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Abstract  

The DynACof model was designed to model coffee agroforestry systems and study the trade-offs to e.g. 

optimize the system facing climate changes. The model simulates net primary productivity (NPP), 

growth, yield, mortality, energy and water balance of coffee agroforestry systems according to shade 

tree species and management. Several plot-scale ecosystem services are simulated by the model, such 

as production, canopy cooling effect, or potential C sequestration. DynACof uses metamodels derived 

from a detailed 3D process-based model (MAESPA) to account for complex spatial effects, while 

running fast. It also includes a coffee flower bud and fruit cohort module to better distribute fruit carbon 

demand over the year, a key feature to obtain a realistic competition between sinks. 

We compared the model outputs with a highly comprehensive database on a coffee agroforestry farm in 

Costa Rica. The fluxes simulated by the model were close to the measurements over a 5-year period 

(RMSE= 1.60 gC m-2 d-1 for gross primary productivity; 0.63 mm d-1 for actual evapo-transpiration, 1.34 

MJ m-2 d-1 for sensible heat flux and 1.88 MJ m-2 d-1 for net radiation), and DynACof satisfactorily 

simulated the yield, NPP, mortality and carbon stock for each coffee organ type over a 35-year rotation. 

 

Keywords: Crop model; Coffea arabica; MAESPA; GPP; Erythrina poeppigiana; plant-to-plot scale  
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1. Software and data availability 

The DynACof model was developed as an R package (R Core Team, 2019), full documentation is 

available on its dedicated website (https://vezy.github.io/DynACof), the code is open-source (GNU 

GPLv3 license) and available on a Github repository (https://github.com/VEZY/DynACof) and archived 

on Zenodo (https://doi.org/10.5281/zenodo.1256816). The input data used for this study is available as 

example data from this repository, and the data for model evaluation is available from the FLUXNET 

website (http://www.europe-fluxdata.eu/home/site-details?id=CR-AqC). 

2. Introduction 

The key role of crop models is to help understand and predict the links between crop development and 

climate, soil, management, facilitation and competition between species. Crop models can provide 

insights into the main emerging agricultural challenges such as food security, sustainability, how to 

enhance ecosystem services, and how to cope with the possible negative effects of climate changes 

(Spiertz, 2012). There is an increasing need to address these issues at global scale to identify the different 

solutions available (Makowski et al., 2014), especially when the products are exchanged on the global 

market, like wheat, maize, soybean, cocoa or coffee. 

Perennial plantations are difficult to study, because their relatively long growing cycle extends the 

period necessary for data acquisition, and because the heterogeneity of the canopy sometimes 

significantly increases the intra-plot light and micro-meteorological anisotropy, such as for temperature, 

vapor pressure or aerodynamic conditions (Luedeling et al., 2014; Luedeling et al., 2016). Agroforestry 

systems (AFS) are probably the most complex perennial agroecosystems (Malézieux et al., 2009), 

because they have the most heterogeneous vertical and/or horizontal canopies, and these affect all 

ecosystem fluxes (Charbonnier et al., 2013; Vezy et al., 2018). Yet, AFS have the potential to enhance 

ecosystem services (Jose, 2009; Lin, 2010; Taugourdeau et al., 2014) such as carbon sequestration (Jose 

and Bardhan, 2012; Oelbermann et al., 2004), and to mitigate climate pressure on crops (Lin, 2007). 

In Costa Rica, Coffee arabica is mostly grown under AFS management because it is assumed to improve 

coffee bean quality and to expand the cropping area to sub-optimal low altitude and warmer areas 

(Muschler, 2001), but such assumptions depend mostly on altitude, local climate and postharvest 

processing (Worku et al., 2018). Modeling the energy, water and carbon balance of these 

agroecosystems could provide insights into their functioning and allow stakeholders to test the in-silico 

trends of new management practices (e.g. density, pruning, thinning date or intensity) or species 

arrangement on given outputs such as yield or ecosystem services. However, several factors make these 

systems challenging to model. First, there are many options for shade management with highly 

heterogeneous canopies, ranging from free growing, and low-density shade trees like Cordia alliodora 

to high density, heavily managed low trees such as banana trees or pollarded Erythrina poeppigiana 

trees (van Oijen et al., 2010a). Second, the coffee reproductive phenology is a complex process that lasts 

https://vezy.github.io/DynACof
https://github.com/VEZY/DynACof
https://doi.org/10.5281/zenodo.1256816
http://www.europe-fluxdata.eu/home/site-details?id=CR-AqC
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for about two years (Camargo and Camargo, 2001), with competition between reproductive and 

vegetative compartments (Charbonnier et al., 2017) and bienniality at the plant scale (Schnabel et al., 

