Conference paper Open Access

Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies

Pandit, Harshvardhan J.; Lewis, Dave


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3246475</identifier>
  <creators>
    <creator>
      <creatorName>Pandit, Harshvardhan J.</creatorName>
      <givenName>Harshvardhan J.</givenName>
      <familyName>Pandit</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5068-3714</nameIdentifier>
      <affiliation>ADAPT Centre, Trinity College Dubln</affiliation>
    </creator>
    <creator>
      <creatorName>Lewis, Dave</creatorName>
      <givenName>Dave</givenName>
      <familyName>Lewis</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3503-4644</nameIdentifier>
      <affiliation>ADAPT Centre, Trinity College Dubln</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-10-08</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3246475</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3246474</relatedIdentifier>
  </relatedIdentifiers>
  <version>preprint</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The upcoming General Data Protection Regulation (GDPR)requires justification of data activities to acquire, use, share, and store data using consent obtained from the user. Failure to comply may result in significant heavy fines which incentivises creation and maintenance of records for all activities involving consent and data. Compliance documentation therefore requires provenance information outlining consent and data life cycles to demonstrate correct usage of data in accordance with the related consent provided and updated by the user. In this paper,we present GDPRov, a linked data ontology for expressing provenance of consent and data lifecycles with a view towards documenting compliance.GDPRov is an OWL ontology that extends PROV-O and P-Plan to model the provenance, and uses SPARQL to express compliance related queries.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>Science Foundation Ireland</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001602</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/SFI/SFI+Research+Centres/13%2FRC%2F2106/">13/RC/2106</awardNumber>
      <awardTitle>ADAPT: Centre for Digital Content Platform Research</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
21
17
views
downloads
All versions This version
Views 2121
Downloads 1717
Data volume 7.4 MB7.4 MB
Unique views 2020
Unique downloads 1717

Share

Cite as