Conference paper Open Access

Towards Cataloguing Potential Derivations of Personal Data

Pandit, Harshvardhan J.; Fernández, Javier D.; Polleres, Axel


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3246435</identifier>
  <creators>
    <creator>
      <creatorName>Pandit, Harshvardhan J.</creatorName>
      <givenName>Harshvardhan J.</givenName>
      <familyName>Pandit</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5068-3714</nameIdentifier>
      <affiliation>ADAPT Centre, Trinity College Dubln</affiliation>
    </creator>
    <creator>
      <creatorName>Fernández, Javier D.</creatorName>
      <givenName>Javier D.</givenName>
      <familyName>Fernández</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2683-827X</nameIdentifier>
      <affiliation>Vienna University of Economics and Business</affiliation>
    </creator>
    <creator>
      <creatorName>Polleres, Axel</creatorName>
      <givenName>Axel</givenName>
      <familyName>Polleres</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5670-1146</nameIdentifier>
      <affiliation>Vienna University of Economics and Business</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Towards Cataloguing Potential Derivations of Personal Data</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-06-14</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3246435</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3246434</relatedIdentifier>
  </relatedIdentifiers>
  <version>preprint</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The General Data Protection Regulation (GDPR) has established transparency and accountability in the context of personal data usage and collection. While its obligations clearly apply to data explicitly obtained from data subjects, the situation is less clear for data derived from existing personal data. In this paper, we address this issue with an approach for identifying potential data derivations using a rule-based formalisation of examples documented in the literature using Semantic Web standards. Our approach is useful for identifying risks of potential data derivations from given data and provides a starting point towards an open catalogue to document known derivations for the privacy community, but also for data controllers, in order to raise awareness in which sense their data collections could become problematic.&lt;/p&gt;</description>
    <description descriptionType="Other">This work is supported by funding under EU's Horizon 2020 research and in- novation programme: grant 731601 (SPECIAL), the Austrian Research Promotion Agency's (FFG) program "ICT of the Future": grant 861213 (CitySPIN), and ADAPT Centre for Digital Excel- lence funded by SFI Research Centres Programme (Grant 13/RC/2106) and co-funded by European Regional Development Fund.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/731601/">731601</awardNumber>
      <awardTitle>Scalable Policy-awarE linked data arChitecture for prIvacy, trAnsparency and compLiance</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>Science Foundation Ireland</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001602</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/SFI/SFI+Research+Centres/13%2FRC%2F2106/">13/RC/2106</awardNumber>
      <awardTitle>ADAPT: Centre for Digital Content Platform Research</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
33
47
views
downloads
All versions This version
Views 3333
Downloads 4747
Data volume 15.9 MB15.9 MB
Unique views 3333
Unique downloads 3838

Share

Cite as