2018). Blossoming is mostly synchronized in sub-tropical regions but can also be highly asynchronous 

in equatorial regions, which affects the distribution of fruit carbon demand and in turn, carbon allocation 

to other organs (Rodríguez et al., 2011). Third, the coffee plants are often pruned every five to six years 

to sustain high levels of production on young resprouts. It is also assumed the reserve compartment 

plays a major role in bean production, with biennial sprout dynamics (Cannell, 1985). Fourth, very few 

comprehensive datasets are available to calibrate and test multi-objective models for ecosystem services, 

energy, carbon, and water balance, aboveground and belowground biomass, NPP, fruit yield and more.  

Model development implies identifying, prioritizing and balancing the most important processes and the 

scale at which the model should simulate them. In coffee systems, we assume that (i) absorbed light, (ii) 

light use efficiency (LUE) and (iii) within canopy temperature are among the most important primary 

processes because they regulate carbon assimilation, respiration, evapotranspiration, vegetative growth, 

flowering, and fruit development. The next most important processes may be (iv) shade tree and coffee 

leaf phenology that regulate light absorption, canopy temperature and transpiration, (v) carbon 

partitioning to compute net primary productivity (NPP), mortality (litterfall) and organ biomass, and 

(vi) a detailed phenology of the reproductive organs comprising all stages, from the appearance of 

cohorts of buds, flowers, and fruits, until harvest or the overripe stage.  

Few models have already been developed to simulate coffee, grown in full sun or agroforestry systems:  

 Rodríguez et al. (2011) proposed a model to simulate coffee in monoculture only, from branch 

to whole-plant scales. The model was calibrated from planting to five years old. The strength of 

this model lies in the fine phenology and physiological processes of the modeled coffee plant 

using branch-level cohorts of flowers and fruits over the entire two-year reproductive cycle. 

Indeed, cohorts are required to realistically distribute the demand for carbon of the fruits over 

the course of the season, and not all at once. This model was successfully used for Colombian 

and Brazilian sites, two regions with contrasting climate and flower phenology (subtropical and 

equatorial). However, this model was not designed for large plots, long rotations or agroforestry: 

coffee light absorption is computed using the Beer-Lambert law using a constant coefficient of 

extinction, absorbed light is converted into photosynthesis using constant light use efficiency, 

and coffee pruning, shade trees, canopy temperature, water and energy balance are not 

implemented in the model.  

 Another model was developed by Van Oijen et al. (2010b). This is a 1D-plant average plot-scale 

model for coffee grown in agroforestry systems, simplifying the intra-plot microclimate into 

either below shade or in full sun. One clear advantage of this model is the number of modules 

it includes to compute several ecosystem services and to incorporate various types of shade tree 

management and species, and the thorough Bayesian parameterization approach that was used. 

The model is simple, fast and can be run under changing climates. It was recently applied in 
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East Africa under climate change scenarios by Rahn et al. (2018). The main limitations of the 

model are (i) its light transmission module does not consider light distribution as a continuum 

under shade trees, as described in Charbonnier et al. (2013), (ii) its formalism of LUE which is 

not influenced by the shade management even though Charbonnier et al. (2017) found it to be 

greatly impacted, (iii) its lacks of a reserve compartment and of a cohort module and again (iv) 

the absence of energy balance and temperature of the canopy to drive the reproductive 

development.  

