Conference paper Open Access

Towards Cataloguing Potential Derivations of Personal Data

Pandit, Harshvardhan J.; Fernández, Javier D.; Polleres, Axel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120154941.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work is supported by funding under EU's Horizon 2020 research and in- novation programme: grant 731601 (SPECIAL), the Austrian Research Promotion Agency's (FFG) program "ICT of the Future": grant 861213 (CitySPIN), and ADAPT Centre for Digital Excel- lence funded by SFI Research Centres Programme (Grant 13/RC/2106) and co-funded by European Regional Development Fund.</subfield>
  </datafield>
  <controlfield tag="001">3246435</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="g">ESWC</subfield>
    <subfield code="a">European Semantic Web Conference</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Vienna University of Economics and Business</subfield>
    <subfield code="0">(orcid)0000-0002-2683-827X</subfield>
    <subfield code="a">Fernández, Javier D.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Vienna University of Economics and Business</subfield>
    <subfield code="0">(orcid)0000-0001-5670-1146</subfield>
    <subfield code="a">Polleres, Axel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">338783</subfield>
    <subfield code="z">md5:eb216e829172957f0c38e5f44f62e7d4</subfield>
    <subfield code="u">https://zenodo.org/record/3246435/files/preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3246435</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ADAPT Centre, Trinity College Dubln</subfield>
    <subfield code="0">(orcid)0000-0002-5068-3714</subfield>
    <subfield code="a">Pandit, Harshvardhan J.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Towards Cataloguing Potential Derivations of Personal Data</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">731601</subfield>
    <subfield code="a">Scalable Policy-awarE linked data arChitecture for prIvacy, trAnsparency and compLiance</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">13/RC/2106</subfield>
    <subfield code="a">ADAPT: Centre for Digital Content Platform Research</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The General Data Protection Regulation (GDPR) has established transparency and accountability in the context of personal data usage and collection. While its obligations clearly apply to data explicitly obtained from data subjects, the situation is less clear for data derived from existing personal data. In this paper, we address this issue with an approach for identifying potential data derivations using a rule-based formalisation of examples documented in the literature using Semantic Web standards. Our approach is useful for identifying risks of potential data derivations from given data and provides a starting point towards an open catalogue to document known derivations for the privacy community, but also for data controllers, in order to raise awareness in which sense their data collections could become problematic.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3246434</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3246435</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
33
47
views
downloads
All versions This version
Views 3333
Downloads 4747
Data volume 15.9 MB15.9 MB
Unique views 3333
Unique downloads 3838

Share

Cite as