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Abstract— We study the transmission over a network in which
users send information to a remote destination through relay
nodes that are connected to the destination via finite-capacity
error-free links, i.e., a cloud radio access network. The relays
are constrained to operate without knowledge of the users’
codebooks, i.e., they perform oblivious processing. The desti-
nation, or central processor, however, is informed about the
users’ codebooks. We establish a single-letter characterization
of the capacity region of this model for a class of discrete
memoryless channels in which the outputs at the relay nodes
are independent given the users’ inputs. We show that both
relaying à-la Cover–El Gamal, i.e., compress-and-forward with
joint decompression and decoding, and “noisy network coding”
are optimal. The proof of the converse part establishes, and uti-
lizes, connections with the Chief Executive Officer source coding
problem under logarithmic loss distortion measure. Extensions
to general discrete memoryless channels are also investigated.
In this case, we establish the inner and outer bounds on the
capacity region. For memoryless Gaussian channels within the
studied class of channels, we characterize the capacity region
when the users are constrained to time-share among Gaussian
codebooks. Furthermore, we also discuss the suboptimality of
separate decompression and decoding and the role of time
sharing.

Index Terms— Cloud radio access network, multiple-access
relay channel, oblivious relay processing, fronthaul compression,
noisy network coding.

I. INTRODUCTION

CLOUD radio access networks (CRAN) provide a new
architecture for next-generation wireless cellular sys-

tems in which base stations (BSs) are connected to a
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cloud-computing central processor (CP) via error-free finite-
rate fronthaul links. This architecture is generally seen as
an efficient means to increase spectral efficiency in cel-
lular networks by enabling joint processing of the sig-
nals received by multiple BSs at the CP and, so, pos-
sibly alleviating the effect of interference. Other advan-
tages include low cost deployment and flexible network
utilization [2].

In a CRAN network, each BS acts essentially as a relay
node; and so it can in principle implement any relaying
strategy, e.g., decode-and-forward [3, Th. 1], compress-and-
forward [3, Th. 6] or combinations of them. Relaying strategies
in CRANs can be divided roughly into two classes: i) strategies
that require the relay nodes to know the users’ codebooks (i.e.,
modulation, coding), such as decode-and-forward, compute-
and-forward [4]–[6] or variants thereof, and ii) strategies in
which the relay nodes operate without knowledge of the users’
codebooks, often referred to as oblivious relay processing (or
nomadic transmission) [7]–[9]. This second class is composed
essentially of strategies in which the relays implement forms
of compress-and-forward [3], such as successive Wyner-Ziv
compression [10]–[12] and quantize-map-and-forward [13] or
noisy-network coding [14]. Schemes that combine the two
approaches have been shown to possibly outperform the best
of the two [15], especially in scenarios in which there are more
users than relay nodes.

In essence, however, a CRAN architecture is usually envi-
sioned as one in which BSs operate as simple radio units (RUs)
that are constrained to implement only radio functionalities
such as analog-to-digital conversion and filtering while the
baseband functionalities are migrated to the CP. For this
reason, while relaying schemes that involve partial or full
decoding of the users’ codewords can sometimes offer rate
gains, they do not seem to be suitable in practice. In fact, such
schemes assume that all or a subset of the relay nodes are fully
aware (at all times!) of the codebooks and encoding operations
used by the users. For this reason, the signaling required to
enable such awareness is generally prohibitive, particularly as
the network size gets large. Instead, schemes in which relay
nodes perform oblivious processing are preferred in practice.
Oblivious processing was first introduced in [7]. The basic
idea is that of using randomized encoding to model lack of
information about codebooks. For related works, the reader
may refer to [8], [16], and [17]. In particular, [8] extends the
original definition of oblivious processing of [7], which rules
out time-sharing, to include settings in which transmitters
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Fig. 1. CRAN model with oblivious relaying and time-sharing.

are allowed to switch among different codebooks, constrained
relay nodes are unaware of the codebooks but are given,
or can acquire, time- or frequency-schedule information.1 The
framework is referred to therein as “oblivious processing with
enabled time-sharing”.

In this work, we consider transmission over a CRAN in
which the relay nodes are constrained to operate without
knowledge of the users’ codebooks, i.e., are oblivious, and
only know time- or frequency-sharing information. The model
is shown in Figure 1. Focusing on a class of discrete
memoryless channels in which the relay outputs are inde-
pendent conditionally on the users’ inputs, we establish a
single-letter characterization of the capacity region of this
class of channels. We show that both relaying à-la Cover-El
Gamal, i.e., compress-and-forward with joint decompression
and decoding [7], [18], and noisy network coding [14] are
optimal. For the proof of the converse part, we utilize
useful connections with the Chief Executive Officer (CEO)
source coding problem under logarithmic loss distortion
measure [19]. Extensions to general discrete memoryless
channels are also investigated. In this case, we establish inner
and outer bounds on the capacity region. For memoryless
Gaussian channels within the studied class, we provide a
full characterization of the capacity region under Gaussian
signaling, i.e., when the users’ channel inputs are restricted
to be Gaussian. In doing so, we also investigate the role of
time-sharing.

Outline and Notation

The rest of this paper is organized as follows. Section II
provides a formal description of the model, as well as some
definitions that are related to it. Section III contains the main
result of this paper, which is a single-letter characterization of
the capacity region of a class of discrete memoryless CRANs
with oblivious processing at relays and enabled time-sharing in
which the channel outputs at the relay nodes are independent
conditionally on the users’ channel inputs. This section also
provides inner and outer bounds on the capacity region of
general discrete memoryless CRANs with constrained relays,
as well as some discussions on the suboptimality of successive
decompression and decoding and the role of time-sharing.
Finally, in Section IV, we study a memoryless vector Gaussian
CRAN model with oblivious processing at relays and enabled

1Typically, this information is small, e.g., 1 bit that captures on/off activity;
and, so, obtaining it is generally much less demanding that obtaining full
information about the users’ codebooks.

time-sharing, for which we characterize the capacity region
under Gaussian signaling.

Throughout this paper, we use the following notation. Upper
case letters are used to denote random variables, e.g., X ;
lower case letters are used to denote realizations of random
variables x ; and calligraphic letters denote sets, e.g., X . The
cardinality of a set X is denoted by |X |. The length-n sequence
(X1, . . . , Xn) is denoted as Xn ; and, for integers j and k such
that 1 ≤ k ≤ j ≤ n, the sub-sequence (Xk, Xk+1, . . . , X j ) is
denoted as X j

k . Probability mass functions (pmfs), are denoted
by pX (x) = Pr{X = x}; or for short, as p(x) = Pr{X = x}.
Boldface upper case letters denote vectors or matrices, e.g.,
X, where context should make the distinction clear. For an
integer L ≥ 1, we denote the set of integers smaller or equal
L as L := {l ∈ N : 1 ≤ l ≤ L}. Sometimes, this set will
also be denoted as [1 : L]. For a set of integers K ⊆ L,
the notation XK designates the set of random variables {Xk}
with indices k in the set K, i.e., XK = {Xk}k∈K. We denote the
covariance of a zero mean vector X by �x := E[XXH ]; �x,y
is the cross-correlation �x,y := E[XYH ], and the conditional
correlation matrix of X given Y as �x|y := �x−�x,y�

−1
y �y,x.

II. SYSTEM MODEL

Consider the discrete memoryless (DM) CRAN model
shown in Figure 1. In this model, L users communicate with a
common destination or central processor (CP) through K relay
nodes, where L ≥ 1 and K ≥ 1. Relay node k, 1 ≤ k ≤ K ,
is connected to the CP via an error-free finite-rate fronthaul
link of capacity Ck . In what follows, we let L := [1 : L] and
K := [1 : K ] indicate the set of users and relays, respectively.
Similar to [8], the relay nodes are constrained to operate
without knowledge of the users’ codebooks and only know a
time-sharing sequence Qn , i.e., a set of time instants at which
users switch among different codebooks. The obliviousness of
the relay nodes to the actual codebooks of the users is modeled
via the notion of randomized encoding [7] (see also [20] for an
earlier introduction of this notion in the context of coding for
channels with unknown states). That is, users or transmitters
select their codebooks at random and the relay nodes are not
informed about the currently selected codebooks, while the
CP is given such information. Specifically, in this setup, user
l, l ∈ L, sends codewords Xn

l (Fl , Ml , Qn) that depend not
only on the message Ml ∈ [1 : 2nRl ] of rate Rl that is to
be transmitted to the CP by the user and the time-sharing
sequence Qn , but also on the index Fl of the codebook selected
by this user. This codebook index Fl runs over all possible
codebooks of the given rate Rl , i.e., Fl ∈ [1 : |Xl |n2nRl ],
and is unknown to the relay nodes. The CP, however, knows
all indices of the currently selected codebooks by the users.
Also, it is assumed that all terminals know the time-sharing
sequence.

A. Formal Definitions

The discrete memoryless CRAN model with oblivious relay
processing and enabled time-sharing that we study in this
paper is defined as follows.
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1) Messages and Codebooks: Transmitter l, l ∈ L, sends
message Ml ∈ [1 :2nRl ] to the CP using a codebook from
a set of codebooks {Cl(Fl )} that is indexed by Fl ∈ [1 :
|Xl |n2nRl ]. The index Fl is picked at random and shared
with the CP, but not the relays.

2) Time-sharing sequence: All terminals, including the
relay nodes, are aware of a time-sharing sequence Qn ,
distributed as pQn(qn) = ∏n

i=1 pQ(qi ) for a pmf pQ(q).
3) Encoding functions: The encoding function at user l,

l ∈ L, is defined by a pair (pXl , φl) where pXl is a
single-letter pmf and φl is a mapping φl : [1 : |Xl |n2nRl ]×
[1 : 2nRl ] × Qn → X n

l that assigns the given codebook
index Fl , message Ml and time-sharing variable Qn to
a channel input Xn

l = φl(Fl , Ml , Qn). Conditioned on
a time-sharing sequence Qn = qn , the probability of
selecting a codebook Fl ∈ [1 : |Xl |n2nRl ] is given by

pFl |Qn ( fl |qn) =
∏

ml ∈ [1:2nRl ]
pXn

l |Qn (φl( fl , ml , qn)|qn),

(1)

where pXn
l |Qn (xn

l |qn) = ∏n
i=1 pXl |Q(xl,i |qi ) for some

given conditional pmf pXl |Q(xl |q).
4) Relaying functions: The relay nodes receive the outputs

of a memoryless interference channel defined by

pY n
K|Xn

L
(yn

K|xn
L) =

n∏

i=1

pYK|XL(yK,i |xL,i). (2)

Relay node k, k ∈ K, is unaware of the codebook indices
FL = (F1, . . . , FL), and maps its received channel
output Y n

k ∈ Yn
k into an index Jk ∈ [1 : 2nCk ] as

Jk = φr
k (Y

n
k , Qn). The index Jk is then sent the to the

CP over the error-free link of capacity Ck .
5) Decoding function: Upon receiving the indices JK :=

(J1 . . . , JK ), the CP estimates the users’ messages
ML := (M1, . . . , ML ) as

(M̂1, . . . , M̂L ) = g(F1, . . . , FL , J1, . . . , JK , Qn), (3)

where

g : [1 : |X1|n2nR1 ] × · · · × [1 : |XL |n2nRL ]
×[1 :2nC1] × · · · × [1 :2nCK ] × Qn (4)

→ [1 :2nR1 ] × . . . × [1 :2nRL ] (5)

is the decoding function at the CP.

Definition 1: A (n, R1, . . . , RL) code for the studied DM
CRAN model with oblivious relay processing and enabled
time-sharing consists of L encoding functions φl : [1 :
|Xl |n2nRl ] × [1 : 2nRl ] × Qn → X n

l , K relaying functions
φr

k : Yn
k × Qn → [1 : 2nCk ], and a decoding function

g : [1 : |X1|n2nR1 ] × · · · × [1 : |XL |n2nRL ] × [1 :2nC1] × · · · × [1 :
2nCK ] × Qn → [1 :2nR1] × . . . × [1 :2nRL ].
Definition 2: A rate tuple (R1, . . . , RL ) is said to be achiev-
able if, for any ε > 0, there exists a sequence of
(n, R1, . . . , RL) codes such that

Pr{(M1, . . . , ML ) �= (M̂1, . . . , M̂L )} ≤ ε, (6)

where the probability is taken with respect to a uniform
distribution of messages Ml ∈ [1 : 2nRl ], l = 1, . . . , L, and
with respect to independent indices Fl , l = 1, . . . , L, whose
joint distribution, conditioned on the time-sharing sequence,
is given by the product of (1).
For given individual fronthaul constraints CK :=
(C1, . . . , CK ), the capacity region C(CK) is the closure
of all achievable rate tuples (R1, . . . , RL).

In this work, we are interested in characterizing the capacity
region C(CK).

B. Some Useful Implications

As shown in [8], the above constraint of oblivious relay
processing with enabled time-sharing means that, in the
absence of information regarding the indices FL and the
messages ML, a codeword xn

l ( fl , ml , qn) taken from a (n, Rl )
codebook has independent but non-identically distributed
entries.
Lemma 1: Without the knowledge of the selected codebooks
indices (F1, . . . , FL), the distribution of the transmitted code-
words conditioned on the time-sharing sequence are given by

Pr{Xn
l (Fl , Wl , Qn) = xn

l |Qn = qn} =
n∏

i=1

pXl |Q(xl,i |qi ). (7)

Thus, the channel output Y n
k at relay k ∈ K is distributed as

pY n
k |Qn (yn

k |qn)=
n∏

i=1

∑

x1,...,xL

pYk |XL(yk,i |xL,i)

L∏

i=1

pXl |Q(xl,i |qi).