 Two other models have also been applied to coffee in an agroforestry system using 3D light 

interception modules: in Dauzat et al. (2001), where only a sample of a few coffee plants were 

simulated, and using the MAESPA model to simulate the whole system. Since MAESPA was 

recently demonstrated to accurately predict light distribution, canopy temperature and water and 

energy balance in such systems (Charbonnier et al., 2013; Charbonnier et al., 2017; Vezy et al., 

2018), the model can readily compute all variables that are potentially influenced by the 

complex canopy structure. However, its relatively high computation time still limits its 

application for full rotations of coffee under AFS.  

We argue that a proper combination of the inherent strengths of the above-described models could 

provide significant improvements and extend application domains. It would involve combining cohorts 

and reserves at the plant scale, variable canopy temperature and intra-plot microclimate and LUE, while 

allowing a reasonable level of abstraction to insure rapid simulations (multiple plots, crop rotations, 

management, etc.). In this study, we built surrogate models (i.e. metamodels) of MAESPA for the 

spatial-dependent variables, and integrated them into a simpler growth and yield model to avoid 

expensive computation and development time. These metamodels are simple instantaneous equations 

that efficiently compute a given output of a complex model. In other words, it is a reduction of a complex 

model intended to emulate the behavior of complex interactions between variables (e.g. spatial 

heterogeneity) into one empirical equation, becoming an input for the next crop model. Metamodels are 

generally used to better understand the processes at stake in a model and to assess model sensitivity and 

uncertainty (Christina et al., 2016; Faivre et al., 2013), for the purpose of optimization (Razavi et al., 

2012), or to make faster and reasonably accurate predictions for a given variable that is usually computed 

by a time-consuming model, but with fewer simulation errors compared to simpler models (Marie et al., 

2014). Metamodels are often used as an efficient and simple tool to combine models at different time 

and/or space scales without running the finer-scale model iteratively.  

Consequently, we designed DynACof to incorporate a plant-scale reproductive phenology formalism 

inspired by Rodríguez et al. (2011) but dependent on canopy temperature, with different sub-modules 

to adapt coffee and shade tree management, density and tree species, as in Van Oijen et al. (2010b), and 

metamodels calibrated from MAESPA simulations for spatially-dependent variables, such as diffuse 

and direct light extinction coefficients, light use efficiency, leaf water potential, transpiration, and 

sensible fluxes (Vezy et al., 2018). 
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Regarding model parameterization, calibration, and evaluation for coffee modelling, several strategies 

are proposed in the literature, most of which depend on the availability of field data. Rodríguez et al. 

(2011) assumed that the main factor that influences yield variability is latitude, because of its impact on 

phenology, so they tested their model on an equatorial site and on a sub-tropical site, with two distinct 

set of parameters for each situation. The former model was evaluated against field data on biomass 

(leaves, branches, berries, stem and roots) and total plant nitrogen content gathered at three distinct sites. 

Van Oijen et al. (2010b), and later Rahn et al. (2018), who further developed the CAF2007 model, 

proposed a Bayesian calibration based on an extensive screening of the literature and a sensitivity 

analysis, but no model evaluation against field data at this stage. Alternatively, we propose a multiple-

objective strategy of evaluation in this study, relying on a large range of state and flux variables 

measured at the same time by the end of the crop rotation, including eddy-covariance fluxes, coffee and 

shade tree biomass measured at organ scale, necromass, yield, NPP, water balance and energy balance, 

and finally farm registers to describe management during a complete rotation (Charbonnier et al., 2013; 

Charbonnier et al., 2017; Defrenet et al., 2016; Gómez-Delgado et al., 2011; Taugourdeau et al., 2014; 

Vezy et al., 2018).  

Consequently, the aims of the present study are to:  

(i) develop metamodels for spatially-dependent variables based on MAESPA, which has 

already been calibrated and validated on coffee agroforestry systems; 

(ii) develop a new plot-scale 1D, 5-layer (shade tree, coffee, and 3 soil layers), average plant, 

ecophysiological process-based model for coffee crops grown under agroforestry or in full 

sun, while combining the advantages and strengths of three previously published models. 

Nutrients are considered non-limiting in this first version, which is realistic for many field 

conditions. 

(iii) parameterize and evaluate the model using a multi-objective approach applied to an 

extensive dataset from a long-term observatory including the energy and water balance, 

GPP, yield, NPP and carbon mass per organ. 

