I learn in math to what I am learning in some other classes”).  

 2.2.2.2. Metacognitive strategies. Planning was assessed by five items (e.g., “I 

plan how I am going to study new math topics before I begin”). Monitoring was assessed 

by four items (e.g., “When I study math, I ask myself questions to make sure I know what 

I have been learning”). Regulation was assessed by four items (e.g., “If I get confused 

with something I’m studying in math, I go back and try to figure it out”).  

 2.2.2.3. Resource management strategies. Time and study environment 

management was assessed by four items (e.g., “I make sure I have as few distractions as 

possible when I study math”). Help seeking was assessed by four items (e.g., “If I don’t 

understand something in math I ask my teacher for help”).  

 

2.2.3 Motivation Scale 

 Items used to measure motivation were framed specifically for mathematics. 

Expectancy was assessed by three items selected from the self-efficacy scale of the 

MSLQ (e.g., “I’m certain I can understand the most difficult material presented in 
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math.”). The four components of task value defined by Eccles (Eccles et al., 1983) were 

assessed with items adapted from Eccles and Wigfield (1995), that is, utility (3 items; 

e.g., “I believe that math is valuable because it will help me in the future”), attainment (3 

items; e.g., “It is important to me to be the kind of person who is good at math”), interest 

(3 items; e.g., “I like math”), and cost (2 items; e.g., “I have to give up a lot to do well in 

math”). The items included in the Motivation Scale are given in Appendix B. 

 

2.3. Procedure  

 

 Surveys were administered by research personnel during regular class periods and 

required approximately 25 minutes of class time. Following a brief explanation of the 

nature of the study—that it was concerned with how students learn and feel about 

mathematics—students were provided with an informed consent statement that 

emphasized the voluntary nature of participation, that they could refuse to answer any 

question, assured them of confidentiality and that their responses would not affect their 

mathematics grade. Names and student numbers were obtained to match data from the 

two survey administrations. Consent was required for participation. Survey items were 

read aloud and administered by the same person at both testing sessions to standardize the 

procedure and help ensure consistency. To emphasize the promised confidentiality, 

especially that their teachers would not have access to their responses, completed surveys 

were placed in an envelope and sealed in a manner that was clearly visible to students. 

 

2.4. Statistical analyses 

 

 First, psychometric analyses were used beginning with confirmatory factor 

analysis (CFA) that was conducted separately for the items assessing expectancy-value 

components and those assessing learning strategy use. The CFAs were conducted in order 

to test for the fit of the factor structure. These were followed by CFA analyses to 

determine the extent of measurement invariance between assessments at the two time 

points, and thus confidence that we are measuring the same constructs at T1 and T2. 

 Then, a cross-lagged correlation (CLC) model (Kenny, 1975, 1979) was tested. 

This model included the same expectancy-value and learning strategies variables at T1 

and T2. The CLC method is based on two assumptions (Kenny, 1975), namely 

synchronicity, which refers to the fact that the variables at each occasion are measured at 

the same time, and stationarity, which means that the presumed causal process did not 

change during the interval between the measurement occasions. Given that the design of 

the study satisfies the assumptions, it is an appropriate method to infer reciprocal 

causation in correlational data (Locascio, 1982). In addition, the method provides 

information about the stability of the variables over time. Although causality is not 

strictly proven with CLC, since the design is correlational, this approach can determine if 

the proposed directional model is consistent with the data, and more specifically, that the 

assumption of directionality is not disconfirmed (Bollen, 1989). The CLC employed 

observed variables corresponding to the mean score of the items loading their respective 

factors (i.e., unweighted composites). The scores were then corrected for measurement 

error. The use of manifest variables instead of latent variables was necessary given the 
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large number of parameters included in the model, which otherwise would have resulted 

in large standard errors and non-significant parameters even with moderate effect sizes. 

 The Maximum Likelihood Robust Estimator (MLR) available in Mplus 5.0 was 

used in all analyses to take into account deviations from multivariate normality. The fit of 

each model was assessed using χ2, the ratio of χ2/df (when the p value associated to χ2 

was significant), the Comparative Fit Index (CFI), and the Root Mean Square Error of 

Approximation (RMSEA) (cf. Schermelleh-Engel, Moosbrugger, & Müller, 2003). With 

regard to missing data, at T1, the highest percentage of missing values at the item level 

was 3.5% (10 students out of 288 did not answer an item), and at T2, 5.9% (17 students 

out of 286 did not answer an item). All analyses employed the Full Information 

Maximum Likelihood (FIML) procedure that is the most efficient method to estimate 

SEM models in presence of missing data (Enders, 2006). 

 

3. Results 

 

 To check the adequacy of the expected factor structure, CFAs were conducted 

using the items as factor indicators, initially as separate analyses at T1 and T2. 