Proof: The proof of this lemma, whose result was also
used in [8], is along the lines of that of [7, Lemma 1] and is
therefore omitted for brevity. �
Remark 1: Equation (7) states that, when averaged over
the probability of selecting a codebook Fl and over the
uniform distribution of the message set, but conditioned on the
time-sharing variable Qn, the transmitted codeword Xn

l has a
pmf according to a product distribution pXl |Q of independent
but non-identically distributed entries. That is, in the absence
of codebook information, the codewords lack structure. When a
node is informed of the codebook index Fl = fl , the codebook
structure is provided by the selected codebook.

III. DISCRETE MEMORYLESS MODEL

A. Capacity Region of a Class of CRANs

In this section, we establish a single-letter characteriza-
tion of the capacity region of a class of discrete memo-
ryless CRANs with oblivious relay processing and enabled
time-sharing in which the channel outputs at the relay nodes
are independent conditionally on the users’ inputs. Specifi-
cally, consider the following class of DM CRANs in which
equation (2) factorizes as

pY n
K|Xn

L
(yn

K|xn
L) =

n∏

i=1

K∏

k=1

pYk |XL(yk,i |xL,i). (8)
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Equation (8) is equivalent to that, for all k ∈ K and all i ∈
[1 :n],

Yk,i −�− XL,i −�− YK/k,i (9)

forms a Markov chain. The following theorem provides the
capacity region of this class of channels.
Theorem 1: For the class of DM CRANs with oblivious relay
processing and enabled time-sharing for which (9) holds,
the capacity region C(CK) is given by the union of all rate
tuples (R1, . . . , RL) which satisfy
∑

t∈T
Rt ≤

∑

s∈S
[Cs− I (Ys ; Us|XL, Q)]+ I (XT ; USc |XT c , Q),

(10)

for all non-empty subsets T ⊆ L and all S ⊆ K, for some
joint measure of the form

p(q)

L∏

l=1

p(xl |q)

K∏

k=1

p(yk|xL)

K∏

k=1

p(uk|yk, q). (11)

Proof: The proof of Theorem 1 appears in Appendix A.
�

Remark 2: Our main contribution in Theorem 1 is the proof
of the converse part. As mentioned in Appendix A, the direct
part of Theorem 1 can be obtained by a coding scheme in
which each relay node compresses its channel output by using
Wyner-Ziv binning [21] to exploit the correlation with the
channel outputs at the other relays, and forwards the bin index
to the CP over its rate-limited link. The CP jointly decodes
the compression indices (within the corresponding bins) and
the transmitted messages, i.e., Cover-El Gamal compress-and-
forward [3, Th. 3] with joint decompression and decoding
(CF-JD).2 Alternatively, the rate region of Theorem 1 can
also be obtained by a direct application of the noisy network
coding (NNC) scheme of [14, Th. 1]. Observe that the fact
that the two operations of decompression and decoding are
performed jointly in the scheme CF-JD is critical to achieve
the full rate-region of Theorem 1, in the sense that if the
CP first jointly decodes the compression indices and then
jointly decodes the users’ messages, i.e., the two operations
are performed successively, this results in a region that is
generally strictly suboptimal. Similar observations can be
found in [7], [12], and [18].
Remark 3: Key element to the proof of the converse part
of Theorem 1 is the connection with the Chief Executive
Officer (CEO) source coding problem.3 For the case of
K ≥ 2 encoders, while the characterization of the optimal
rate-distortion region of this problem for general distortion
measures has eluded the information theory for now more
than four decades, a characterization of the optimal region
in the case of logarithmic loss distortion measure has been

2The rate region achievable by this scheme for a general DM CRAN,
i.e., without the Markov chain (9), is given by Theorem 2.

3Because the relay nodes are connected to the CP through error-free finite-
rate links, the scenario, as seen by the relay nodes, is similar to one in which
a remote vector source (Xn

1 , . . . , Xn
L ) needs to be compressed distributively

and conveyed to a single decoder. There are important differences, however,
as the vector source is not i.i.d. here but given by a codebook that is subject
to design.

provided recently in [19]. A key step in [19] is that the
log-loss distortion measure admits a lower bound in the form
of the entropy of the source conditioned on the decoders input.
Leveraging on this result, in our converse proof of Theorem 1
we derive a single letter upper-bound on the entropy of the
channel inputs conditioned on the indices JK that are sent
by the relays, in the absence of knowledge of the codebooks
indices FL. (Cf. the step (65) in Appendix A).
Remark 4: In the special case in which K = L and the
memoryless channel (8) is such that Yk = Xk for k ∈ K,
the source coding counter-part of the problem treated in this
section reduces to a distributed source coding setting with
independent sources (recall that the users input symbols are
independent here) under logarithmic loss distortion measure.
Note that, for K > 2 and general, i.e., arbitrarily correlated,
sources, the problem appears to be of remarkable complexity,
and is still to be solved. In fact, the Berger-Tung coding
scheme [22] can be suboptimal in this case, as is known to
be so for Korner-Marton’s modulo-two adder problem [23].

B. Inner and Outer Bounds for the General DM CRAN
Model

In this section, we study the general DM CRAN model (2).
That is, the Markov chains given by (9) are not necessarily
assumed to hold. In this case, we establish inner and outer
bounds on the capacity region that do not coincide in general.
The bounds extend those of [7], which are established therein
for a setup with a single transmitter and no time-sharing, to the
case of multiple transmitters and enabled time-sharing.
The following theorem provides an inner bound on the capac-
ity region of the general DM CRAN model (2) with oblivious
relay processing and time-sharing.

Theorem 2: For the general DM CRAN model (2) with obliv-
ious relay processing and enabled time-sharing, the achievable
rate region RCF−JD of the scheme CF-JD is given by the union
of all rate tuples (R1, . . . , RL) that satisfy, for all non-empty
subsets T ⊆ L and all S ⊆ K,

∑

t∈T
Rt ≤

∑

s∈S
Cs − I (YS; US |XL, USc , Q) (12)

+ I (XT ; USc |XT c , Q), (13)

for some joint measure of the form

p(q)

L∏

l=1

p(xl |q)p(yK|xL)

K∏

k=1

p(uk|yk, q). (14)

Proof: The proof of Theorem 2 appears in Appendix B.
�

Remark 5: The coding scheme that we employ for the proof
of Theorem 2, which we denote by compress-and-forward with
joint decompression and decoding (CF-JD), is one in which
every relay node compresses its output à-la Cover-El Gamal
compress-and-forward [3, Th. 3]. The CP jointly decodes
the compression indices and users’ messages. The scheme,
as detailed in Appendix B, generalizes [7, Th. 3] to the case
of multiple users and enabled time-sharing.
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We now provide an outer bound on the capacity region of the
general DM CRAN model with oblivious relay processing and
time-sharing. The following theorem states the result.
Theorem 3: For the general DM CRAN model (2) with obliv-
ious relay processing and enabled time-sharing, if a rate tuple
(R1, . . . , RL) is achievable then for all non-empty subsets
T ⊆ L and S ⊆ K it holds that

∑

t∈T
Rt ≤

∑

s∈S
Cs − I (YS; US |XL, USc , Q) (15)

+ I (XT ; USc |XT c , Q), (16)

for some (Q, XL, YK, UK, W ) distributed according to

p(q)

L∏

l=1

p(xl |q) p(yK|xL) p(w|q), (17)

where uk = fk(w, yk , q) for k ∈ K; for some random variable
W and deterministic functions { fk}, for k ∈ K.

Proof: The proof of Theorem 3 appears in
Appendix C. �
Remark 6: The inner bound of Theorem 2 and the outer
bound of Theorem 3 do not coincide in general. This is because
in Theorem 2, the auxiliary random variables U1, . . . , UK

satisfy the Markov chains Uk −�−(Yk, Q)−�−(XL, YL/k, UK/k),
while in Theorem 3 each Uk is a function of Yk but also of
a “common” random variable W. In particular, the Markov
chains Uk −�− (Yk, Q) −�− UK/k do not necessarily hold for
the auxiliary random variables of the outer bound.
Remark 7: As we already mentioned, the class of DM
CRAN models satisfying (9) connects with the CEO problem
under logarithmic loss distortion measure. The rate-distortion
region of this problem is characterized in the excel-
lent contribution [19] for an arbitrary number of (source)
encoders (see [19, Th. 3] therein). For general DM CRAN
channels, i.e., without the Markov chain (9) the model connects
with the distributed source coding problem under logarithmic
loss distortion measure. While a solution of the latter problem
for the case of two encoders has been found in [19, Th 6],
generalizing the result to the case of arbitrary number of
encoders poses a significant challenge. In fact, as also men-
tioned in [19], the Berger-Tung inner bound is known to
be generally suboptimal (e.g., see the Korner-Marton loss-
less modulo-sum problem [23]). Characterizing the capacity
region of the general DM CRAN model under the constraint
of oblivious relay processing and enabled time-sharing poses
a similar challenge, even for the case of two relays. Finally,
we mention that in the context of multi-terminal distributed
source coding with general distortion measure, an outer bound
has been derived in [24]; and is shown to be tight in certain
cases. The proof technique therein is based on introducing a
random source X such that the observations at the encoders
are conditionally independent on X, i.e., a Markov chain
similar to that in (9) holds. Note however that the connection
of the outer bound that we develop here for the uplink CRAN
model with oblivious relay processing with that of [24] is only
of high level nature as the proof techniques are different.

C. On the Suboptimality of Separate
Decompression-Decoding and Role of Time-Sharing

For the general DM CRAN model (2), the scheme CF-JD
of Theorem 2 is based on a joint decoding of the compression
indices and users’ messages. That is, the CP performs the
operations of the decoding of the quantization codewords and
the decoding of the users’ messages simultaneously. A more
practical strategy, considered also in [7] and [12], consists
in having the CP first decode the quantization codewords
(jointly), and then decode the users’ messages (jointly). That
is, compress-and-forward with separate decompression and
decoding operations. In what follows, we refer to such a
scheme as CF-SD. The following proposition provides the
rate-region allowed by this scheme for the DM CRAN
model (2).
Proposition 1: [7, Th. 1]: For the general DM CRAN
model (2) with oblivious relay processing and enabled time-
sharing, the achievable rate region RCF−SD of the scheme
CF-SD is the union of all rate tuples (R1, . . . , RL) that satisfy,
for all non-empty T ⊆ L and S ⊆ K

∑

t∈T
Rt ≤ I (XT ; UK|XT c , Q) (18a)

∑

s∈S
Cs ≥ I (US ; YS |USc , Q), (18b)

for some pmf p(q)
∏L

l=1 p(xl |q)p(yK|xL)
∏K

k=1 p(uk|yk, q).
It is clear that the rate region RCF-SD of Proposition 1 is

contained in that, RCF-JD, of Theorem 2.
As a special instance of the scheme CF-SD,

we consider compress-and-forward with successive separate
decompression-decoding performs sequential decoding of the
quantization codewords first, followed by sequential decoding
of the users’ messages. More specifically, let πr : K → K
and πu : L → L be two permutations that are defined on the
set of quantization codewords and the set of user message
codewords, respectively. An outline of this scheme, which
we denote as CF-SSD, is as follows. The relays compress
their outputs sequentially, starting by relay node πr (1).
In doing so, they utilize Wyner-Ziv binning [21], i.e., relay
node πr (k), k ∈ K, quantizes its channel output Y n

πr (k) into a
description Un

πr (k) taking into account (Un
πr (1), . . . , Un

πr (k−1))
as decoder side information. The CP first recovers the
quantization codewords in the same order, and then decodes
the users’ messages sequentially, in the order indicated by
πu , starting by user πu(1). That is, the codeword of user
l, l ∈ L, is estimated using all compression codewords
(Y n

πr (1), . . . , Y n
πr (K )) as well as the previously decoded

user codewords (Xn
πu (1), . . . , Xn

πu (l−1)). The rate-region
obtained with a given decoding order (πr , πu) as well
as that of the scheme CF-SSD, obtained by considering
all possible permutations, are given in the following
proposition.
Proposition 2: For the general DM CRAN model (2)
with oblivious relay processing and enabled time-sharing,
the achievable rate region RCF-SSD(πr , πu) of the scheme
CF-SSD with decoding order (πr , πu) is the union of all rate
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tuples (R1, . . . , RL) that satisfy, for all l ∈ L and k ∈ K,

Rπu (l) ≤ I (Xπu (l); UK|Xπu (1), . . . , Xπu (l−1), Q) (19a)

Cπr (k) ≥ I (Uπr (k); Yπ(k)|Uπr (1), . . . , Uπr (k−1), Q), (19b)

for some pmf p(q)
∏L

l=1 p(xl |q)p(yK|xL)
∏K

k=1 p(uk |yk, q).
The rate region RCF-SSD achievable by the scheme CF-SSD is
defined as the union of the regions RCF-SSD(πr , πu) over all
possible permutations πr and πu, i.e.,

RCF-SSD =
⋃

πr , πu

RCF-SSD(πr , πu). (20)

While successive separate decompression and decoding
results in a rate region that is generally strictly smaller than
that of joint decoding, i.e., with CF-JD, in what follows we
show that the maximum sum-rate that is achievable by this
specific separate decompression-decoding is the same as that
achieved by joint decoding. That is, the schemes CF-SSD
and CF-JD achieve the same sum-rate (and, so, so does also
the scheme CF-SD). Specifically, let the maximum sum-rate
achieved by the scheme CF-JD be defined as

Rsum, CF-JD =
{

max
∑L

i=1 Ri

s.t. (R1, . . . , RL) ∈ RCF-JD.

Similarly, let the maximum sum rate for the scheme CF-SD
be defined as

Rsum, CF-SD =
{

max
∑L

i=1 Ri

s.t. (R1, . . . , RL) ∈ RCF-SD,

and that of the scheme CF-SSD defined as

Rsum, CF-SSD =
{

max
∑L

i=1 Ri

s.t. (R1, . . . , RL) ∈ RCF-SSD.