3. Materials and methods 

3.1. Site description 

The research site is located on the Aquiares Coffee Farm (6.6 km2) between 9° 56’ 8” and 9° 56’ 35” N 

and 83° 44’ 39” and 83° 43’ 35” W, itself located in the central-Caribbean area of Costa Rica. The 

climate is tropical humid with no marked dry season, 3 014 mm mean annual precipitation and 19.5 °C 

mean annual temperature during the 1979 to 2009 period. The elevation of the research site ranges 

between 1 020 and 1 280 m a.s.l. and the mean slope is 11.31°. The vegetation consists of coffee plants 

(Coffea arabica L., var Caturra) planted below Erythrina poeppigiana, a leguminous shade tree.  Both 

were planted in 1979. Shade trees were originally planted at a density of approximately 250 trees ha-1 
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and pollarded twice a year to optimize the light transmitted to the coffee layer. They were thinned to 

about 7.4 trees ha-1 in 2000 and left growing freely until the end of the study. The Aquiares farm is 

intensively managed with several applications of fertilizer per year (214 ± 44 kg N ha-1 yr-1) and a regular 

selective pruning of the coffee shoots, a practice often used by farmers to avoid a drop in production 

due to exhaustion. The farm complies with the Rainforest Alliance™ for its pest and weed management 

(weeds are scarce). Between 1995 and 2016, the Aquiares farm reported average yields of green coffee 

around 1333 ± 336 kg green coffee ha-1 yr-1. 

3.2. Comprehensive database of measurements 

“Coffee-Flux” is a collaborative research observatory (https://www.umr-

ecosols.fr/recherche/projets/53-coffee-flux) monitored continuously since 2009 and located on the 

Aquiares coffee farm. This research site has been intensively studied and described in detail, notably for 

hydrology and eddy-covariance by Gómez-Delgado et al. (2011); LAI by Taugourdeau et al. (2014); 

light budget by Charbonnier et al. (2013); belowground biomass and NPP by Defrenet et al. (2016), 

ecosystem biomass, NPP and LUE by Charbonnier et al. (2017); and energy balance, water balance and 

surface temperature by Vezy et al. (2018).  

The measurements used in this study to evaluate the model included: half-hourly 𝑁𝐸𝐸, 𝐻, 𝐿𝐸, and 𝑅𝑛 

measured using an eddy-covariance tower. The online ReddyProc tool (Wutzler et al., 2018) was used 

to assess gross primary productivity (GPP), following the Lasslop et al. (2010) model option, based on 

daily hyperbolic curves to estimate photosynthesis. This model option was chosen because the Coffee-

Flux site is mountainous, prone to nighttime advection. The flux measurements were integrated at a 

daily time scale for comparison with DynACof outputs. The LAI of the shade tree (𝐿𝐴𝐼𝑇𝑟𝑒𝑒) was also 

measured using a LAI2000 (LI-COR, NE, USA), and the coffee LAI (𝐿𝐴𝐼𝑐𝑜𝑓𝑓𝑒𝑒) using a normalized 

difference vegetation index (NDVI) sensor positioned 25 m above the ground, at an angle of 15° to the 

vertical with 45° view angle, and converted to LAI according to Charbonnier et al. (2013). The light 

transmittance by shade trees was also measured using the LAI2000. The carbon mass (gC m-2) of the 

shade tree stem and branches, and the coffee resprout wood, fine roots, stump and coarse roots were all 

measured during two consecutive years (2011/2012 and 2012/2013) using dimension measurements and 

site specific allometric relationships. The NPP of each compartment of the shade tree and coffee plant 

was also computed from the biomass increment and from litter production. Further details about the 

methods used for measurement are available in Charbonnier et al. (2013) and Charbonnier et al. (2017). 

