Conference paper Open Access

Extracting Provenance Metadata from Privacy Policies

Pandit, Harshvardhan J.; O'Sullivan, Declan; Lewis, Dave


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120163239.0</controlfield>
  <controlfield tag="001">3246459</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="g">IPAW</subfield>
    <subfield code="a">International Provenance &amp; Annotation Workshop</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ADAPT Centre, Trinity College Dubln</subfield>
    <subfield code="0">(orcid)0000-0003-1090-3548</subfield>
    <subfield code="a">O'Sullivan, Declan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ADAPT Centre, Trinity College Dubln</subfield>
    <subfield code="0">(orcid)0000-0002-3503-4644</subfield>
    <subfield code="a">Lewis, Dave</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">183426</subfield>
    <subfield code="z">md5:44b26b61641b0fd93d7bb319f5ef7c69</subfield>
    <subfield code="u">https://zenodo.org/record/3246459/files/preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3246459</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ADAPT Centre, Trinity College Dubln</subfield>
    <subfield code="0">(orcid)0000-0002-5068-3714</subfield>
    <subfield code="a">Pandit, Harshvardhan J.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Extracting Provenance Metadata from Privacy Policies</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">13/RC/2106</subfield>
    <subfield code="a">ADAPT: Centre for Digital Content Platform Research</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Privacy policies are legal documents that describe activities over personal data such as its collection, usage, processing, sharing, and storage. Expressing this information as provenance metadata can aid in legal accountability as well as modelling of data usage in real-world use-cases. In this paper, we describe our early work on identification, extraction, and representation of provenance information within privacy policies. We discuss the adoption of entity extraction approaches using concepts and keywords defined by the GDPRtEXT resource along with using annotated privacy policy corpus from the UsablePrivacy project. We use the previously published GDPRov ontology (an extension of PROV-O) to model provenance model extracted from privacy policies.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3246458</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3246459</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
20
23
views
downloads
All versions This version
Views 2020
Downloads 2323
Data volume 4.2 MB4.2 MB
Unique views 2020
Unique downloads 2323

Share

Cite as