Theorem 4: For the general DM CRAN model (2) with obliv-
ious relay processing and enabled time-sharing in Figure 1,
we have

Rsum, CF-JD = Rsum, CF-SD = Rsum, CF-SSD. (21)
Proof: The proof of Theorem 4 appears in

Appendix D. �
Remark 8: The proof of Theorem 4 uses properties of sub-
modular optimization; and is similar to that of [12, Th. 2]
which shows that CF-JD and CF-SD achieve the same
sum-rate for the class of CRANs that satisfy (9). Thus,
in a sense, Theorem 4 can be thought of as a general-
ization of [12, Th. 2] to the case of general channels (2).
A generalized successive decompression-decoding scheme
(CF-GSD) which allows arbitrary interleaved decoding orders
between quantization codewords and users’ messages is pro-
posed in [12], which under the sum-rate constraint is also
optimal. In general, CF-GSD achieves a larger rate-region
that CF-SD and achieves the same rate-region as CF-JD under
sum-fronthaul constraint [12, Th. 2].
Remark 9: Theorem 4 shows that the three schemes CF-JD,
CF-SD and CF-SSD achieve the same sum-rate and that,
in general, the use of time-sharing is required for the
three schemes to achieve the maximum sum-rate. Note
that the uplink CRAN is a multiple-source, multiple-relay,
single-destination network. If all fronthaul capacities were
infinite, then the model would reduce to a standard multiple

access channel (MAC) and it follows from standard results that
time-sharing is not needed to achieve the optimal sum-rate
in this case [25]. The reader may wonder whether it is also
so in the case of finite-rate fronthaul links, i.e., whether one
can optimally set Q = ∅ in the region C(CK) for sum-rate
maximization. The answer to this question is negative for finite
fronthaul capacities {Cl}, as shown in Section IV. This is
reminiscent of the fact that time-sharing generally increase
rates in relay channels, e.g., [26], [27]. In addition, when
the three schemes CF-JD, CF-SD and CF-SSD are restricted
to operate without time-sharing, i.e., Q = ∅, CF-SSD might
perform strictly worse than CF-JD and CF-SD. To see this,
the reader may find it useful to observe that while time-sharing
is not required for sum-rate maximization in a regular MAC,
as successive decoding (in any order) is sum-rate optimal
in this case, it is beneficial when the sum-rate maximiza-
tion is subjected to constraints on the users’ message rates
such as when the users’ rates need to be symmetric [28],
i.e., the operation point is not in a corner point of the
MAC region. Similarly, standard successive Wyner-Ziv (in any
order, without time-sharing) is known to achieve any corner
point of the Berger-Tung region [29], [30], but time-sharing
(or rate-splitting à-la [29]) is beneficial if the compression
rates are subjected to constraints such as when the com-
pression rates are symmetric. An example which illustrates
these aspects for memoryless Gaussian CRAN is provided in
Section IV.

IV. MEMORYLESS MIMO GAUSSIAN CRAN

In this section, we consider a memoryless Gaussian MIMO
CRAN with oblivious relay processing and enabled time-
sharing. Relay node k, k ∈ K, is equipped with Mk receive
antennas and has channel output

Yk = Hk,LX + Nk, (22)

where X := [XT
1 , . . . , XT

L ]T , Xl ∈ CNl is the channel input
vector of user l ∈ L, Nl is the number of antennas at
user l, Hk,L := [Hk,1, . . . , Hk,L ] is the matrix obtained by
concatenating the Hk,l , l ∈ L, horizontally, with Hk,l ∈
CMk×Nl being the channel matrix connecting user l to relay
node k, and Nk ∈ CMk is the noise vector at relay k,
assumed to be memoryless Gaussian with covariance matrix
Nk ∼ CN (0,�k) and independent from other noises and from
the channel inputs {Xl}. The transmission from user l ∈ L is
subjected to the covariance constraint,

E[XlXH
l ] 
 Kl , (23)

where Kl is a given Nl×Nl positive semi-definite matrix, and
the notation 
 indicates that the matrix (Kl − E[XlXH

l ]) is
positive semi-definite.

A. Capacity Region Under Time-Sharing of Gaussian Inputs

The memoryless MIMO Gaussian model with oblivious
relay processing described by (22) and (23) clearly falls
into the class of CRANs studied in Section III-A, since
Yk −�− (X1, . . . , XL)−�− (Y1, . . . , Yk−1, Yk+1, . . . , YK ) forms
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a Markov chain in this order for all k ∈ K. Thus, Theorem 1,
which can be extended to continuous channels using standard
techniques, characterizes the capacity region of this model.
The computation of the region of Theorem 1, i.e., C(CK), for
the model described by (22) and (23), however, is not easy
as it requires finding the optimal choices of channel inputs
(X1, . . . , XL) and the involved auxiliary random variables
(U1, . . . , UK ). In this section, we find an explicit characteri-
zation of the capacity region of the model described by (22)
and (23) in the case in which the users are constrained
to time-share only among Gaussian codebooks. That is, for
all q ∈ Q and all l ∈ L, the distribution of the input
Xl conditionally on Q = q is Gaussian (with covariance
matrix that can be optimized over so as to satisfy (23)).
We denote that region by CG(CK). Although Gaussian input
may generally be suboptimal for uplink CRAN [7], i.e., in
general CG(CK) ⊂ C(CK), restricting to Gaussian input for
every Q = q is appreciable because it leads to rate regions
that are less difficult to evaluate. In doing so, we also show
that time-sharing Gaussian compression at the relay nodes
is optimal if the users’ channel inputs are restricted to be
Gaussian for all q ∈ Q.

Let, for all l ∈ L, the input Xl be restricted to be distributed
such that for all Q = q ,

Xl |Q = q ∼ CN (0, Kl,q), (24)

where the matrices {Kl,q}|Q|
q=1 are chosen to satisfy

∑

q∈Q
pQ(q)Kl,q 
 Kl . (25)

The following theorem characterizes the capacity region of
the model with oblivious relay processing described by (22)
and (23) under the constraint of fixed Gaussian input and given
fronthaul capacities CK.
Theorem 5: The capacity region CG(CK) of the memory-
less Gaussian MIMO model with oblivious relay processing
described by (22) and (23) under time-sharing of Gaussian
inputs is given by the set of all rate tuples (R1, . . . , RL) that
satisfy

∑

t∈T
Rt ≤

∑

k∈S

[

Ck − EQ

[

log
|�−1

k |
|�−1

k − Bk,Q |

]]

+ EQ

[

log
|∑k∈Sc HH

k,T Bk,Q Hk,T + K−1
T ,Q |

|K−1
T ,Q |

]

,

(26)

for all non-empty T ⊆ L and all S ⊆ K, for some pmf
pQ(q) and matrices Kq,l and Bk,q such that EQ [Kl,Q] 
 Kl

and 0 
 Bk,q 
 �−1
k ; and where, for q ∈ Q and T ⊆ L,

the matrix KT ,q is defined as KT ,q := diag[{Kt,q}t∈T ].
Proof: The proof of Theorem 5 appears in

Appendix E. �
Remark 10: Theorem 5 extends the result with oblivious
relay processing of [7, Th. 5] to the MIMO setup with
L users and enabled time-sharing, and shows that under
the constraint of Gaussian signaling, the quantization code-
words can be chosen optimally to be Gaussian. Recall that,

as shown through an example in [7], restricting to Gaussian
input signaling can be a severe constraint and is generally
suboptimal.

B. On the Role of Time-Sharing

In Remark 9 in Section III-C we commented on the
utility of time-sharing for sum-rate maximization in the
uplink of DM CRAN with oblivious relay processing.
In this section we investigate further the role of time-
sharing. Specifically, we first provide an example in which
time-sharing increases capacity; and then discuss some sce-
narios in which time-sharing does not enlarge the capac-
ity region of the memoryless MIMO Gaussian CRAN
model with oblivious relay processing described by (22)
and (23).

For convenience, let us denote by Cno-ts
G (CK) the rate region

obtained by setting Q = ∅, i.e, without enabled time-sharing,
in the region of Theorem 5. That is, Cno-ts

G (CK) is given by
the set of all rate tuples (R1, . . . , RL) that for all non-empty
T ⊆ L and all S ⊆ K

∑

t∈T
Rt ≤

∑

k∈S

[

Ck − log
|�−1

k |
|�−1

k − Bk |

]

(27)

+ log
|∑k∈Sc HH

k,T BkHk,T + K−1
T |

|K−1
T | , (28)

for some 0 
 Bk 
 �−1
k , k ∈ K.

The following example shows that Cno-ts
G (CK) may be con-

tained strictly in CG(CK).
Example 1: Consider an instance of the memoryless MIMO
Gaussian CRAN described by (22) and (23) in which L = 1,
K = 2, M1 = M2 = N1 = 1 (all devices are equipped
with single-antennas), the relay nodes have equal fronthaul
capacities, i.e., C1 = C2 = C, and

Yk = a X + Nk , for k = 1, 2, (29)

where E[|X |2] ≤ P and Nk ∼ CN (0, 1), for k = 1, 2.
The capacity CG(C) of this one-user Gaussian CRAN example
can be obtained from Theorem 5 as the following optimization
problem

CG(C) = max
αq ,bq ,Pq

min
S⊆{1,2}

{

|S|[C +
|Q|∑

q=1

αq log(1 − bq)]

+
|Q|∑

q=1

αq log
(
|Sc|Pqa2bq + 1

)}

(30)

where the maximization is over 0 ≤ bq ≤ 1, 0 ≤ αq ≤ 1
and Pq ≥ 0, such that

∑|Q|
q=1 αq = 1 and

∑|Q|
q=1 αq Pq ≤ P.

Due to Theorem 4, CG(C) is achievable with CF-JD, CF-SD
and CD-SSD by using time-sharing. Without time-sharing,
i.e., Q = ∅, the capacity Cno-ts

G (C) of this one-user Gaussian
CRAN example is achievable with the CF-JD scheme and can
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Fig. 2. Capacity with enabled time-sharing and without time-sharing as well
as the achievable rate RG,CF-JD(C) for the model of Example 1. Numerical
values are L = 1, K = 2, M1 = M2 = N1 = 1, a = 1 and C = 0.5.

be obtained easily from (28), as

Cno-ts
G (C) (31)

= max
0≤b≤1

min
S⊆{1,2}

(32)

{

|S| [C + log(1 − b)
] + log

(
|Sc|Pa2b + 1

)}

(33)

= log

(

1 + 2a2 P2−2C (34)

·
(

22C + a2 P −
√

a4 P2 + (1 + 2Pa2)22C
))

. (35)

With time-sharing with, say Q = {1, 2}, the user can
communicate at larger rates with CF-JD, as follows. The
transmission time is divided into two periods or phases,
of duration αn and (1 − α)n respectively, where 0 < α < 1.
The user transmits symbols only during the first phase, with
power P/α; and it remains silent during the second phase.
The two relay nodes operate as follows. During the first phase,
relay node k, k = 1, 2, compresses its output to the fronthaul
constraint C/α; and it remains silent during the second phase.
Observe that with such transmission scheme the input con-
straint (25) and fronthaul constraints are satisfied. Evaluating
the rate-region of Theorem 5 with the choice pQ(1) = α,
pQ(2) = (1 − α), Kk,1 = P/α and Kk,2 = 0, k = {1, 2}
yields in this case

Rtwo-ph
G,CF-JD(C) := max

0≤α≤1
max

0≤b≤1
min

S⊆{1,2}
(36)

α

{

|S|
[

C

α
+ log(1 − b)

]

+ log

(

|Sc| P

α
a2b + 1

)}

. (37)

Figure 2 depicts the evolution of the capacity enabled
with time-sharing CG(C), the capacity without time-sharing
Cno-ts

G (C), as well as the cut-set upper bound, for a = 1 and
C = 0.5, as function of the user transmit power P. Also shown
for comparison is the achievable rate Rtwo-ph

G,CF-JD(C) as given
by (37), which is a lower bound on CG(C). Observe that while

restricting to CF-JD with two-phases might be suboptimal,
Rtwo-ph

G,CF-JD(C) is very close to CG(C). As it can be seen from
the figure, the utility of time-sharing (to increase rate) is visible
mainly at small average transmit power. The intuition for this
gain is that, for small P, the observations at the relay nodes
become too noisy and the relay mostly forwards noise. It is
therefore more advantageous to increase the power at P/α
for a fraction α of the transmission. Accordingly, the effective
compression rate is increased to C/α, therefore reducing the
compression noise. This observation is reminiscent of similar
ones in [26] in the context of relay channels with orthogonal
components and in [27] in the context of primitive relay
channels.