3.3. MAESPA model and metamodel conception 

3.3.1.  Description of MAESPA  

MAESPA is a 3D explicit process-based model (Duursma and Medlyn, 2012; Medlyn, 2004; Wang and 

Jarvis, 1990) used to simulate forest energy, water, and carbon fluxes at the scale of the individual tree. 

https://www.umr-ecosols.fr/recherche/projets/53-coffee-flux
https://www.umr-ecosols.fr/recherche/projets/53-coffee-flux
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The light interception module, canopy temperature, water and energy balance of the model have already 

been calibrated, used and validated on the same agroforestry system (Charbonnier et al., 2013; Vezy et 

al., 2018). MAESPA is particularly well suited to simulate agroforestry system fluxes because it 

describes the forest at voxel scale, which is a homogeneous representation of a sub-part of the tree 

crown. It can manage several tree species with their own position on the plot, their overall structure 

(crown height, width, etc.), and their physical and physiological parameters. Thus, MAESPA computes 

a fine estimation of the light interception, energy, water, and carbon fluxes of each plant in the forest 

and of the soil, while taking the spatial heterogeneity of the canopy into account. However, MAESPA 

lacks a carbon allocation module or growth process, and requires computationally-intensive simulations, 

e.g. a week of computation on the shared Montpellier Bioinformatics Biodiversity (MBB) computing 

cluster platform to complete a distributed simulation of a 0.2 ha AFS plot, including 4176 Coffea arabica 

sprouts and 14 Erythrina poeppigiana shade trees over one year at 30-minute time-scale. Consequently, 

MAESPA was used here mainly to compute metamodels to simulate spatial-dependent variables. 

3.3.2.  Metamodels 

The main process affected by canopy complexity is probably the photosynthetically active radiation 

absorbed (APAR) by the canopy (Charbonnier et al., 2013). Heterogeneous canopies like those of shade 

trees in AFS tend to violate the assumption of a constant value for the diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) 

light extinction coefficients because of non-uniform spatial distribution of leaf area, and because the leaf 

area density and foliage aggregation can change over time (Sampson and Smith, 1993; Sinoquet et al., 

2007). Furthermore, a comparison between coffee plants grown in monoculture and under an 

agroforestry system showed that canopy complexity also affected canopy temperature, water and energy 

partitioning, light interception, transpiration and stomatal conductance (Vezy et al., 2018). 

Metamodels were computed from MAESPA simulation outputs for the diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) 

shade tree light extinction coefficients, coffee leaf water potential (𝛹𝑙𝑒𝑎𝑓,𝑀𝑃𝑎), coffee and shade tree 

light use efficiency (𝐿𝑈𝐸, 𝑔𝐶  𝑀𝐽), transpiration (𝑇𝑟,𝑚𝑚 𝑑−1), plant sensible heat flux (𝐻,𝑀𝐽 𝑚−2𝑑−1) 

and soil net radiation (𝑅𝑛𝑆𝑜𝑖𝑙 , 𝑀𝐽 𝑚
−2𝑑−1). Metamodels are used to reproduce as far as possible the link 

between a set of input variables and the desired output variable, as if it had been computed by the 

MAESPA model.  

MAESPA simulations were also used to find the values of some parameters such as the coffee layer 

light extinction coefficients that had low variability throughout the simulation and hence are assumed 

constant in DynACof. The partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃, see appendix A.2) used to compute soil 

sensible and latent heat flux from the soil net radiation in DynACof was also parameterized using 

MAESPA outputs.  

Metamodels were fitted using multilinear regressions selected according to a trade-off between the 

number of explanatory variables, their genericity and range of application and their accuracy obtained 

using different statistics (EF: modelling efficiency, R2: r squared, RMSE: root mean squared error). 
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MAESPA was used to simulate one year of the coffee agroforestry system from the Coffee-Flux site in 

the Aquiares farm in order to calibrate the metamodels. The parameterization and description of these 

MAESPA simulations are reported in Vezy et al. (2018). The outputs considered are converted from 

half hourly values at shade tree and coffee resprout scale to daily plot scale values for each plant layer 

during the same year (Figure 1). The metamodels were trained on 80% of MAESPA simulation outputs 

aggregated at daily time-scale and evaluated over the 20% remaining validation data to compute out-of-

sample statistics. Both training and testing partitions were sampled based on the dependent variable 

subgroup percentiles using the “createDataPartition” function in the caret R package (Kuhn, 2019). 