 

3.1. Expectancy-value constructs 

 

 Correlations between utility, interest and attainment were all high and statistically 

significant both at T1 (r > .45, p < .001) and at T2 (r > .41, p < .001). Cost, however, was 

only slightly correlated with utility, interest and attainment at either T1 or T2. A model 

that consisted of the five first-order constructs (expectancy and the four components of 

value) and a second-order factor explaining utility, interest, and attainment fit the data 

adequately at T1, χ2(71, N = 288) = 141.212, p < .001, χ2/df = 1.98, CFI = .95, RMSEA = 

.06. All loadings were large (> .60) and highly significant (p < .001). The first order 

factors of utility, interest, and attainment were largely explained (all loadings > .71, p < 

.001) by the second-order factor that was designated as “value.” Consistent with the fact 

that cost was only slightly correlated with the other components of value, it was 

represented as a separate factor, distinct from value. No items were removed from the 

analysis. At T2, an identical model fit the data equally well, χ2(71, N = 286) = 138.890, p 

<.001, χ2/df = 1.96, CFI = .96, RMSEA = .06. 

 

3.2. Learning strategies constructs 

 

 A model with nine first-order factors and one second-order factor explaining the 

metacognitive first-order factors (planning, monitoring, and regulation) fit the data 

adequately at T1, χ2(329, N = 288) = 450.129, p < .001, χ2/df = 1.37, CFI = .94, RMSEA 

= .04. All loadings were at least moderate (> .39) and highly significant (p < .001). The 

first-order factors of planning, monitoring, and regulation were largely explained (all 

loadings > .79, p < .001) by the second-order factor termed “metacognition.” An identical 

model fit the T2 data, although the indices were not as satisfactory as these were at T1, 

χ2(329, N = 286) = 540.837, p < .001, χ2/df = 1.64, CFI = .88, RMSEA = .05. As with the 

T1 factor solution, all loadings were at least moderate (> .49) and highly significant (p < 

.001). This factorial solution, however, required the removal of four items at both 
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measurement occasions. Two items contained common words “the formulas or 

definitions” that apparently had overlapping meaning. One of these items was expected to 

assess rehearsal (“I study math by going over the formulas or definitions in order to 

memorize them”) and largely cross-loaded on the factor organization; the second item 

was designed to assess organization but cross-loaded on the rehearsal factor (“When I 

study math, I make a list of the formulas or definitions to organize what I need to know”). 

One item (“If I’m having trouble solving math problems I try other ways to solve them”), 

which was expected to assess regulation, did not significantly load on the expected factor. 

The last discarded item (“I use a study schedule when preparing for math exams”) was 

designed to assess time and study management but did not load on the factor; this seemed 

due to the fact that all the other items explained by this factor refer to strategies related to 

concentration and distraction. 

 

3.3. Measurement invariance over time 

 

 Comparison of the same models at T1 and T2 reported above provided 

information regarding the configural invariance of the factorial solution. In order to 

provide a more stringent test of measurement invariance over time, we conducted a test 

of metric invariance, which consists of constraining the factor loadings to be equal across 

measurement occasions. All expectancy-value constructs were included in one analysis. 

Concerning learning strategies, however, given the large number of items and, therefore, 

number of parameters to be estimated in a single model, two separate models were 

estimated. One model consisted of the cognitive strategies (rehearsal, organization, 

elaboration and time and study environment management). The second consisted of 

metacognitive strategies (planning, monitoring and regulating) and help seeking.  

 

3.3.1. Invariance in the measurement of expectancy-value components  

 The same five-factor model (four first-order and one second-order) was specified 

for both waves, with loadings constrained to be equal. The Satorra-Bentler scaled Δχ2 test 

(Satorra & Bentler, 1999) revealed that the fit of the constrained model (loadings 

constrained to be equal across time) was not significantly different, Satorra-Bentler 

scaled Δχ2(9) = 8.006, p = .53, from the fit of the unconstrained model (loadings freely 

estimated). It can, therefore, be concluded that there was invariance in the factor loadings 

between T1 and T2. 