When the three schemes CF-JD, CF-SD and CF-SSD are
restricted to operate without time-sharing, i.e., Q = ∅,
and Gaussian signaling, CF-SD and CF-SSD might perform
strictly worse than CF-JD. The rate achievable by the CF-SD
scheme without time-sharing follows by Proposition 1, and it is
easy to show that it coincides with Cno-ts

G (C) in (35), i.e., in this
example, CF-JD and CF-SD achieve the capacity Cno-ts

G (C)
without time-sharing. The rate achievable by CF-SSD without
time-sharing and Gaussian test channels Uk ∼ CN (Yk, σ

2
k ),

k ∈ K, can be obtained from Proposition 2, as

Rno-ts
G,CF-SSD(C) (38)

:= log
(

1 + Pa2
(
(1 + σ−2

1 )−1+(1 + σ−2
2 )−1

))
, (39)

where σ 2
1 = (a2 P + 1)/(2C − 1) and σ 2

2 = (a2 P + 1 −
a4 P2(a2 P + 1 + σ 2

1 )−1)/(2C − 1).
Figure 3 shows the capacities CG(C), Cno-ts

G (C) and the
achievable rates Rtwo-ph

G,CF-JD(C) and Rno-ts
G,CF-SSD(C) for a = 1 and

C = 6, as function of the transmit power P. Note that CF-SSD,
when restricted not to use time-sharing performs strictly worse
than CF-JD and CF-SD without time-sharing, i.e., Cno-ts

G (C).
Observe that in this scenario, the gains due to time-sharing
are limited. This observation is in line with the fact that for
large fronthaul values, the CRAN model reduces to a MAC,
for which time-sharing is not required to achieve the optimal
sum-rate. �

The above shows that in general time-sharing increases
rates for the memoryless MIMO Gaussian CRAN model
described by (22) and (23), i.e., Cno-ts

G (CK) � CG(CK). In what
follows, we discuss two scenarios in which time-sharing does
not enlarge the capacity region of the model given by (22)
and (23), i.e., Cno-ts

G (CK) = CG(CK).
1) Case of Fixed Gaussian Codebook at User Side: Con-

sider the scenario in which the users are not allowed to
time-share among several Gaussian codebooks, but they are
constrained to use each a single, possibly different, Gaussian
codebook. This may be relevant, e.g., for contexts in which
signaling overhead reduction among the users and relays is
of prime interest. Conceptually, this corresponds to equalizing
all the covariance matrices {Kl,q} for given l and all q =
1, . . . , |Q|. Let

K̃l := Kl,1 = · · · = Kl,|Q| 
 Kl . (40)

The reader may wonder whether allowing the relay nodes
to time-share among compression codebooks can be beneficial
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Fig. 3. Capacity with CG(C) and Cno-ts
G (C) and rates achievable by

CF-JD, CF-SD and CF-SSD without time-sharing for the model of Example 1.
Numerical values are: a = 1, C = 6.

in this case. Note that the answer to this question is not
clear a-priori, because time-sharing in general increases the
Berger-Tung rate region if constraints on the rates are imposed.
(See Remark 9). The following proposition shows that for the
model described by (22) and (23) this does not hold under the
constraint (40).
Proposition 3: For the model with oblivious relay processing
described by (22) and (23), if (40) holds for all l ∈ L then
Cno-ts

G (CK) = CG(CK).
Proof: The proof of Proposition 3 appears in

Appendix F. �
2) High SNR Regime: Consider again the model described

by (22) and (23). Assume that for all k ∈ K the vector
Gaussian noise at relay node k has covariance matrix

�k = ε�̃k (41)

for some ε ≥ 0 and �̃k � 0 that is independent from ε.
The following proposition shows that, in this case, the ben-

efit of time-sharing in terms of increasing rates vanishes for
arbitrarily small ε.
Proposition 4: For the model with oblivious relay processing
described by (22) and (23), if for all k ∈ K the vector
Gaussian noise at relay node k has covariance matrix that
can be put in the form given by (41) for some ε ≥ 0 and
�̃k � 0 that is independent from ε, then the following holds:
If (R1, . . . , RL) ∈ CG(CK), then (R1 − �ε, . . . , RL − �ε) ∈
Cno-ts

G (CK) for some �ε ≥ 0. In addition

lim
ε→0

�ε = 0. (42)

Proof: The proof of Proposition 4 appears in
Appendix G. �

C. Price of Non-Awareness: Bounded Rate Loss

In this section, we show that for the memoryless MIMO
Gaussian model that is given by (22) and (23) allowing
the relay nodes to be fully aware of the users’ codebooks

(i.e., the non-constrained or non-oblivious setting) increases
rates by at most a bounded constant (only !). In other terms,
restricting the relay nodes not to know/utilize the users’
codebooks causes only a bounded rate loss in comparison with
maximum rate that would be achievable in the non-oblivious
setting. The constant depends on the network size, but is
independent of the channel gain matrix, powers and noise
levels. The result is an easy combination of a recent improved
constant-gap result of Ganguly and Kim [31] (which tightens
further that of Zhou et al. [12], see Remark 11 below) with
our Theorem 5.

For simplicity, we focus on the case in which Nl = N for
all l ∈ L and Mk = M for all k ∈ K. For the unconstrained
case (i.e., with none of the constraints of obliviousness and
Gaussian signaling assumed), the capacity region of the model
described by (22) and (23), which we denote hereafter as
Cuncons(CK), is still to be found in general; and an easy outer
bound on it is given by the maximum-flow min-cut bound,
i.e., the set Rup(CK) of all rate tuples (R1, . . . , RL) for which
for all T ⊆ L and S ⊆ K

∑

t∈T
Rt ≤ ∑

k∈S Ck + log
|∑k∈Sc HH

k,T �−1
k Hk,T +K−1

T |
|K−1

T | . (43)

The following theorem shows that the rate-region of Theo-
rem 5 is within a constant gap from Rup(CK), and so from
the capacity region of the unconstrained setting Cuncons(CK).
Theorem 6: If (R1, . . . , RL) ∈ Cuncons(CK), then there exists
a constant � ≥ 0 such that (R1 −�, . . . , RL −�) ∈ CG(CK),
with

� ≤

⎧
⎪⎨

⎪⎩

N

2
(2.45 + log(

K M

N
)), for K M > 2N,

K M + N

2
for K M ≤ 2N.

(44)

Remark 11: In the unconstrained case with no time-sharing,
Zhou et al. show in [12] (see Theorem 3 therein) that the
rate region Cno-ts

G (CK) achievable with the scheme CF-JD with
Gaussian input and Gaussian quantization is within a constant
gap η = (K M + N) of the capacity region Cuncons(CK).
Specifically, for any rate tuple (R1, . . . , RL) ∈ Rup(CK),
the tuple (R1 − η, . . . , RL − η) ∈ Cno-ts

G (CK). As we already
mentioned, our Theorem 5 shows that under the constraint of
Gaussian signaling and oblivious relay processing CF-JD is
in fact optimal from a capacity viewpoint. Also, our Theorem 6
improves the gap to the cut-set bound of [12, Th. 3], which in
our context can be interpreted as tightening the rate loss that
is caused by restricting the relay nodes not to know/utilize the
users’ codebooks.

D. Numerical Results: Circular Symmetric Wyner Model
for CRAN

In this section, we evaluate and compare the performance
of some oblivious and non-oblivious schemes for a sim-
ple Gaussian CRAN example, the circular symmetric Wyner
model shown in Figure 5. There are K cells, with each cell
containing a single-antenna user and a single antenna RU.
Inter-cell interference takes place only between adjacent cells;
and intra-cell and inter-cell channel gains are given by 1 and
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Fig. 4. Circular Wyner model with K users and K relay nodes or remote
units (RUs).

γ ∈ [0, 1], respectively. All RUs have a fronthaul capacity
of C . In this model, the channel output at RU or relay node
k ∈ K is given by

Yk = γ X[k−1]K + Xk + γ X[k+1]K + Nk , (45)

where [·]K := [·] mod K , E[|Xk|2] ≤ P and Nk ∼ CN (0, 1),
for all k ∈ K. For convenience, we write Y = HX + N, where
X = [X1, . . . , X K ]T , N = [N1, . . . , NK ]T and H is the K×K
matrix with the element (k, l) given by

hk,l =

⎧
⎪⎨

⎪⎩

1 if l = k

γ if k = [l + 1]K or [l − 1]K

0 otherwise.

(46)

Although seemingly simple, the capacity region of this model
is still to be found in the case in which the relay nodes are not
constrained, i.e., are allowed to perform non-oblivious process-
ing. In what follows, we restrict to studying the maximum
per-cell -sum-rates that are offered by various schemes, some
of which use only oblivious relay processing and others not.
A straightforward upper bound on those per-cell rates is given
by the cut-set bound,

Rcut-set(C) = min

{

C,
1

K
log det(I + PHHH )

}

. (47)

This model is clearly an instance of the memoryless MIMO
Gaussian CRAN described by (22) and (23). Thus, its perfor-
mance, in terms of per-cell capacity CG(C), under oblivious
relay processing with time-sharing of Gaussian inputs can be
obtained easily using Theorem 5 as

CG(C) = max
bq ,αq ,Pq

min
S⊆K

(48)
⎧
⎨

⎩
|S|(C+

|Q|∑

q=1

log(1 − bq))+
|Q|∑

q=1

log det(I+ PqbqHSc HH
Sc)

⎫
⎬

⎭

(49)

where HSc is the submatrix of H composed by only those
rows of H that are in the subset Sc, and the maximization
is over 0 ≤ bq ≤ 1, 0 ≤ αq ≤ 1 and Pq ≥ 0 such that

Fig. 5. Bounds on the per-cell rate for the circular symmetric Wyner model
of Figure 5, as well as the per-cell capacity under time-sharing of Gaussian
signaling. Numerical values are K = 3, γ = 1/

√
2 and C = 3.5.

∑|Q|
q=1 αq = 1 and

∑|Q|
q=1 αq Pq ≤ P . If time-sharing is not

enabled, i.e., Q = constant, CG(C) reduces to

Cno-ts
G (C) = max

0≤b≤1
min
S⊆K

(50)
{
|S|(C + log(1 − b)) + log det(I + PbHSc HH

Sc)
}

. (51)

For non-oblivious schemes, we consider mainly the follow-
ing two schemes:

1) Decode-and-Forward (DF): This scheme proposed
in [9] is based on the fact that the output at each relay
node can be seen as that of a three user Gaussian
multiple-access channel. Relay k decodes the message
from user k by either treating interference from users
[k − 1]K and [k + 1]K as noise, or by jointly decoding
all three messages. Then, it forwards message k to the
CP. This scheme yields the per-cell rate [9]

RDF(C) := min{max{Rtin, Rjoint}, C} (52a)

Rtin = log

(

1 + P

1 + 2γ 2 P

)

(52b)

Rjoint = min

{
1

2
log

(
1 + 2γ 2 P

)
, (52c)

1

3
log(1 + (1 + 2γ 2)P)

}

. (52d)

2) Compute-and-Forward (CoF): This scheme, proposed
in [4], is based on nested lattice codes. The users trans-
mit using the same lattice code. Then, each relay node
decodes one equation (with integer-valued coefficients)
that relates the users symbols and forwards that equation
to the CP. If the collected K equations are linearly
independent, the CP can invert the system and obtain
the transmitted symbols. For the studied example, this
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yields [6]

RCoF(C) = min

{

C, (53)

max
b1,b2∈B

− log

(

b2
1 + 2b2

2 − P(b1 + 2γ b2)
2

1 + P(1 + 2γ 2)

)}

, (54)

where the set B is given by B = {(b1, b2) : b1, b2 ∈
Z, b1 �= 0, b2

1 + 2b2
2 ≤ 1 + P(1 + 2γ 2)}.

For comparison reasons, we also consider the following obliv-
ious schemes:

1) CF-JD with |Q| = 2: It is easy to see that the
per-cell sum-rate achievable using the CF-JD scheme
with time-sharing between two phases in which users
and relays are active during the first phase and remain
silent in the second as in Example 1 is given by

Rtwo-ph
G,CF-JD(C) = max

0≤α≤1
max

0≤b≤1
min
S⊆K

α (55)

·
{

|S|
(

C

α
+log(1−b)

)

+log det

(

I+ P

α
bHScHH

Sc

)}

.

2) CF-SD without time-sharing: The per-cell rate achiev-
able by CF-SD without time-sharing and Gaussian test
channels Uk ∼ CN (Yk, σ

2∗ ), k ∈ K follows from
Proposition 1 as

Rno-ts
CF-SD(C) = log det(I + P(1 + σ 2∗ )−1HHH ) (56)

where σ 2∗ is the unique solution of the equation K C =
log det(I + (1/σ 2∗ )(PHHH + I)).

3) CF-SSD without time-sharing: The per-cell rate achiev-
able by CF-SSD without time-sharing and Gaussian
test channels Uk ∼ CN (Yk, σ

2
k ), k ∈ K follows from

Proposition 2, as

Rno-ts
CF-SSD(C) = log det(I + PDHHH ), (57)

where D = diag(1/(1 + σ 2
k ), k ∈ K) with σ 2

k =
σ 2

Yk |Y k−1
1

/(2C − 1); where σ 2
Yk |U k−1

1
corresponds to the

MMSE error of estimating Yk from Uk
1 , given by

σ 2
Yk |Y k−1

1
(58)

= (1 + 2α2)P + 1 − hkH[1:k−1](PH[1:k−1]HH[1:k−1]
+I + diag(σ 2[1:k−1]))−1HH[1:k−1]hH

k . (59)

4) CF-PtP without time-sharing: A simplified version of
CF-SSD, to which we refer as “Compress-and-Forward
with Point-to-Point compression” (CF-PtP), is one in
which each relay node compresses its channel output
using standard compression, i.e., without binning. The
per-cell rate Rno-ts

CF-PtP(C) allowed by this scheme is given
as in (57) with

D = (2C − 1)/(2C + P(1 + 2γ 2))I. (60)

Figure 5 depicts the evolution of the per-cell rates obtained
using the above discussed oblivious and non-oblivious
schemes, as well as the cut-set bound, for numerical values
K = 3, γ = 1/

√
2 and C = 3.5, as function of the user

transmit power P . As it can be seen from the figure, for this

Fig. 6. Degrees of freedom offered by some oblivious and non-oblivious
for an example circular symmetric Wyner model of Figure 5 with K = 3 and
γ = 1/

√
2. The fronthaul capacity scales as C = 5 log10(P).

example the loss in performance, in terms of per-cell rate,
that is caused by constraining the relay nodes to implement
only oblivious operations is less than 1.7743 bits. Also,
time-sharing is generally beneficial, in the sense that the
discussed oblivious schemes generally suffer some (small)
rate-loss when constrained not to employ time-sharing.
Figure 6 shows how the rates offered by the aforementioned
oblivious and non-oblivious schemes scale with the signal-
to-noise ratio, when the available per-link fronthaul capacity
scales logarithmically with the available user transmit power
as C = 5 log10(P). As the figure illustrates, in opposition
with non-oblivious schemes such as decode-and-forward and
compute-and-forward, oblivious processing also has the advan-
tage to cause no loss in terms of degrees of freedom.