 

Figure 1. Flowchart of the three-step metamodeling approach. 1/ The resolution for stand simulations in MAESPA was 

the individual tree and the half-hourly time step. 2/ The metamodels were fitted using inputs (meteorology and 

parameters) at daily and stand scale used as predictors to model the MAESPA outputs integrated at daily and stand-

scale (training set, 80% of the data). The metamodels were evaluated on the validation set (20% of the data). 3/ The 

metamodel equations were injected into DynACof. 

The input variables of MAESPA used as predictors for metamodels were related either to climate or to 

plot-average plant structure. Climate variables included daily air temperature, vapor pressure deficit, 

PAR, diffuse and direct light fractions, wind speed, and air pressure. The atmospheric CO2 concentration 

was also a potential predictor for the 𝐿𝑈𝐸 metamodel, but was not useful for the present study. Input 

variables concerning shade tree structure for the metamodels were leaf area (𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑡𝑟𝑒𝑒−1), crown 

height (𝑚), trunk height (𝑚), crown radius (𝑚), trunk diameter (𝑚) and all derivatives such as the leaf 

area index (LAI, 𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑠𝑜𝑖𝑙

−2 ), leaf area density (LAD, 𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑐𝑟𝑜𝑤𝑛

−3 ), tree density (𝑡𝑟𝑒𝑒𝑠 ℎ𝑎−1) 

or crown projection (𝑚𝑐𝑟𝑜𝑤𝑛
2  𝑚𝑠𝑜𝑖𝑙

2 ), all being plot averages. The variability and the interactions between 
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the predictors were checked to insure the range of values was similar in the MAESPA simulation dataset 

and in the application dataset used for DynACof. 

The metamodels are not mandatory in DynACof, and can be replaced by any equation or fixed value. 

Hence, DynACof was also run using standard equations instead of the metamodels to assess their relative 

contribution to the modeling performance for the plot-scale net radiation (Rn), latent (LE) and sensible 

(H) heat flux, and gross primary productivity (GPP). For this purpose, the FAO recommended plot scale 

equation from Allen et al. (1998) was chosen as a reference for comparison with the current computation 

for Rn in DynACof, LE was computed using the Penman-Monteith equation (Allen et al., 1998), H was 

computed as the difference between Rn and LE, and GPP was computed using a constant light use 

efficiency (𝐿𝑈𝐸) and constant light extinction coefficients (𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟) for both the coffee and the 

shade tree layers. The average values computed from MAESPA simulations were used to compute the 

constant 𝐿𝑈𝐸 and 𝐾𝑠 coefficients on this modeling experiment.  

3.4. Description of the DynACof model  

3.4.1.  Introductory description 

DynACof (which stands for Dynamic Agroforestry Coffee crop model), is a daily plot scale crop model 

(Murthy, 2004) with two layers of vegetation (shade trees and coffee plants) and three soil layers, aimed 

at simulating the growth and yield of coffee plantations under various shade tree species and 

management options, considering the spatial heterogeneity of the shade tree canopy. The coffee layer 

can be simulated either in monoculture or in agroforestry systems. Each layer is simulated sequentially 

at a daily time step. Spatially dependent variables, i.e. light absorption, LUE, transpiration, plant sensible 

heat flux, leaf water potential and soil net radiation are all computed using metamodels from MAESPA. 

The model accounts for potential competition for light acquisition and water availability between plant 

layers. Nutrients and water are considered non-limiting in this first version, which is realistic for many 

field conditions in Costa Rica. Water competition is simulated virtually from the day-to-day fluctuations 

in water content in each shared soil layer that can be reduced by drainage and evapotranspiration, or 

increased by precipitation. This simple formalism was found largely sufficient given the absence of 

water limitations in the application concerned (Vezy et al., 2018), but can also reproduce the competition 

between plants under more constrained conditions.  