 

3.3.2. Invariance in the measurement of learning strategies  

 For rehearsal, organization, elaboration, and time and study environment 

management strategies, the same four-factor model was specified for both waves, with 

loadings were constrained to be equal. The Satorra-Bentler scaled Δχ2 test revealed that 

the fit of the constrained model was not significantly different from the fit of the 

unconstrained model, Satorra-Bentler scaled Δχ2(7) = 1.101, p = .99. It can, therefore, be 

concluded that there was invariance in the factor loadings between T1 and T2. For 

metacognition and help seeking strategies, the same five-factor model (four first-order 

factors and one second-order factor) was specified for both waves with the loadings 

constrained to be equal. As with the other models, it can be concluded that there is 

invariance in the factor loadings between T1 and T2, Satorra-Bentler scaled Δχ2(11) = 
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1.056, p = .99. Table 1 presents the descriptive statistics for the scales based on these 

analyses and the internal consistency estimates. Raykov’s rho estimate of internal 

consistency (Raykov, 1997) was used given that this index has been shown to be a better 

estimate than Cronbach’s alpha, as it does not assume tau-equivalence of the factor 

loadings. 

--------------------------------------- 

Insert Table 1 about here. 

--------------------------------------- 

 

3.4. Differences in motivation and strategy use over time 

 

 Separate ANOVAs tested both mean level differences and differential change of 

motivation and learning strategy use from T1 to T2. For each analysis, two within 

subjects factors were time and the type of expectancy-value component or strategy. The 

results revealed that the Time x Expectancy-Value component interaction was significant, 

F(2, 251) = 9.17, p < .001, partial η2 = .04, which indicates that the mean expectancy-

value components changed at different rates from T1 to T2. As shown in Table 1, 

whereas self-efficacy remained relatively stable, students valued mathematics less at the 

conclusion of the term and considered doing well more costly in terms of time, effort and 

lost opportunity. Moreover, a main effect of expectancy-value component was found, 

F(2, 251) = 110.084, p < .001, partial η2 = .30, whereas no main effect of time was found, 

F(1, 252) = 1.102, p = .30. The Time x Strategy interaction was not statistically 

significant, F(5, 248) = 1.703, p = .13. Moreover, main effects of strategy type, F(5, 248) 

= 222.757, p < .001, partial η2 = .47, and of time, F(1, 252) = 12.059, p < .01, partial η2 = 

.05, were found. This indicates an overall decrease in strategy use over time. 

Nevertheless, univariate ANOVAs suggested that metacognition, help seeking, and time 

and study environment management decreased significantly whereas rehearsal, 

organization and elaboration did not. Although the extent of the mean changes is modest, 

the differences may be considered substantial given the short interval between the two 

measurement occasions and, thus, have practical implications as they probably cumulate 

over successive mathematics classes. 

 Table 2 presents the correlations between all measured variables. Concerning the 

correlations between learning strategy scales, the same pattern was found at T1 and T2, 

that is, all of the strategies were positively and moderately associated, with the highest 

correlations found between rehearsal and organization (r = .51, p < .001 and r = .55, p < 

.001, respectively at T1 and T2). The correlations between expectancy-value scales are 

equivalent at both time periods, except that value and cost were not significantly related 

at T2 (r = -.05) but were at T1 (r = -.15, p < .05). The correlations showed a clear pattern 

of association between motivation and self-regulation but also some differences at the 

two time points. In general, at both T1 and T2, students who believed themselves more 

capable in mathematics and who considered mathematics more valuable were more likely 

to use higher-order cognitive (elaboration) and metacognitive strategies, help seeking and 

time and study environment management, but were not more likely to rely on rehearsal or 

organization.  

 The same pattern prevailed for students who considered mathematics more 

valuable at T1 but not at T2 when mathematics value was also associated with rehearsal 



11 

Berger, J.-L., & Karabenick, S. A. (2011). Motivation and students' use of learning strategies: 

Evidence of unidirectional influences in mathematics classrooms. Learning and Instruction, 21, 

416–428. 

(r = .30, p < .001) and organization (r = .23, p < .001). Relations between cost and 

strategy use also showed a somewhat different pattern at the beginning and end of the 

term. The more students thought that doing well in mathematics was costly in terms of 

time and opportunities lost the more likely they were to report using rehearsal at both 

time points. At T2, however, cost was also associated with the use of organization (r = 

.20, p < .01) and time and study environment management (r = .14, p < .05). The 

correlation between self-efficacy and time and study management also tended to increase 

from T1 (r = .19, p < .05) to T2 (r = .31, p < .001). Taken together, the changes in 

relations suggest some shifts in how students with different motivational profiles allocate 

time and effort to the way they study and approach the course. It is these changes that are 

reflected in analyses that incorporate both time periods. 

--------------------------------------- 

Insert Table 2 about here. 

--------------------------------------- 

 Except for elaboration that had lower correlations with rehearsal, organization, 

and metacognition in the present study, the correlations between learning strategy scales 

are approximately of the same magnitude as those in the primary validation study of the 

MSLQ with college students (Pintrich et al., 1993)3. It should also be noted that in the 

Pintrich and De Groot (1990) study of high school students only two scales were formed 

with the learning strategy items based on exploratory factor analyses, namely Cognitive 

Strategy Use that comprised all the items pertaining to the use of rehearsal, elaboration 

and organization, and Self-Regulation that comprised the metacognitive self-regulation 

strategies and effort management items. In contrast, results of the present study indicated 

that specific scales can be formed for cognitive and resource management strategies, 

respectively, whereas the three types of metacognitive strategies were explained by a 

single second-order factor.  