V. CONCLUDING REMARKS

We close this paper with some concluding remarks. Our
results shed light (and sometimes determine exactly) what
operations the relay nodes should perform optimally in the
case in which transmission over a cloud radio access network
is under the framework of oblivious processing at the relays,
i.e., the relays are not allowed to know, or cannot acquire,
the users’ codebooks. In particular, perhaps non-surprisingly,
it is shown that compress-and-forward, or variants of it,
generally perform well in this case, and are optimal when the
outputs at the relay nodes are conditionally independent on the
users inputs. Furthermore, in addition to its relevance from a
practical viewpoint, restricting the relays not to know/utilize
the users’ codebooks causes only a bounded rate loss in
comparison with the non-oblivious setting (e.g., compress-and-
forward and noisy network coding perform to within a constant
gap from the cut-set bound in the Gaussian case).

Finally, leveraging on the now known connection of the
information bottleneck method (IB) [32] (see [33], [34] for an
earlier equivalent formulation of the IB problem in the context
of source coding and investment theory, respectively) with the
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CEO source coding problem with logarithmic loss and one that
can be established with the CRAN channel coding problem
with oblivious relay processing, we note that the results of this
paper, and the proof techniques, translate easily into analogous
ones for the problem of distributed information bottleneck.
In this problem, multiple sensors compress separately their
observations in a manner that, collectively, the compressed sig-
nals provide as much information as possible about a remote
(or hidden) source. On this aspect, the reader may refer to [35]
and [36] where a full characterization of the optimal tradeoffs
among the minimum description lengths at which the features
are described (i.e., complexity) and the information that the
latent variables collectively preserve about the target variable
(i.e., accuracy or relevant information) are established for both
DM and Gaussian models, together with Blahut-Arimoto type
algorithms and neural network based representation learning
algorithms, that allow to compute optimal tradeoffs. The
results of [35] and [36] generalize those for the single user
DM IB problem [32] and the single-user scalar [34] and vector
Gaussian IB problem [37] to the distributed scenario. Since
the single-encoder IB method has found application in various
contexts of learning and prediction [38], such as word clus-
tering for text classification [39], community detection [40],
neural code analysis [41], speech recognition [42] and others,
distributed IB methods clearly finds usefulness in the exten-
sions of those applications to the distributed case.

Among interesting problems that are left unaddressed in
this paper that of characterizing optimal input distributions
under rate-constrained compression at the relays where, e.g.,
discrete signaling is already known to sometimes outperform
Gaussian signaling for single-user Gaussian CRAN [7]. Alter-
natively, one may consider finding the worst-case noise under
given input distributions, e.g., Gaussian, and rate-constrained
compression at the relays. Also, although it is still not clear
whether the known multiaccess/broadcast (MAC/BC) duality
extends to one between uplink and downlink CRAN models
in general [43], it is expected that the approach of this paper
be instrumental towards characterizing the effect of the relay
nodes being oblivious to the actual codebooks used by the
users in the downlink setting, especially in the case in which
the connection between the CP and the relay nodes are not
wired.

APPENDIX A
PROOF OF THEOREM 1

A. Proof of Direct Part of Theorem 1

We derive the rate region achievable by the CF-JD scheme
for the class of DM CRAN models satisfying (9) using the
inner bound derived in Theorem 2 for the general DM CRAN
model. It follows from Theorem 2 that the rate region in
Theorem 1 is achievable by noting that for the class of DM
CRAN models satisfying (9), we have

I (YS ; US |XL, USc , Q) =
∑

s∈S
I (Ys; Us |XL, Q), (61)

where (61) follows due to the Markov chains (given Q), Uk −
�− Yk −�− XL −�− YK/k − UK/k , for k ∈ K. This concludes the
proof.

B. Proof of Converse Part of Theorem 1

Assume the rate tuple (R1, . . . , RL) is achievable. Let T ⊆
L, S ⊆ K, with T ,S �= ∅, and Jk := φr

k (Y
n
k , Qn) be

the message sent by relay k, k ∈ K, FL be the codebook
indices, and let Q̃ := Qn be the time-sharing variable. For
simplicity, let Xn

L := (Xn
1 , . . . , Xn

L ), RT := ∑
t∈T Rt and

CS := ∑
k∈S Ck . Define

Ui,k := (Jk, Y i−1
k ) and Q̄i := (Xi−1

L , Xn
L,i+1, Q̃). (62)

From Fano’s inequality, we have with εn → 0 for n → ∞,
for all T ⊆ L,

H (mT |JK, FL, Q̃) ≤ H (mL|JK, FL, Q̃) ≤ nεn . (63)

We start by showing the following inequality which will be
instrumental in the rest of this proof.

H (Xn
T |Xn

T c , JK, Q̃) ≤
n∑

i=1

H (XT ,i |XT c,i , Q̄i ) − n RT

(64)

:= n�T . (65)

Inequality (65) can be shown as follows.

n RT = H (mT ) (66)

= I (mT ; JK, FL, Q̃) + H (mT |JK, FL, Q̃) (67)

= I (mT ; JK, FT |FT c , Q̃) + H (mT |JK, FL, Q̃) (68)

≤ I (mT ; JK, FT |FT c , Q̃) + nεn (69)

= H (JK|FT c , Q̃) + H (FT |FT c , JK, Q̃) + nεn (70)

− H (FT |FT c , mT , Q̃) − H (JK|FT c , mT , FT , Q̃)

(71)

= I (mT , FT ; JK|FT c , Q̃) − I (FT ; JK|FT c , Q̃) + nεn

(72)

≤ I (mT , FT ; JK|FT c , Q̃) + nεn (73)

≤ I (Xn
T ; JK|FT c , Q̃) + nεn (74)

= H (Xn
T |FT c , Q̃) − H (Xn

T |FT c , JK, Q̃) + nεn (75)

≤ H (Xn
T |Xn

T c , Q̃) − H (Xn
T |Xn

T c , FT c , JK, Q̃) + nεn

(76)

= H (Xn
T |Xn

T c , Q̃) − H (Xn
T |Xn

T c , JK, Q̃) + nεn, (77)

where (66) follows since mT are independent; (68) fol-
lows since mT is independent of Q̃ and FT c ; (69) follows
from (63); (72) follows since mT is independent of FL; (74)
follows from the data processing inequality;(76) follows since
Xn
T c , FT c are independent from Xn

T and since conditioning
reduces entropy and; (77) follows due to the Markov chain

Xn
T −�− (Xn

T c , JK, Q̃) −�− FT c . (78)



ESTELLA AGUERRI et al.: ON THE CAPACITY OF CLOUD RADIO ACCESS NETWORKS WITH OBLIVIOUS RELAYING 4587

Then, from (77) we have (65) as follows:

H (Xn
T |Xn

T c , JK, Q̃) (79)

≤
n∑

i=1

H (XT ,i |Xn
T c , Xi−1

T , Q̃) − n RT (80)

=
n∑

i=1

H (XT ,i |XT c,i , Xi−1
L , Xn

L,i+1, Q̃) − n RT (81)

=
n∑

i=1

H (XT ,i |XT c,i , Q̄i ) − n RT = n�T , (82)

where (81) is due to Lemma 1.
We pause to mention that, for a subset T ⊆ L, inequality 65

provides a lower bound on the term in the RHS of it in terms of
a conditional entropy term; and, as such, it is reminiscent of the
result of [19, Lemma 1] which states that for the CEO problem
with logarithmic loss fidelity measure the expected distortion
admits a lower bound in the form of a conditional entropy
term, namely the entropy of the remote source conditioned on
the CEO’s inputs.
Continuing from (77), we have

n RT ≤
n∑

i=1

H (XT ,i |Xn
T c , Q̃, Xi−1

T )

−H (Xn
T ,i |Xn

T c , JK, Xi−1
T , Q̃) + nεn (83)

=
n∑

i=1

H (XT ,i |Xn
T c , Q̃, Xi−1

T , Xn
T ,i+1)

− H (XT ,i |Xn
T c , JK, Xi−1

T , Q̃) + nεn (84)

≤
n∑

i=1

H (XT ,i |XT c,i , Q̄i )

− H (XT ,i |XT c,i , UK,i , Q̄i ) + nεn (85)

=
n∑

i=1

I (XT ,i ; UK,i |XT c,i , Q̄i ) + nεn, (86)

where (84) follows due to Lemma 1; and (85) follows since
conditioning reduces entropy.

On the other hand, we have the following equality

I (Y n
S ; JS |Xn

L, JSc , Q̃) =
∑

k∈S
I (Y n

k ; Jk|Xn
L, Q̃) (87)

=
∑

k∈S

n∑

i=1

I (Yk,i ; Jk|Xn
L, Y i−1

k , Q̃) (88)

=
∑

k∈S

n∑

i=1

I (Yk,i ; Jk, Y i−1
k |Xn

L, Q̃) (89)

=
∑

k∈S

n∑

i=1

I (Yk,i ; Uk,i |XL,i , Q̄i ), (90)

where (87) follows due to the Markov chain, for k ∈ K,

Jk −�− Y n
k −�− Xn

L −�− Y n
S\k −�− JS\k, (91)

and since Jk is a function of Y n
k ; and (89) follows due to

the Markov chain Yk,i − Xn
L − Y i−1

k which follows since the
channel is memoryless.

Then, from the relay side we have, for S �= ∅
nCS ≥

∑

k∈S
H (Jk) ≥ H (JS) (92)

≥ I (Y n
S ; JS |Xn

T c , JSc , Q̃) (93)

= I (Xn
T , Y n

S ; JS |Xn
T c , JSc , Q̃) (94)

= H (Xn
T |Xn

T c , JSc , Q̃) − H (Xn
T |Xn

T c , JK, Q̃)

+ I (Y n
S ; JS |Xn

L, JSc , Q̃) (95)

≥ H (Xn
T |Xn

T c , JSc , Q̃) − n�T
+ I (Y n

S ; JS |Xn
L, JSc , Q̃) (96)

≥
n∑

i=1

H (XT ,i |XT c,i , USc,i , Q̄i ) − n�T

+ I (Y n
S ; JS |Xn

L, JSc , Q̃) (97)

= n RT −
n∑

i=1

I (XT ,i ; USc,i |XT c,i , Q̄i )

+
∑

k∈S

n∑

i=1

I (Yk,i ; Uk,i |XL,i , Q̄i ), (98)

where (94) follows since JS is a function of Y n
S ; (96) follows

from (65); (97) follows since conditioning reduces entropy;
and (98) follows from (65) and (90).

Note that, in general, Q̄i is not independent of XL,i , YS,i ,
and that due to Lemma 1, conditioned on Q̄i , we have the
Markov chain

Uk,i − Yk,i − XL,i − YK\k,i − UK\k,i . (99)

Finally, we define the standard time-sharing variable Q′
uniformly distributed over {1, . . . , n}, XL := XL,Q ′ , Yk :=
Yk,Q ′ , Uk := Uk,Q ′ and Q := [Q̄Q ′, Q′] and we have
from (86), for S = ∅

n RT ≤
n∑

i=1

I (XT ,i ; UK,i |XT ,i , Q̄i ) + nεn (100)

= nI (XT ,Q ′ ; UK,Q ′ |XT c,Q ′ , Q̄Q ′ , Q′) + nεn (101)

= nI (XT ; UK|XT c , Q) + nεn, (102)

and similarly, from (98), we have for S �= ∅
RT ≤ CS −

∑

k∈S
I (Yk ; Uk|XL, Q) + I (XT ; USc |XT c , Q).

This completes the proof of Theorem 1. �

APPENDIX B
PROOF OF THE INNER BOUND IN THEOREM 2

The scheme CF-JD employed in Theorem 2 for the general
DM CRAN model generalizes [7, Th. 3] to the case of multiple
users and enabled time-sharing. An outline of this scheme
is as follows. User l, l ∈ L, sends Xn

l (ml , fl , qn), where
ml ∈ [1 : 2nRl ] is the users’ message, fl ∈ [1 : |Xl |2nRl ] is
the codebook index and qn ∈ Q is the time-sharing sequence.
Relay node k, k ∈ K, compresses its channel output Y n

k
into a description Un

k of compression rate R̂k indexed by

ik ∈ [1 : 2nR̂k ]. The descriptions are randomly binned into



4588 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 7, JULY 2019

2nCk bins, indexed by a Wyner-Ziv bin index jk ∈ [1 : 2nCk ].
Relay node k forwards the bin index jk of the bin containing
the description Un

k to the CP over the error-free link. The
CP receives ( j1, . . . , jK ) and decodes jointly the compression
indices and the transmitted messages, i.e., it jointly recovers
the indices (m1, . . . , mL , i1, . . . , iK ). The detailed proof is as
follows.

Fix δ > 0, non-negative rates R1, . . . , RK and a joint pmf
that factorizes as

p(q, xL, yK, uK)= p(q)

L∏

l=1

p(xl |q) p(yK|xL)

K∏

k=1

p(uk|yk, q).

