Conference paper Open Access

Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies

Pandit, Harshvardhan J.; Lewis, Dave


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/58670a52-bcf5-43cb-bf59-9c84687eebb6/preprint.pdf"
      }, 
      "checksum": "md5:a40d0ec17823ac085a74323fdafcf9a2", 
      "bucket": "58670a52-bcf5-43cb-bf59-9c84687eebb6", 
      "key": "preprint.pdf", 
      "type": "pdf", 
      "size": 437519
    }
  ], 
  "owners": [
    36619
  ], 
  "doi": "10.5281/zenodo.3246475", 
  "stats": {
    "version_unique_downloads": 17.0, 
    "unique_views": 20.0, 
    "views": 21.0, 
    "version_views": 21.0, 
    "unique_downloads": 17.0, 
    "version_unique_views": 20.0, 
    "volume": 7437823.0, 
    "version_downloads": 17.0, 
    "downloads": 17.0, 
    "version_volume": 7437823.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3246475", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3246474", 
    "bucket": "https://zenodo.org/api/files/58670a52-bcf5-43cb-bf59-9c84687eebb6", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3246474.svg", 
    "html": "https://zenodo.org/record/3246475", 
    "latest_html": "https://zenodo.org/record/3246475", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3246475.svg", 
    "latest": "https://zenodo.org/api/records/3246475"
  }, 
  "conceptdoi": "10.5281/zenodo.3246474", 
  "created": "2019-06-14T16:19:16.437050+00:00", 
  "updated": "2020-01-20T15:48:12.769936+00:00", 
  "conceptrecid": "3246474", 
  "revision": 4, 
  "id": 3246475, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3246475", 
    "version": "preprint", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies", 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3246474", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3246474"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3246475"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "13/RC/2106", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100001602::13/RC/2106"
        }, 
        "title": "ADAPT: Centre for Digital Content Platform Research", 
        "acronym": "", 
        "program": "SFI Research Centres", 
        "funder": {
          "doi": "10.13039/501100001602", 
          "acronyms": [], 
          "name": "Science Foundation Ireland", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100001602"
          }
        }
      }
    ], 
    "publication_date": "2018-10-08", 
    "creators": [
      {
        "orcid": "0000-0002-5068-3714", 
        "affiliation": "ADAPT Centre, Trinity College Dubln", 
        "name": "Pandit, Harshvardhan J."
      }, 
      {
        "orcid": "0000-0002-3503-4644", 
        "affiliation": "ADAPT Centre, Trinity College Dubln", 
        "name": "Lewis, Dave"
      }
    ], 
    "meeting": {
      "acronym": "PrivOn", 
      "title": "Society, Privacy and the Semantic Web - Policy and Technology"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "description": "<p>The upcoming General Data Protection Regulation (GDPR)requires justification of data activities to acquire, use, share, and store data using consent obtained from the user. Failure to comply may result in significant heavy fines which incentivises creation and maintenance of records for all activities involving consent and data. Compliance documentation therefore requires provenance information outlining consent and data life cycles to demonstrate correct usage of data in accordance with the related consent provided and updated by the user. In this paper,we present GDPRov, a linked data ontology for expressing provenance of consent and data lifecycles with a view towards documenting compliance.GDPRov is an OWL ontology that extends PROV-O and P-Plan to model the provenance, and uses SPARQL to express compliance related queries.</p>"
  }
}
21
17
views
downloads
All versions This version
Views 2121
Downloads 1717
Data volume 7.4 MB7.4 MB
Unique views 2020
Unique downloads 1717

Share

Cite as