 

3.5. Cross-lagged correlation (CLC) model and analyses 

 

 The cross-lagged correlations between several variables measured on several 

occasions were used in order to identify directional effects from passive observational 

longitudinal data (Kenny, 1975). Specifically, the presence of asymmetrical cross-lag 

paths would indicate a directional effect by rejecting the alternative hypothesis of 

spuriousness.  

 Based on the literature review and the hypotheses of the study, a general model of 

the expected cross-lag paths (represented by dotted lines) was proposed, shown in Figure 

1. Each of the expectancy-value components at T1 might have an effect on strategy use at 

T2 whereas the use of learning strategies at T1 could have an effect on self-efficacy at 

T2. Moreover, no path linking different learning strategies at both time points was 

proposed since there was no theoretical rationale to expect cross-lagged effects from the 

use of any learning strategy at T1 on the use of any other learning strategy at T2. Both 

value and self-efficacy were expected to positively predict the level of learning strategies 

at T2, controlling for T1 levels of learning strategies. Given that the effect of cost on 

learning strategies is largely unknown, a question mark is shown to represent this 

                                                           
3 That may be a function of elaboration’s lower internal consistency in the present study (ρ = .58 and .59) 

compared to previous research (Cronbach’s alpha = .75 in Pintrich et al., 1993). 
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exploratory part of the model. Moreover, a positive path was included from learning 

strategies at T1 to self-efficacy at T2, following the Borkowski et al.’s (2000) theoretical 

model. Finally, stability (represented by solid lines) over time was expected for the same 

variables from T1 to T2. 

-------------------------------- 

Insert Figure 1 about here 

--------------------------------- 

 The CLC model tested included all of the learning strategy constructs and the 

expectancy-value constructs. Measurement error in the scores was corrected using the 

formula (1 - reliability) x variance to fix measurement error in the SEM model (Bollen, 

1989). These corrections take into consideration the reliability of the scores resulting in 

more precise parameters. The results are shown in Figure 2. Only significant paths at the 

level of alpha = .05 were retained in the model. Since the correlations between the 

variables at T1 and between the variables at T2 are available in Table 2, they were not 

included here to increase readability. 

 The testing of the CLC model revealed a fit qualified as acceptable following 

Schermelleh-Engel et al.’s (2003) guidelines, χ2(67, N = 306) = 147.502, p < .001, χ2/df = 

2.20, CFI = .94, RMSEA = .06. However, based on suggested modification indices we 

added a path from value at T1 to self-efficacy at T2 (β = .33), suggesting that value 

predicts change in self-efficacy but not the reverse, χ2(66, N = 306) = 124.240, p < .001, 

χ2/df = 1.88, CFI = .96, RMSEA = .05. Thus, the more the students indicated they valued 

mathematics at the beginning of the term the more efficacious they reported being at the 

end of the term, even after controlling for their level of self-efficacy beliefs at the 

beginning of the term. Addition of this path significantly improved the fit of the model, 

Δχ2(1) = 23.26, p < . 01.  

 As shown in Figure 2, the path coefficients indicated a moderate degree of 

stability in self-efficacy (β = .59) and cost (β = .56), and a high degree of stability of 

value from T1 to T2 (β = .82). At both time points the paths between constructs were of 

similar magnitude, that is, value was consistently strongly associated with self-efficacy 

but not with cost, and self-efficacy and cost were inversely related. The only cross-lagged 

path reaching significance within the set of motivation constructs was from value at T1 to 

self-efficacy at T2 (β = .33). The stability of learning strategies ranged from β = .56 (time 

and study environment management) to β = .80 (help seeking). Importantly, the moderate 

level of stability is both an indication of sufficient inter-individual variability yet with 

sufficient variance over time to be predicted by T1 levels of motivation and strategy use. 

--------------------------------------- 

Insert Figure 2 about here. 

--------------------------------------- 

 As shown in Figure 2, there were several paths from motivation at T1 to learning 

strategies at T2 but none from strategy use at T1 to motivation at T2. First, the use of 

rehearsal as a learning strategy at T2 was positively predicted by both value (β = .18) and 

cost (β = .21) at T1, over and above the use of rehearsal at T1. In other words, the more 

students believed that mathematics is valuable (in terms of utility, interest, and 

attainment) and the more it costs for the students to learn mathematics, the more students 

increased (or the less students decreased) their use of rehearsal from T1 to T2. These 

effects were not expected. That the zero-order correlations show a similar pattern 
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suggests these path values are not artifacts (e.g., due to various forms of suppression). 