Codebook Generation: Randomly generate a time-sharing
sequence qn according to

∏n
i=1 pQ(qi ). For user l, l ∈ L

and every codebook index Fl , randomly generate a codebook
Cl(Fl) consisting of a collection of 2nRl independent code-
words {xn

l (ml , fl , qn)} indexed with ml ∈ [1 : 2nRl ], where
xn

l (ml , fl , qn) has its elements generated i.i.d. according to∏n
i=1 p(xi |qi ).
Let non-negative rates R̂1, . . . , R̂K . For relay k, k ∈ K,

generate a codebook Cr
k consisting of a collection of 2nR̂l inde-

pendent codewords {un
k (ik)} indexed with ik ∈ [1 :2nR̂k ], where

codeword un
k (ik) has its elements generated i.i.d. according

to
∏n

i=1 p(ui |qi). Randomly and independently assign these
codewords into 2nCk bins {B jk}, indexed with jl ∈ [1 : 2nCk ],
and containing 2n(R̂k−Ck) codewords each.
Encoding at User l: Let (m1, . . . , mL) be the messages to
be sent and ( f1, . . . , fL) be the selected codebook indexes.
User l ∈ L, transmits the codeword xn

l (ml , fl , qn) in codebook
Cl( fl).
Oblivious processing at Relay k: Relay k finds an index ik such
that un

k (ik) ∈ Cr
k is strongly ε-jointly typical with yn

k . Using
standard arguments, this can be accomplished with vanishing
probability of error as long as n is large and

R̂k ≥ I (Yk ; Uk|Q). (103)

Let jk ∈ [1 :2nCk ] be the index such that uk(ik) ∈ B jk . Relay k
then forwards the bin index jk to the CP through the error-free
link.
Decoding at CP: The CP collects all the bin indices jK =
( j1, . . . , jK ) from the error-free link and finds the set of
indices îK = (î1, . . . , îK ) of the compressed vectors un

K and
the transmitted messages m̂L = (m̂1, . . . , m̂L), such that

(qn, xn
1 (m̂1, f1, qn), . . . , xn

L(m̂L, fL , qn),un
1(î1), . . . , un

K (îK ))

strongly ε − jointly typical, (104)

un
k (îk) ∈ B jk for k ∈ K, (105)

xn
l (m̂l, fl , qn) ∈ Cl( fl) for l ∈ L. (106)

An error event in the decoding is declared if m̂L �= mL
or if there is more than one such m̂L. The decoding
event can be accomplished with vanishing probability of
error for sufficiently long n as shown next. Assume that
for some T ⊆ L and S ⊆ K, we have m̂T �= mT and
îS �= iS , and m̂T c = mT c and îSc = iSc . Thus, the tuple
(qn, xn

T (m̂T , fT , qn), xn
T c (m̂T c , fT c , qn), un

S (iS), un
S (i c

S))

belongs, with high probability, to a typical set with distribution

n∏

i=1

(

PQ(qi )PUSc ,XT c (uSc,i , xT c,i |qi ) (107)

·
∏

s∈S
PUs (us,i |qi )

∏

t∈T
PXt (xt,i |qi)

)

. (108)

The probability that the tuple
(qn, xn

T (m̂T , fT , qn), xn
T c (m̂T c , fT c , qn), un

S(iS ), un
S (i c

S))
is strongly ε-jointly typical is, according to [7, Lemma 3],
upper bounded by

2−n[H(USc ,XT c |Q)−H(UK,XL|Q)+∑
s∈S H(Us |Q)+∑

t∈T H(Xt |Q)].

Overall, there are 2n(
∑

j∈T R j +∑
s∈S [R̂s−Cs ]) − 1, of such

sequences in the set B j1 × · · · ×B jK . This means that the CP
is able to reliably decode mL and iK, i.e., that the decoding
event has vanishing probability of error for sufficiently long
n, as long as (R1, . . . , RL) satisfy, for all T ⊆ L and for all
S ⊆ K,
∑

t∈T
Rt ≤

∑

s∈S
[Cs − R̂s]+H (USc, XT c |Q) − H (UK, XL|Q)

+
∑

s∈S
H (Us|Q) +

∑

t∈T
H (Xt |Q) (109)

≤
∑

s∈S
[Cs + H (Us|Ys , Q)] + H (USc, XT c |Q)

−H (UK, XL|Q) +
∑

t∈T
H (Xt |Q) (110)

=
∑

s∈S
[Cs + H (Us|Ys , Q)] + H (USc|XT c , Q) (111)

−H (UK|XL, Q) (112)

=
∑

s∈S
[Cs + H (Us|Ys , Q)] + I (USc; XT |XT c , Q)

−H (US |XL, USc , Q) (113)

=
∑

s∈S
Cs + H (US |YS , XL, USc , Q) (114)

+I (USc ; XT |XT c , Q)−H (US |XL, USc , Q) (115)

=
∑

s∈S
Cs − I (US ; YS |XL, USc , Q) (116)

+ I (USc; XT |XT c , Q), (117)

where (110) follows from (103) and due to the independence
of Xt with Xl , l �= t ; (112) is due to the independence of XT c

and XT ; and (115) follows due to the Markov chains (given
Q) Uk −�− Yk − (XL, UK/k), k ∈ K. This completes the proof
of Theorem 2. �

APPENDIX C
PROOF OF THE OUTER BOUND IN THEOREM 3

The proof of this theorem is along the lines of that of
Theorem 1. In the following, we outline the similar steps and
highlight the differences. Suppose the tuple (R1, . . . , RL ) is
achievable. Let T be a set of L, S be a non-empty set of K,
and Jk := φr

k (Y
n
k , qn) be the message sent by relay k ∈ K, and
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let Q̃ := Qn be the time-sharing variable. Define for k ∈ K
and i ∈ [1 :n],

Ui,k := (Jk, Y i−1
K ) and Q̄i := (Xi−1

L , Xn
L,i+1, Q̃).

(118)

From Fano’s inequality, we have with εn → 0 for n → ∞,
for all T ⊆ L,

H (mT |JK, FL, Q̃) ≤ H (mL|JK, FL, Q̃) ≤ nεn . (119)

Similarly to (65), we have the following inequality

H (Xn
T |Xn

T c , JK, Q̃) ≤
n∑

i=1

H (XT ,i |XT c,i , Q̄i ) − n RT

:= n�T . (120)

Then, we have

RT = H (mT ) (121)

≤ H (Xn
T |Xn

T c , Q̃) − H (Xn
T |Xn

T c , JK, Q̃) + nεn (122)

=
n∑

i=1

H (XT ,i |Xn
T c , Q̃, Xi−1

T )

− H (XT ,i |Xn
T c , JK, Xi−1

T , Q̃) + nεn (123)

=
n∑

i=1

H (XT ,i |Xn
T c , Q̃, Xi−1

T , Xn
T ,i+1) (124)

− H (XT ,i |Xn
T c , JK, Xi−1

T , Q̃) + nεn (125)

≤
n∑

i=1

H (XT ,i |XT c,i , Q̄i ) (126)

− H (XT ,i |XT c,i , JK, Y i−1
K , Xi−1

L , Xn
L,i+1, Q̃) + nεn

=
n∑

i=1

H (XT ,i |XT c,i , Q̄i ) (127)

− H (XT ,i |XT c,i , UK,i , Q̄i ) + nεn (128)

=
n∑

i=1

I (XT ,i ; UK,i |XT c,i , Q̄i ) + nεn, (129)

where (122) follows as in (66)-(77); (125) follows due
to Lemma 1 and (126) follows since conditioning reduces
entropy.

On the other hand, we have the following inequality

I (Y n
K; JS |Xn

L, JSc , Q̃) (130)

=
n∑

i=1

I (YK,i ; JS |Xn
L, JSc , Q̃, Y i−1

K ) (131)

=
n∑

i=1

I (YK,i ; JS , Y i−1
K |Xn

L, JSc , Q̃, Y i−1
K ) (132)

=
n∑

i=1

I (YK,i ; US,i |XL,i , USc,i , Q̄i ) (133)

≥
n∑

i=1

I (YS,i ; US,i |XL,i , USc,i , Q̄i ). (134)

Then, from the relay nodes side we have,

CS ≥
∑

k∈S
H (Jk) ≥ H (JS) (135)

≥ H (JS |Xn
T c , JSc , Q̃) (136)

≥ I (Y n
K; JS |Xn

T c , JSc , Q̃) (137)

= I (Xn
T , Y n

K; JS |Xn
T c , JSc , Q̃) (138)

= H (Xn
T |Xn

T c , JSc , Q̃) − H (Xn
T |Xn

T c , JK, Q̃) (139)

+ I (Y n
K; JS |Xn

L, JSc , Q̃) (140)

≥ H (Xn
T |Xn

T c , JSc , Q̃) − n�T (141)

+ I (Y n
K; JS |Xn

L, JSc , Q̃) (142)

≥
n∑

i=1

H (XT ,i |XT c,i , USc,i , Q̄i ) − n�T (143)

+ I (Y n
K; JS |Xn

L, JSc , Q̃) (144)

≥
n∑

i=1

H (XT ,i |XT c,i , USc,i , Q̄i ) − H (XT ,i |XT c,i , Q̄i )

+ n RT +
n∑

i=1

I (YS,i ; US,i |XL,i , USc,i , Q̄i ) (145)

= n RT +
n∑

i=1

I (YS,i ; US,i |XL,i , USc,i , Q̄i ) (146)

−
n∑

i=1

I (XT ,i ; USc,i |XT c,i , Q̄i ) (147)

where: (138) follows since JS is a function of Y n
S ; (142) fol-

lows from (120); (144) follows since conditioning reduces
entropy; and (145) follows from (120) and (134).

We define the standard time-sharing variable Q′ uniformly
distributed over {1, . . . , n}, XL := XL,Q ′ , Yk := Yk,Q ′ , Uk :=
Uk,Q ′ and Q := [Q̄Q ′, Q′] and we have from (129) and (147),

n
∑

t∈T
Rt ≤ nI (XT ; UK|XT c , Q) + nεn (148)

n
∑

t∈T
Rt ≤

∑

k∈S
Ck − I (YS ; US |XL, USc , Q) (149)

+ I (XL; USc |XT c , Q). (150)

Define WQ ′ := (Y Q ′−1
K , Y n

K,Q ′+1), and note that, due to
Lemma 1, XL,Q ′ and YK,Q ′ are independent of W := WQ ′
when not conditioned on FL. Note that in general, Q̄Q ′ is
not independent of XL,Q ′, YK,Q ′ . Then, conditioned on Q,
the auxiliary variables Uk,Q ′ satisfies

Uk,Q ′ = (Jk, Y Q ′−1
K ) = fk(W, Yk , Q). (151)

Therefore, conditioned on Q̄i , for k ∈ K the following Markov
chains hold

Uk −�− Yk −�− (XL, YK\k), (152)

Uk −�− (Yk , W ) −�− (XL, YK\k, UK\k). (153)

This completes the proof of Theorem 3. �
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APPENDIX D
PROOF OF THEOREM 4

Since Rsum, CF-SSD ≤ Rsum, CF-SD ≤ Rsum, CF-JD, to prove
that CF-SD and CF-SSD achieve the same sum-rate as CF-
JD, it suffices to show Rsum, CF-SSD ≥ Rsum, CF-JD. To that end,
let us define the following regions, representing the sum-rate
achievable by CF-JD and CF-SSD.
Definition 3: Let Rsum, CF-JD be the union of tuples
(R, C1, . . . , CK ) that satisfy, for all S ⊆ K,

R ≤
∑

s∈S
Cs − I (YS; US |XL, USc , Q) + I (XL; USc |Q),

(154)

for some joint measure of the form
p(q)

∏L
l=1 p(xl |q)p(yK|xL)

∏K
k=1 p(uk|yk, q).

Definition 4: The region Rsum, CF-SSD is defined as the union
of the regions Rsum, CF-SSD(πr ) over all possible permuta-
tions πr , i.e., RCF-SSD = ⋃

πr
RCF-SSD(πr ), where we let

Rsum, CF-SSD(πr ) with decoding order (πr ) be the union of
tuples (R, C1, . . . , CK ) that satisfy, for all S ⊆ K,

R ≤ I (XL; UK|Q) (155a)

Cπr (k) ≥ I (Uπr (k); Yπ(k)|Uπr (1), . . . , Uπr (k−1), Q), (155b)

for some pmf p(q)
∏L

l=1 p(xl |q)p(yK|xL)
∏K

k=1 p(uk |yk, q).
We prove Rsum, CF-SSD ⊇ Rsum, CF-JD using the prop-

erties of submodular optimization. To this end, assume
(Rsum, C1, . . . , CK ) ∈ Rsum, CF-JD for a joint pmf
p(q)

∏L
l=1 p(xl |q)

∏K
k=1 p(uk|yk, q). For such pmf, let PR ∈

RK+ be the polytope formed by the set of pairs (C1, . . . , CK )
that satisfy, for all S ⊆ K,
∑

s∈S
Cs ≥ [Rsum + I (US ; YS |XL, USc , Q)− I (USc ; XL|Q)]+ .

Definition 5: For a pmf p(q)
∏L

l=1 p(xl |q)
∏K

k=1
p(uk|yk, q) we say a point (Rsum, C1, . . . , CK ) ∈ Rsum, CF-JD

is dominated by a point in Rsum, CF-SSD if there exists
(R′

sum, C ′
1, . . . , C ′

K ) ∈ Rsum, CF-SSD for which C ′
k ≤ Ck, for

k ∈ K, and R′
sum ≥ Rsum.

To show (Rsum, C1, . . . , CK ) ∈ Rsum, CF-SSD, it suffices to
show that each extreme point of PR is dominated by a point in
Rsum, CF-SSD that achieves a sum-rate R̄sum satisfying R̄sum ≥
Rsum.

Next, we characterize the extreme points of PR . Let us
define the set function g : 2K → R:

g(S) := Rsum + I (US ; YS |USc , Q) − I (UK; XL|Q), (156)

for each S ⊆ K. (157)

It can be verified that the function g+(S) :=
max{g(S), 0} is a supermodular function
(see [19, Appendix C, Proof of Lemma 6].4)

4The proof in [19, Appendix C, Proof of Lemma 6] showing that g′(S) :=
I (US ; YS |USc , Q) is supermodular for a model satisfying Yk −�−XL−�−YK/k ,
also applies in our setup in which Yk −�− XL−�−YK/k does not hold in general.

We can rewrite (157) as follows. For each S ⊆ K, we have

g(S) = Rsum + I (US ; YS |USc, Q) − I (UK; XL|Q) (158)

= Rsum + I (US ; XL, YS |USc , Q)

− I (USc; XL|Q) − I (US ; XL|USc, Q) (159)

= Rsum + I (US ; YS |XL, USc , Q) − I (USc ; XL|Q),

= Rsum +
∑

s∈S
I (Us; Ys |XL, USc , Q) − I (USc; XL|Q),

(160)

where (159) follows due to the Markov chain US −�− YS −�−
(XL, USc).

Then, by construction, PR is equal to the set of
(C1, . . . , CK ) satisfying for all S ⊆ K,

∑

s∈S
Cs ≥ g+(S). (161)

Following the results in submodular optimiza-
tion [12, Appendix B, Proposition 6], we have that for
a linear ordering i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme
point of PR can be computed as follows for k = 1, . . . , K :

C̃ik = g+({i1, . . . , ik}) − g+({i1, . . . , ik−1}). (162)

All the K ! extreme points of PR can be enumerated by looking
over all linear orderings i1 ≺ i2 ≺ · · · ≺ iK of K. Each
ordering of K is analyzed in the same manner and, therefore,
for notational simplicity, the only ordering we consider is the
natural ordering ik = k. By construction,

C̃k =
[

Rsum+ I (Uk
1 ; Y k

1 |XL, U K
k+1, Q) − I (U K

k+1; XL|Q)
]+

−
[

Rsum+ I (Uk−1
1 ; Y k−1

1 |XL, U K
k , Q) − I (U K

k ; XL|Q)
]+

.

Let j be the first index for which C̃ j > 0, i.e., the first k
for which g({1, . . . , j}) > 0. Then, it follows from (163) that

C̃k = I (Uk
1 ; Y k

1 |XL, U K
k+1, Q) − I (U K

k+1; XL|Q) (163)

− I (Uk−1
1 ; Y k−1

1 |XL, U K
k , Q) + I (U K

k ; XL|Q) (164)

= I (Uk
1 ; Y k

1 |U K
k+1, Q) − I (Uk−1

1 ; Y k−1
1 |U K

k , Q) (165)

= I (Yk ; Uk |U K
k+1, Q), for all k > j, (166)

where (165) follows from 158; and (166) follows due to the
Markov Chain

Uk −�− Yk −�− (XL, YK/k, UK/k). (167)

Moreover, since we must have g({1, . . . , j ′}) ≤ 0 for j ′ <
j , C̃ j can be expressed as

C̃ j = Rsum + I (U j
1 ; Y j

1 |XL, U K
j+1, Q) − I (U K

j+1; XL|Q)

= I (Y j ; U j |U K
j+1, Q) + g({1, . . . , j − 1}), (168)

= (1 − α)I (Y j ; U j |U K
j+1, Q), (169)

where α ∈ (0, 1] is defined as

α := −g({1, . . . , j − 1})
I (Y j ; U j |U K

j+1, Q)
(170)

= I (U K
j ; XL|Q) − Rsum − I (U j−1

1 ; Y j−1
1 |XL, U K

j , Q)

I (Y j ; U j |U L
j+1, Q)

.

(171)
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Therefore, for the natural ordering, the extreme point
(C̃1, . . . , C̃K ) is given as

(C̃1, . . . , C̃K ) (172)

=
(
0, . . . , 0, (1−α)I (Y j ; U j |U K

j+1,Q),I (Y j+1;U j+1|U K
j+2,Q),

(173)

. . . , I (YK−1; UK−1|UK , Q),I (YK ; UK |Q)
)
. (174)

Next, we show that (C̃1, . . . , C̃K ) ∈ PR , is dominated by
a point (R̄sum, C1, . . . , CK ) ∈ Rsum, CF-SDD that achieves a
sum-rate R̄sum ≥ Rsum.

We consider an instance of the CF-SSD in which for a
fraction α of the time, the CP decodes Un

j+1, . . . , Un
K while

relays k = 1, . . . , j are inactive. For the remaining fraction
of time (1 − α), the CP decodes Un

j , . . . , Un
K and relays

k = 1, . . . , j − 1 are inactive. Then, the CP decodes XL.
Formally, we consider the pfm

p(q ′)
∏L

l=1 p(x ′
l |q ′)

∏K
k=1 p(u′

k |yk, q ′) for CF-SSD as
follows. Let B denote a Bernoulli random variable with
parameter α ∈ (0, 1], i.e., B = 1 with probability
α and B = 0 with probability (1 − α). We let α as
in (171). We consider the reverse ordering πr such that
πr (1) = K , πr (2) = K − 1, . . . , πr (K ) = 1, i.e., compression
is done from relay K to relay 1. Then, we let Q′ = (B, Q)
and the tuple of random variables be distributed as

(Q′, X ′
L, U ′

K) = (175)
{

((1, Q), XL,∅, . . . ,∅, U j+1, . . . , UK ) if B = 1,

((0, Q), XL,∅, . . . ,∅, U j , . . . , UK ) if B = 0.
(176)

From Definition 4, we have (R̄sum, C1, . . . , CK ) ∈
Rsum,CF-SSD, where

Ck = I (Yk ; U ′
k |U ′

k+1, . . . , U ′
K , Q′), for k = 1, . . . , K ,

R̄sum = I (X ′
L; U ′

K|Q′). (177)

Then, for k = 1, . . . , j − 1, we have

Ck = I (Yk ; U ′
k|U ′

k+1, . . . , U ′
K , Q′) = 0 = C̃k, (178)

where (178) follows since U ′
k = ∅ for k < j independently of

B . For k = j + 1, . . . , K , we have

Ck = I (Yk ; U ′
k |U ′

k+1, . . . , U ′
K , Q′) (179)

= α I (Yk ; Uk|Uk+1, . . . , UK , Q, B = 1) (180)

+ (1 − α)I (Yk ; Uk|Uk+1, . . . , UK , Q, B = 0) (181)

= I (Yk ; Uk |Uk+1, . . . , UK , Q) = C̃k, (182)

where (182) follows since U ′
k = Uk for k > j independently

of B . For k = j , we have

C j = I (Y j ; U ′
j |U ′

j+1, . . . , U ′
K , Q′) (183)

= α I (Y j ; U j |U j+1, . . . , UK , Q, B = 1) (184)

+(1 − α)I (Y j ; U j |U j+1, . . . , UK , Q, B = 0) (185)

= V (1 − α)I (Y j ; U j |U j+1, . . . , UK , Q) = C̃ j ; (186)

where (186) follows since U ′
j = ∅ for B = 1 and U ′

j = U j

for B = 0.

On the other hand, the sum-rate satisfies

R̄ sum = I (X ′
L; U ′

K|Q′) (187)

= I (XL; U K
j |Q) − α I (XL; U j |U K

j+1, Q) (188)

= I (XL; U K
j |Q) − I (XL; U j |U K

j+1, Q)

I (Y j ; U j |U K
j+1, Q)

(189)

·
[

I (U K
j ; XL|Q)− Rsum − I (U j−1

1 ; Y j−1
1 |XL, U K

j , Q)
]

(190)

≥ Rsum + I (U j−1
1 ; Y j−1

1 |XL, U K
j , Q) (191)

≥ Rsum, (192)

where (190) follows from (171); and (191) follows since
I (Y j ; U j |U L

j+1, Q) ≥ I (XL; U j |U K
j+1, Q) due to the Markov

Chain (167).
Therefore, from (178), (182), (186) and (192), it follows

that the extreme point (C̃1, . . . , C̃K ) ∈ PR is dominated
by the point (R̄sum, C1, . . . , CK ) ∈ Rsum, CF-SSD satisfying
R̄sum ≥ Rsum. Similarly, considering all possible orderings,
each extreme point of PR can be shown to be dominated
by a point (Rsum, C1, . . . , CK ) which lies in Rsum, CF-SSD
(associated to a permutation πr ). This completes the proof
of Theorem 4. �

APPENDIX E
PROOF OF THEOREM 5

The proof is along the lines of the proofs of [12, Th. 4]
and [44, Th. 8], and uses the relations between the MMSE
and the Fischer information matrix developed in [44] and a
reparametrization of the MMSE matrix from [12], but differs
from them to account for the time-sharing variable Q. We will
use the following lemmas.
Lemma 2: [44], [45]: Let (X, Y) be a pair of random
vectors with pmf p(x, y). We have

log |(πe)J−1(X|U)| ≤ h(X|U) ≤ log |(πe)mmse(X|U)|.
(193)

where the Fischer information matrix of X conditional on Y
is defined as

J(X|Y) := E[∇ log p(X|Y)∇ log p(X|Y)T ], (194)

and the minimum mean squared error (MMSE) matrix is
defined as

mmse(X|Y) := E[(X − E[X|Y])(X − E[X|Y])H ]. (195)
Lemma 3: [44]: Let V1, V2 be an arbitrary random vector
with finite second moments, and N ∼ CN (0,�N ). Assume
(V1, V2) and N are independent. We have

mmse(V2|V1, V2 + N) = �N − �N J(V2 + N|V1)�N .

(196)
First, we derive an outer bound on the capacity region of

the memoryless Gaussian MIMO model described by (22)
and (23) under time-sharing of Gaussian inputs by deriving
an outer bound on the rate region given in Theorem 1 under
input constraints (24) and (25). Then, we show that this outer
bound is achievable by time-sharing of Gaussian inputs.
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For a fixed Q = q , let us define Yk,q := Hk,LXL,q +Nk and
XL,q := [Xn

1, . . . , Xn
L |Q = q]T . For fixed Gaussian distribu-

tion XL,q ∼ CN (0, KL,q) and distribution
∏K

k=1 p(ŷk|yk, q),
let us choose Bk,q satisfying 0 
 Bk,q 
 �−1

k such that for
k ∈ K,

mmse(Yk,q |XL,q , Uk,q ) = �k − �kBk,q�k . (197)

Such Bk,q always exists since 0 

mmse(Yk,q |XL,q, Uk,q ) 
 �k for all q ∈ Q and k ∈ K.

Next, we derive the following equality. For q ∈ Q, and for
all T ⊆ L and S ⊆ K, we have

J(XT ,q |XT c,q , USc,q) =
∑

k∈Sc

HH
k,T Bk,q Hk,T + K−1

T ,q . (198)

Equality (198) is obtained as follows. Let us define, for all
T ⊆ L and S ⊆ K

YSc,q := HSc,T XT ,q + HSc,T c XT c,q + NSc . (199)

It follows from the MMSE estimation of Gaussian random
vectors [25], that

XT ,q = E[XT ,q |XT c,q , YSc,q ] + ZT ,Sc (200)

=
∑

k∈Sc

GT ,k(Yk,q − Hk,T c XT c ) + ZT ,Sc,q , (201)

where ZT ,Sc,q ∼ CN (0,�Z ,q) is the estimation error, with
covariance matrix

�Z ,q =
(

K−1
T ,q +

∑

k∈Sc

HH
k,T �−1

k Hk,T

)−1

, (202)

and

GT ,k,q = �Z ,qHH
k,T �−1

k . (203)

Note that since ZT ,Sc,q and XT c,q , YSc,q are Gaussian
distributed, ZT ,Sc,q and XT c,q , YSc,q are uncorrelated due to
the orthogonality principle of the MMSE estimator [25], and
hence independent. Therefore, ZT ,Sc,q is also independent of
USc,q . Then, by Lemma 3, we have

J(XT ,q |XT c,q , USc,q) (204)

= �−1
Z ,q − �−1

Z ,q (205)

·mmse

(
∑

k∈Sc

GT ,k(Yk − Hk,T c XT c,q)
∣
∣
∣XL,q, USc,q

)

�−1
Z ,q

(206)

= �−1
Z ,q − �−1

Z ,qmmse

(
∑

k∈Sc

GT ,kYk

∣
∣
∣XL,q, USc,q

)

�−1
Z ,q(207)

= �−1
Z ,q (208)

−�−1
Z ,q

(
∑

k∈Sc

GT ,kmmse
(

Yk

∣
∣
∣XL,q , USc,q

)
GH
T ,k

)

�−1
Z ,q

(209)

= �−1
Z ,q −

∑

k∈Sc

HH
k,T

(
�−1

k − Bk

)
Hk,T (210)

= K−1
T ,q +

∑

k∈Sc

HH
k,T BkHk,T , (211)

where (209) follows since the cross terms are zero due to the
Markov chains,

(Uk,q , Yk) −�− XL,q −�− (UK/k,q , YK/k), (212)

for q ∈ Q and k ∈ K; and (210) is due to (197) and (203).
We proceed to derive the outer bound. From (10), we have

for k ∈ K and q ∈ Q,

I (Yk,q ; Uk,q |XL,q, Q = q) (213)

= log |(πe)�k | − h(Yk,q |XL,q, Uk,q , Q = q) (214)

≥ log |(πe)�k | − log |(πe) mmse(Yk,q |XL,q , Uk,q )|
≥ log

|�−1
k |

|�−1
k − Bk,q | . (215)

On the other hand,

I (XT ,q; USc,q |XT c,q , Q = q) (216)

= h(XT ,q |Q = q) − h(XT ,q |XT c,q , USc,q , Q = q) (217)

≤ log |KT ,q | − log |J−1(XT ,q |XT c,q , USc,q)|, (218)

≤ log |KT ,q | + log

∣
∣
∣
∣
∣

∑

k∈Sc

HH
k,T Bk,q Hk,T + K−1

T ,q

∣
∣
∣
∣
∣
, (219)

where (218) is due to Lemma 2; and (219) is due to (198).
Substituting (215) and (219) in (10) for each T ⊆ L,

we have

I (Yk; Uk |XL, Q) =
∑

q∈Q
p(q)I (Yk,q ; Uk,q |XL,q, Q = q)

≥ EQ

[

log
|�−1

k |
|�−1

k − Bk,q |

]

, (220)

and

I (XT ; USc |XT c,q , Q) (221)

=
∑

q∈Q
p(q)I (XT ,q; USc,q |XT c,q , Q = q) (222)

≤ EQ

[

log |KT ,q | + log

∣
∣
∣
∣
∣

∑

k∈Sc

HH
k,T Bk,q Hk,T + K−1

T ,q

∣
∣
∣
∣
∣

]

.