Three learning strategies, namely elaboration, metacognition, and time and study 

environment management at T2 were significantly predicted by self-efficacy at T1 

controlling for their level at T1. The path coefficients, which range from β = .17 and β = 

.27, were substantial given the short time interval (12 weeks) between the two time 

points. 

 The proportion of explained variance in expectancy-value constructs at T2 ranged 

from R2 = .32 (cost) to R2 = .68 (self-efficacy). For learning strategies, the proportion of 

explained variance at T2 was between R2 = .37 (time and study environment 

management) and R2 = .64 (help seeking). As a further test of these effects, we also 

conducted tests of separate models that included expectancy-value components, and a 

single learning strategy per model rather than all in a single model. These analyses 

revealed that the effects found in the global model were also present in the single-strategy 

models. This supports the validity of the global model by verifying that the cross-lagged 

effects are not due to suppressor effects. 

 

4. Discussion 

 

4.1. Motivation and learning strategies 

 

 The present study was designed to detect reciprocal effects of motivation and 

students’ reported use of learning strategies during a single academic term in high school 

mathematics classes. Cross-lagged analyses indicated that both expectancy and value 

components of motivation significantly predicted students’ reported use of learning 

strategies, therefore confirming Hypothesis 1. Rather than motivation in general, 

however, the effect must be stated conditionally given that only self-efficacy and value 

predicted the use of different strategies. Specifically, students’ self-efficacy for 

mathematics at the beginning of the term predicted more frequent use of deep-processing 

strategies (elaboration, metacognition) and of time and study environment management, 

but self-efficacy did not predict rehearsal or organization. Given that the use of 

metacognition and time and study environment management strategies significantly 

decreased over the course of the term, the effects of self-efficacy can be interpreted as 

reducing the decrease in the use of those strategies. The effect of self-efficacy on strategy 

use is consistent with the results for elaboration and metacognition found in studies of 

middle school students (Pintrich, 1999) of similar age to those in the present study. 

 However, the results of the present study indicate that whereas being confident in 

one’s ability to learn leads to the use of deeper, more sophisticated strategies, valuing the 

domain does not lead to similar higher-order self-regulation. Compared with their peers, 

students who initially considered mathematics more valuable—the combination of 

interesting, useful and important—were more likely to increase only their use of 

memorization during the term, controlling for beginning of term use of rehearsal. It is 

possible that value indirectly affected higher-order strategy use, however, given that the 

value of mathematics at the beginning of the term predicted students’ reported levels of 

self-efficacy at the end of the term, which in turn affected the use of higher-order 

strategies.  



14 

Berger, J.-L., & Karabenick, S. A. (2011). Motivation and students' use of learning strategies: 

Evidence of unidirectional influences in mathematics classrooms. Learning and Instruction, 21, 

416–428. 

 The more the students perceived that being successful at mathematics is costly in 

terms of time, effort and lost opportunities the more likely they were to increase their use 

of rehearsal, which requires less time and effort than higher-order strategies do. Taken 

together, therefore, rehearsal was increasingly preferred by students who considered 

mathematics more valuable but that also required more of them (i.e., was considered 

more costly). Results of the role of cost is especially important given the dearth of 

information available to date (Wigfield & Cambria, 2010), and should spur additional 

efforts to study its effects on the use of learning strategies.  

 Students’ use of cognitive and metacognitive strategies at the beginning of the 

term did not predict the levels of student motivation reported at the end of the term, 

controlling for strategy use at the beginning. Thus, there is absolutely no evidence in 

favor of Hypothesis 2, namely that learning strategy use predicts student motivation (self-

efficacy, value or cost), and consequently no support for the Borkowski et al. (2000) 

model that proposed such effects. One reason for the absence of strategy effects may be 

that the temporal interval in the present study was too brief for the effects to be detected. 

Thus believing in the value of, or being confident in mathematics could affect the use of 

certain learning strategies in the short term, but the use of strategies may require more 

time before affecting motivational beliefs—strategy use is relatively modifiable whereas 

levels of motivation, in this instance regarding the domain of mathematics, are less so. 

Especially in the case of value, it would seem unreasonable to expect this component of 

motivation to change over that time period, as suggested by the high stability observed in 

the present study. What we can rule out is that the differences in predictability from 

motivation to learning strategies and from learning strategies to motivation are a function 

of differential stability over that interval. Except for value, the motivation components 

and learning strategy use were both comparably and moderately stable yet with sufficient 

variability (between 31% and 64% of the variance at T2 was explained by strategy use at 

T1) for systematic effects to occur.  

 Evidence from the present study also bears on the general consensus that the 

levels of value and efficacy decrease over a typical school term or college course (Eccles, 

Wigfield, & Schiefele, 1998; Pintrich & Schunk, 2002; Zusho et al., 2003). Consistent 

with this generalization, the mean level of value for mathematics decreased over the term, 

and the level of cost increased; however, the mean reported level of self-efficacy did not 

decline. Changes in the use of learning strategies also varied: only use of three strategies 

(metacognition, help seeking, and time and study environment management) decreased 

over the course of the term. These can be considered three of the most adaptive learning 

strategies (Pintrich, 1988; Weinstein et al., 2000), this suggests that, as a group, students 

became less self-regulated learners during the term. In comparison, the study by Zusho et 

al. (2003) found that the use of rehearsal and elaboration strategies decreased over the 

term whereas the use of organizational and metacognitive strategies increased. However, 

differences in student population and subject matter could explain the differences 

between studies. 

 

4.2. Assessment of motivation and strategy use 

 

 With regard to revisions of the items and scales used to assess motivation and 

strategy use, confirmatory factor analyses indicated that the variance in students’ 
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responses could be explained by the proposed factors. The expectancy-value scales 

demonstrated very desirable properties in terms of construct validity and in terms of 

measurement invariance over time. The constructs of utility, interest, and attainment 

value (importance) were explained by a single value factor, whereas the construct of cost 

component of expectancy-value theory (Eccles et al., 1983) was considered distinct. That 

cost factored independently from interest, utility and importance suggests that it be 

treated separately rather than as just another component of task value. 

 The learning strategy factorial solution fit the data when analyzed together (i.e., 

all the items in a single CFA). Moreover, several factors representing distinct learning 

strategies were extracted, contrary to Pintrich and De Groot (1990) who found two 

learning strategy factors using the MSLQ, or Liu’s (2009) learning strategy inventory that 

proposed three factors (cognitive, metacognitive, and behavioral strategies). However, 

the analyses of measurement invariance revealed that metacognition and help seeking 

resulted in a less adequate factorial solution (i.e., the CFI was under .90) than did the 

analysis of cognitive and resource management strategies (rehearsal, organization, 

elaboration, and time and study environment management), which suggests the need for 

further revision of these items. Furthermore, the reliability of several scales’ scores was 

less than desired, suggesting that these scores should be corrected for measurement error, 

as was done in the present study. Globally, the CFAs indicated that the revisions and 

adaptations of the items used to measure high school students’ use of learning strategies 

represent an improvement over those in previous versions of the MSLQ (i.e., increased 

discriminant validity for the learning strategy scales). Exploration of the validity and of 

how to better phrase these items is currently under investigation (Berger & Karabenick, 

2010) using the cognitive interviewing approach suggested by Karabenick et al. (2007). 

 In general, the correlations between expectancy-value components and learning 

strategies corroborate those found by Pintrich et al. (1993). Notably, self-efficacy and 

task value are more strongly related to higher than to lower-order learning strategies. 

However, the present results revealed that expectancy-value components and learning 

strategies correlated less strongly than the values reported by Pintrich and De Groot 

(1990), that is, value was correlated with cognitive strategy use (r = .63, p < .001) and 

self-regulation (r = .73, p < .001), whereas self-efficacy was correlated with cognitive 

strategy use (r = .33, p < .001) and self-regulation (r = .43, p < .001). Compared with 

former studies, the results of our factor analyses and the correlations between 

expectancy-value and learning strategies are closer to those of Pintrich et al. (1993) based 

on college students than they from Pintrich and De Groot (1990) based on high school 

students. 

 

4.3. Implications for education 

 

 A major implication of this study for learning and instruction is the need to 

consider value, cost and self-efficacy separately when examining the impact of 

motivation on the way students learn mathematics. It is clear from the results that self-

efficacy should be a major focus since it is inversely related to cost, which predicts 

students’ use of rehearsal rather than higher-order strategies. In addition, even though 

learning strategy use did not predict student self-efficacy, the presence of variance in 

learning strategy use suggests that learning strategies are malleable and may be changed 
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by instruction, even in the relatively brief time period over which the present study was 

conducted.  

 The inclusion of the cost component of value (although here considered a distinct 

variable) broadens the set of motivational beliefs associated with learning strategy use 

and warrants expanding the assessment of cost to include more of its constituents. For 

example, cost may be divided into the extent to which liked activities have to be 

abandoned in order to do the task and the anticipated effort necessary to put into task 

completion (Wigfield & Cambria, 2010), since the two forms of cost may relate 

differently to learning strategies use. It is likely, for example, that cost as the anticipated 

effort needed for task completion would relate more strongly and negatively to the use of 

deep learning strategies than would opportunity cost that was assessed in the present 

study.  