(223)

This gives an outer bound on the capacity region of
the memoryless Gaussian MIMO model described by (22)
and (23) under time-sharing of Gaussian inputs as given
in (26).

The direct part of Theorem 5 follows by noting that this
outer bound is achieved by evaluating (10), for Q = q , with
Xl |Q = q ∼ CN (0, Kl,q) and Uk,q ∼ CN (Yk,q , Qk,q ), where
Bk,q = (�k + Qk,q )−1 for some 0 
 Bk,q 
 �−1

k as given
in (197). �

APPENDIX F
PROOF OF PROPOSITION 3

To prove Proposition 3 we show that under channel input
constraint (40), the capacity region CG(CK) in Theorem 5
is outer bounded by the region Cno-ts

G (CK) in (35). Then,
the result follows since Cno-ts

G (CK) is achievable with CF-SD
without time-sharing, i.e., Q = ∅, and Gaussian channel inputs
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satisfying (40). We use the following lemma, which can be
readily proven by the application of Weyl’s inequality [46].
Lemma 4: Let A and B be two m × m positive-definite
matrices satisfying B � A. Then for any m×m positive-definite
matrix C, we have |I + BC| ≥ |I + AC|.

In the following we show CG(CK) ⊆ Cno-ts
G (CK). Let us

define B̄k := ∑
q∈Q p(q)Bk,q for 0 
 Bk,q 
 �−1

k , k ∈ K,
as in Theorem 5. Note that 0 
 B̄k 
 �−1

k . We have, from (26)

∑

q∈Q
p(q) log

|�−1
k |

|�−1
k − Bk,q | ≥ log

|�−1
k |

|�−1
k − ∑

q∈Q p(q)Bk,q |
(224)

= log
|�−1

k |
|�−1

k − B̄k |
, (225)

where (224) follows from the concavity of the log-det function
and Jensen’s Inequality [47].

Similarly, from (26) we have

∑

q∈Q
p(q)

⎛

⎝log

∣
∣
∣
∑

k∈Sc HH
k,T Bk,q Hk,T + K−1

T ,q

∣
∣
∣

∣
∣
∣K−1

q,T

∣
∣
∣

⎞

⎠ (226)

=
∑

q∈Q
p(q)

(

log
∣
∣
∣K̃T

∣
∣
∣ + log

∣
∣
∣
∣
∣

∑

k∈Sc

HH
k,T Bk,q Hk,T + K̃−1

T

∣
∣
∣
∣
∣

)

(227)

≤ log

∣
∣
∣
∣
∣
K̃T

∑

k∈Sc

HH
k,T B̄kHk,T + I

∣
∣
∣
∣
∣

(228)

≤ log

∣
∣
∣
∣
∣
KT

∑

k∈Sc

HH
k,T B̄kHk,T + I

∣
∣
∣
∣
∣
, (229)

where (227) follows from the channel input
constraint (40); (228) is due to the concavity of the
log-det function and Jensen’s inequality; (228) follows due
to the definition of B̄k ; (229) follows due to Lemma 4, since∑

k∈Sc HH
k,T B̄kHk,T is positive-definite and K̃T 
 KT .

This shows that CG(CK) ⊆ Cno-ts
G (CK). The proof is

completed by noting that Cno-ts
G (CK) ⊆ CG(CK), and therefore

we have Cno-ts
G (CK) = CG(CK). �

APPENDIX G
PROOF OF PROPOSITION 4

In order to prove Proposition 4, we derive an outer bound
on the capacity region under time-sharing of Gaussian inputs
CG(CK) in Theorem 5, which we denote by Cout

G (CK). Then,
we derive an inner bound on Cno-ts

G (CK), the region obtained
by setting Q = ∅ in the region of Theorem 5, denoted by
Cin,no-ts

G (CK). We show that if (R1, . . . , RL) lies in the outer
bound Cout

G (CK), then the rate tuple ((R1 − �ε), . . . , (RL −
�ε)) lies in the inner bound Cin

G (CK), where �ε ≥ 0. Finally
we show, that in the high SNR regime, i.e., for ε → 0, the gap
vanishes, i.e., �ε → 0.

The derivations of the bounds in this section use the
following equality

log(ε−1λ + 1) = log(ε−1λ) + log(ελ−1 + 1) for λ, ε > 0,

(230)

and the following upper and lower bound:

x

1 + x
≤ log(1 + x) ≤ x for x > −1. (231)

First, let us define the outer bound Cout
G (CK) as the set of

rate tuples (R1, . . . , RL ) satisfying that for all T ⊆ L and all
S ⊆ K,
∑

t∈T
Rt ≤

∑

k∈S

[
Ck + log |I − B̄k |

]
(232)

+ log

∣
∣
∣
∣
∣
KT

∑

k∈Sc

HH
k,T �

−1/2
k B̄k�

−1/2
k Hk,T

∣
∣
∣
∣
∣

(233)

+ ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q} (234)

:= fout(T ,S), (235)

for some 0 
 B̃k,q 
 I for k ∈ K, q ∈ Q, and where we
define B̄k := ∑

q∈Q p(q)B̃k,q and the M × M matrix, for
q ∈ Q and all T ⊆ L and S ⊆ K given by

AT ,S,q := K1/2
T ,q

∑

k∈Sc

HH
k,T �̃

−1/2
k B̃k,q�̃

−1/2
k Hk,T K1/2

T ,q .

(236)

It follows from (243) below, that we can assume AT ,S,q � 0
without loss in generality.

Next, we show CG(CK) ⊆ Cout
G (CK). Let us define B̃k,q :=

�
1/2
k Bk,q�

1/2
k . Note that B̃k,q satisfies 0 
 B̃q,k 
 I for q ∈ Q

and k ∈ K. We have, from Theorem 5,

EQ

[

log
|�−1

k |
|�−1

k − Bk,Q |

]

(237)

=
∑

q∈Q
p(q) log

|�−1
k |

|�−1
k − Bk,q | (238)

= −
∑

q∈Q
p(q) log |I − B̃k,q | ≥ − log |I − B̄k |, (239)

where (239) follows from the concavity of the log-det function
and Jensen’s Inequality [47].

On the other hand, we have

EQ

[

log
|∑k∈Sc HH

k,T Bk,QHk,T + K−1
T ,Q |

|K−1
T ,Q |,

]

(240)

=
∑

q∈Q
p(q) log

∣
∣
∣
∣
∣
KT ,q

∑

k∈Sc

HH
k,T �

−1/2
k B̃k,q�

−1/2
k Hk,T +I

∣
∣
∣
∣
∣

(241)

=
∑

q∈Q
p(q) log

∣
∣
∣
∣
1

ε
AT ,S,q + I

∣
∣
∣
∣ (242)

=
∑

q∈Q
p(q)

M∑

m=1

log

(
1

ε
λm(AT ,S,q) + 1

)

(243)

≤
∑

q∈Q
p(q)

M∑

m=1

(

log

(
1

ε
λm(AT ,S,q)

)

+
(

ε

λm(AT ,S,q)

))

(244)
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=
∑

q∈Q
p(q)

M∑

m=1

log

(
1

ε
λm(AT ,S,q)

)

+ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q}

(245)

=
∑

q∈Q
p(q) log

∣
∣
∣
∣
∣

1

ε
K1/2
T ,q

∑

k∈Sc

HH
k,T �̃

−1/2
k B̃k,q�̃

−1/2
k Hk,T K1/2

T ,q

∣
∣
∣
∣
∣

(246)

+ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q} (247)

≤ log

∣
∣
∣
∣
∣
∣

∑

q∈Q
p(q)KT ,q

∣
∣
∣
∣
∣
∣

(248)

+ log

∣
∣
∣
∣
∣

1

ε

∑

k∈Sc

HH
k,T �̃

−1/2
k B̄k�̃

−1/2
k Hk,T

∣
∣
∣
∣
∣

(249)

+ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q} (250)

≤ log |KT | + log

∣
∣
∣
∣
∣

1

ε

∑

k∈Sc

HH
k,T �̃

−1/2
k B̄k�̃

−1/2
k Hk,T

∣
∣
∣
∣
∣

+ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q} (251)

where (241) follows from the definition of B̃k,q and since
KT ,q is definite positive; (242) follows from the definition
in (236) and �k = ε�̃k ; (243) is due to λm(AT ,q +
I) = λm(AT ,q) + 1, m = [1 : M]; (244) is due to (230)
and (231); (245) is due to Tr{A−1} = ∑M

i=1 λ−1(A) for a
M×M matrix A; (250) is due to Jensen’s inequality; and (251)
is due to the power constraint (25) and Weyl’s inequality [46].

Combining (239) and (251) with (26), we obtain (235), and
thus CG(CK) ⊆ Cout

G (CK).
Next, let us define the inner bound Cin

G (CK) as the set of
rate tuples (R1, . . . , RL) satisfying that for all T ⊆ L and all
S ⊆ K,
∑

t∈T
Rt ≤

∑

k∈S

[
Ck + log |I − B̄k |

]
(252)

+ log

∣
∣
∣
∣
∣
KT

∑

k∈Sc

HH
k,T �

−1/2
k B̄k�

−1/2
k Hk,T

∣
∣
∣
∣
∣

(253)

+ εTr{(AT ,S + εI)−1} (254)

:= fin(T ,S), (255)

for some 0 
 B̄k 
 I and where we define, for q ∈ Q and
all T ⊆ L and S ⊆ K, the M × M matrix given by

ĀT ,S := K1/2
T

∑

k∈Sc

HH
k,T �̃

−1/2
k B̄k�̃

−1/2
k Hk,T K1/2

T . (256)

Next, we show that Cin,no-ts
G (CK) ⊆ Cno-ts

G (CK), where
Cno-ts

G (CK) is given in (28). Let us define B̃k,q :=
�

1/2
k Bk,q�

1/2
k . We have from (28),

log
|�−1

k |
|�−1

k − Bk |
= − log |I − B̄k | (257)

and

log
|∑k∈Sc HH

k,T BkHk,T + K−1
T |

|K−1
T |, (258)

= log

∣
∣
∣
∣
∣
KT

∑

k∈Sc

HH
k,T �

−1/2
k B̄k�

−1/2
k Hk,T + I

∣
∣
∣
∣
∣

(259)

= log

∣
∣
∣
∣
1

ε
ĀT ,S + I

∣
∣
∣
∣ (260)

=
M∑

m=1

log

(
1

ε
λm(ĀT ,S ) + 1

)

(261)

≥
M∑

m=1

⎛

⎝log

(
1

ε
λm(ĀT ,S)

)

+
⎛

⎝

ε
λm(ĀT ,S )

1 + ε
λm(ĀT ,S )

⎞

⎠

⎞

⎠ (262)

=
M∑

m=1

log

(
1

ε
λm(ĀT ,S )

)

+ ε

M∑

m=1

1

λm(ĀT ,S ) + ε
(263)

=
M∑

m=1

log

(
1

ε
λm(ĀT ,S )

)

+ εTr{(ĀT ,S + εI)−1} (264)

where (261) follows since λm(ĀT ,S) + I = λm(ĀT ,S ) + 1,
m ∈ [1 : M], (262) is due to inequalities (230) and (231). This
shows that Cin,no-ts

G (CK) ⊆ Cno-ts
G (CK).

Now, we show that if (R1, . . . , RL) ∈ Cout
G (CK), then (R1 −

�ε, . . . , RL − �ε) ∈ Cin,no-ts
G (CK), where we define

�ε := max
S⊆L,T ⊆K

�ε(T ,S), (265)

and

�ε(T ,S) (266)

:=
ε
∑

q∈Q p(q)Tr{A−1
T ,S,q} − εTr{(ĀT ,S + εI)−1}

|T | . (267)

Then, for any rate tuple (R1, . . . , RL) ∈ Cout
G (CK) we have

∑

t∈T
(Rt − �ε) (268)

=
∑

t∈T
Rt − |T |�ε (269)

≤ fout(S,T ) − |T |�ε (270)

≤ fout(S,T ) − |T |�ε(T ,S) (271)

= fout(S,T ) (272)

−
⎛

⎝ε
∑

q∈Q
p(q)Tr{A−1

T ,S,q} − εTr{(ĀT ,S + εI)−1}
⎞

⎠

(273)

= fin(S,T ), (274)

where (270) follows since (R1, . . . , RL) ∈ Cout
G (CK); (271)

follows since �ε ≥ �ε(T ,S) for all T ⊆ L and S ⊆ K due
to its definition in (265). This shows that (R1 −�ε, . . . , RL −
�ε) ∈ Cin,no-ts

G (CK).
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Next, we show that in the high SNR regime, i.e., ε → 0,
we have �ε → 0. We have

lim
ε→0

�ε = lim
ε→0

max
S⊆L,T ⊆K

�ε(T ,S) (275)

≤ lim
ε→0

max
S⊆L,T ⊆K

[ε ·
∑

q∈Q
p(q)Tr{A−1

T ,S,q}] (276)

= lim
ε→0

ε · max
S⊆L,T ⊆K

[
∑

q∈Q
p(q)Tr{A−1

T ,S,q}] (277)

= 0, (278)

where (276) follows since Tr{(ĀT ,S + εI)−1} ≥ 0 since
ĀT ,S+εI � 0; and (278) follows since 0 ≤ Tr{A−1

T ,S,q}] < ∞
since AT ,S,q � 0 and it is independent of ε.

This completes the proof of Proposition 4. �
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