 

4.4. Limitations of the present study 

 

 Information regarding the effects of performance feedback (e.g., mid-term grades) 

would be useful in explicating changes in learning strategy and motivational beliefs, as 

performance feedback (e.g., test grades) could reinforce or discourage a student from 

using their approaches to learning, as well as influencing self-efficacy (Borkowski et al., 

2000) or value. For example, students largely using rehearsal to learn mathematics and 

obtaining a poor intermediate grade on a mid-term test may decrease their self-efficacy 

beliefs and decide to change study habits with increased comprehension monitoring. 

Hence, a more precise picture of how the use of learning strategies changes over the 

course of a term is suggested, although inclusion of performance feedback would violate 

the CLC assumption of stationarity (Kenny, 1975) since the causal process under 

investigation would change between T1 and T2 and thus other structural models would 

be required to capture these effects. 

 Further research should also extend the two-wave longitudinal design, which 

would provide a more dynamic picture of the causal relations between motivation and 

learning strategies. Within a given term, as in the present study, more information would 

be desirable, although it would also increase the likelihood of assessment obtrusion. 

Longitudinal studies beyond a given term or even beyond one school year may also 

increase the probability of detecting the effects of motivation and learning strategy use, 

but the models’ complexity would be greatly increased given changes in students’ 

courses and teachers. Learning strategy or motivational interventions could also be used 

to demonstrate causal effects. However, experimental or quasi-experimental studies 

would have to take into consideration the degree of complexity in school learning and the 

multiple learning strategies available to students, and such designs would still require 

assessment that is sufficient to capture the dynamic interplay between motivation and 

strategy use (Zimmerman, 2008).  

 Of course we must point out the reliance in the present study on self-reported data 

to measure students’ use of learning strategies. Direct observation may well bring a 

different and complementary picture of the relations between motivation and learning 

strategy use (Winne et al., 2002). However, that would be difficult given the natural 

settings (e.g., home, school) in which learning takes place. Experience sampling 

methodology may also be informative, although it too raises the potential for assessment 



17 

Berger, J.-L., & Karabenick, S. A. (2011). Motivation and students' use of learning strategies: 

Evidence of unidirectional influences in mathematics classrooms. Learning and Instruction, 21, 

416–428. 

obtrusion, even more so perhaps than multiple assessments within classroom settings. All 

methodological approaches have their costs and benefits. The present study’s detection of 

directional effects—motivation predicts the use of learning strategies but learning 

strategies do not predict motivation—suggests that despite its need for improvement, as 

in the present study, the self-reported assessment of strategy use remains an important 

tool in the study of self-regulated learning. 

 

 

Appendix A: Learning Strategies Scale and items 
 

Cognitive strategies 

 

Rehearsal 

 When I study math, I memorize what I need to learn by repeating it over and over 

to myself. 

 I study math by going over the formulas or definitions in order to memorize them. 

 I study math by doing the practice problems over and over again to memorize 

them. 

 When I study math, I write down the formulas and definitions many times in 

order to memorize them. 

 

Organization 

 When I study math, I make outlines to organize what I have to learn. 

 I study math by highlighting or underlining to organize what I need to know. 

 I study math by making charts, diagrams, or tables to organize what I need to 

learn. 

 When I study math, I make a list of the formulas or definitions to organize what I 

need to know. 

 

Elaboration 

 I connect what I learn in math to what I am learning in some other classes. 

 When studying math, I try to connect new material to what I already know. 

 When I study math, I translate the formulas or definitions in the textbook into my 

own words. 

 I make connections between how I solve one math problem with the way I could 

solve others. 
 

Metacognitive strategies 

 

Planning 

 I plan how I am going to study new math topics before I begin. 

 Before I begin studying math I think about what and how I am going to learn. 

 Before I study math, I plan how much time I will need to learn a topic. 

 When I learn new topics in math, I first figure out the best way to study. 

 Before I study math, I set goals for myself to help me learn. 
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Monitoring 

 When I study math, I ask myself questions to make sure I know what I have been 

learning. 

 When studying math I try to determine how well I have learned what I need to 

know. 

 When I’m studying math I test myself to see whether I know the material. 

 I check whether I have learned what I am studying in math. 

  

Regulation 

 If I get confused with something I’m studying in math, I go back and try to figure 

it out. 

 If the math I am studying is difficult to learn, I slow down and take my time. 

 If I’m having trouble solving math problems I try other ways to solve them. 

 If I think I don’t know my math well enough, I make sure I learn it before going 

to the next topic. 
 

 

Resource management strategies 

 

Help seeking 

 If I don’t understand something in math I ask my teacher for help. 

 If I don’t understand something in math I ask other students for help. 

 If I don’t understand something in math I ask for help to better understand general 

ideas or principles. 

 If I don’t understand something in math I ask others for the answers I need to 

complete my work. 

 

Time and study environment management 

 I study math in a place where I can concentrate. 

 I use a study schedule when preparing for math exams. 

 I study math at a time when I can concentrate. 

 I make sure I have as few distractions as possible when I study math. 

 

 

Appendix B: Motivation Scale and items 

 

Value 

 

Interest 

 I like math. 

 I enjoy doing math. 

 Math is exciting to me 

 

Utility 

 I believe that math is valuable because it will help me in the future. 
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 I believe that math will be useful for me later in life. 

 I believe that being good at math will be useful when I get a job or go to college. 

 

Attainment Value (Importance) 

 It is important to me to be the kind of person who is good at math. 

 I believe that being good at math is an important part of who I am. 

 It is important to me to be a person who can reason using math formulas and 

operations. 

 

Cost 

 I have to give up a lot to do well in math. 

 I believe that success in math requires that I give up other activities that I enjoy. 

 

Expectancy 

 

Self-efficacy 

 I believe I will receive an excellent grade in math. 

 I’m certain I can understand the most difficult material presented in math. 

 I’m confident I can learn the basic concepts taught in math. 
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Table 1. 

Descriptive statistics of the scales on learning strategies and motivational beliefs (n = 253) 

 

  T1 T2   

Variable # items M SD ρ M SD ρ T2 – T1 p † 

Motivation Variables         

Self-efficacy 3 3.44 0.97 .75 3.39 0.97 .71 - 0.05 ns 

Value 9 3.24 0.91 .89 3.05 0.95 .90 - 0.19 < .001 

Cost 2 2.37 1.10 .75 2.44 1.12 .78 + 0.07 .04 

Learning strategies         

Rehearsal 3 2.57 0.98 .63 2.56 0.90 .59 - 0.01 ns 

Organization 3 2.10 0.94 .64 2.06 0.87 .57 - 0.04 ns 

Elaboration 4 3.05 0.84 .58 2.94 0.79 .59 - 0.11 ns 

Metacognition 12 3.03 0.74 .86 2.88 0.68 .84 - 0.15 < .001 

Help seeking 3 3.77 0.89 .62 3.62 0.88 .55 - 0.15 .02 

Time & Study 3 3.27 1.01 .78 3.12 0.99 .79 - 0.15 < .01 

ρ = Raykov’s rho internal consistency estimate  

† Based on univariate ANOVAs 
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Table 2. 

Correlations between motivation and learning strategy scales at T1 and T2. 
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Cost   .15                 

Self-efficacy   .60 -.33                

Rehearsal   .14  .14  .08               

Organization   .12  .08  .01 .51              

Elaboration   .45  .01  .30 .19 .22             

Metacognition   .42  .03  .27 .51 .49  .50            

Help seeking   .28 -.02  .21 .28 .21  .22 .46           

Time & Study   .42  .06  .19 .32 .26  .25 .46  .36          

T
im

e 
2
 

Value   .78 -.07  .44 .21 .11  .35 .40  .25 .40         

Cost -.09  .52 -.25 .12 .08 -.10 .05 -.01 .11 -.05        

Self-efficacy   .58 -.20  .65 .11 .02  .31 .33  .14 .24  .66 -.23       

Rehearsal   .22  .19 -.01 .57 .46  .28 .39  .22 .34  .30  .23 .10      

Organization   .13  .13 -.08 .42 .56  .22 .41  .12 .25  .23  .20 .01 .55     

Elaboration   .38  .00  .29 .12 .19  .53 .34  .11 .18  .37  .01 .34 .26 .30    

Metacognition   .39 -.02  .29 .42 .37  .40 .65  .27 .40  .45  .11 .33 .51 .46 .52   

Help seeking   .19 -.06  .17 .31 .28  .21 .36  .59 .23  .22 -.01 .21 .31 .21 .28 .42  

Time & Study   .35  .06  .19 .37 .32  .26 .41  .29 .56  .46  .14 .31 .41 .24 .26 .47 .31 

n = 253.  

Coefficients ≥ .13 are significant at p < .05; ≥ .17 are significant at p < .01; ≥ .21 are significant at p < .001. 
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Fig. 1. Proposed cross-lagged correlation model linking expectancy-value constructs and 

learning strategies at Time 1 (T1) and Time 2 (T2). 
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Fig. 2. Cross-lagged correlation model for task value, cost, self-efficacy, and learning strategies (n = 306). All paths shown are 

significant at p < .05. 

 