3.4.2. Light interception and photosynthesis 

The diffuse (𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖, 𝑀𝐽 𝑚
−2 𝑑−1) and direct (𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖, 𝑀𝐽 𝑚

−2 𝑑−1) daily-absorbed 

photosynthetic active radiation of each plant layer are computed using the Beer-Lambert’s law of light 

extinction:  

𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖 =  𝑃𝐴𝑅𝐷𝑖𝑓𝑖 ∙ (1 − 𝑒
−𝐾𝐷𝑖𝑓∙𝐿𝐴𝐼𝑖) (1) 

𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖 =  𝑃𝐴𝑅𝐷𝑖𝑟𝑖 ∙ (1 − 𝑒
−𝐾𝐷𝑖𝑟∙𝐿𝐴𝐼𝑖) (2) 



11 

 

with 𝑃𝐴𝑅𝐷𝑖𝑓𝑖 and 𝑃𝐴𝑅𝐷𝑖𝑟𝑖 the diffuse or direct daily photosynthetically active radiation (𝑀𝐽 𝑚−2 𝑑−1) 

reaching the layer on day 𝑖, 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 the light extinction coefficient of the layer for the diffuse 

and direct light respectively and 𝐿𝐴𝐼 the leaf area index (𝑚𝑙𝑒𝑎𝑓
2  𝑚𝑠𝑜𝑖𝑙

−2 ) of the layer. Both stand scale 

light extinction coefficients of the shade tree layer are computed using metamodels from MAESPA, 

while the extinction coefficients of coffee were approximated to be constant after MAESPA simulations 

(only a slight variability could not be explained using stand scale factors). 𝑃𝐴𝑅𝐷𝑖𝑓 and 𝑃𝐴𝑅𝐷𝑖𝑟 are 

computed as the incoming 𝑃𝐴𝑅 minus the 𝑃𝐴𝑅 absorbed by the upper layer if any, neglecting the 𝑃𝐴𝑅 

reflected back by the canopy. 

The gross primary productivity (𝐺𝑃𝑃, 𝑔𝐶  𝑚
−2 𝑑−1) of each layer is then computed from the sum of 

diffuse and direct 𝐴𝑃𝐴𝑅 multiplied by the light use efficiency (𝐿𝑈𝐸, 𝑔𝐶  𝑀𝐽), which is derived from a 

MAESPA metamodel: 

𝐺𝑃𝑃𝑖 = (𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖 + 𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖) ∙ 𝐿𝑈𝐸𝑖  (3) 

3.4.3.  Carbon supply 

A whole plant daily gross carbohydrate budget (GCB) is computed from the daily 𝐺𝑃𝑃, available 

reserves, and plant maintenance respiration as follows: 

 𝐺𝐶𝐵𝑖 =  𝐺𝑃𝑃𝑖 +  𝑘𝑟𝑒𝑠 ∙ 𝐶𝑀𝑅𝐸,𝑖−1 − 𝑅𝑚𝑖  (4) 

The carbon available from reserves for day 𝑖 is computed as a fraction (𝑘𝑟𝑒𝑠) of the carbon mass of the 

reserves from the previous day (𝐶𝑀𝑅𝐸,𝑖−1, 𝑔𝐶  𝑚
−2). 𝑅𝑚 is the maintenance respiration (𝑔𝐶  𝑚

−2𝑑−1, 

see Eq.(6)). 

The plant daily carbon supply is then computed as:  

𝑆𝑢𝑝𝑝𝑙𝑦𝑖 = {
𝐺𝐶𝐵𝑖    𝑖𝑓 𝐺𝐶𝐵𝑖 > 0
0       𝑖𝑓 𝐺𝐶𝐵𝑖 ≤ 0

}  (5) 

If 𝐺𝐶𝐵𝑖 is negative, it means that the carbon available from 𝐺𝑃𝑃 and reserves was not sufficient to 

support the maintenance respiration, so 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is equal to 0, and the missing carbon is considered as 

mortality imputed equally to all organs (see Eq. (23)). 

3.4.4.  Maintenance Respiration 

The maintenance respiration requirement (𝑅𝑚) is computed as the sum of maintenance respiration of 

all plant organs (Litton et al., 2007). The maintenance respiration of each organ (𝑅𝑚𝑗) is computed using 

its carbon mass (𝐶𝑀, 𝑔𝐶  𝑚
−2) from the previous day, following a Q10 formalism, as reported in Dufrêne 

et al. (2005):  

𝑅𝑚𝑗,𝑖 = 𝑝𝑎𝑗 ∙ 𝐶𝑀𝑗,𝑖−1 ∙ 𝑁𝐶𝑗 ∙ 𝑀𝑅𝑁 ∙ 𝑄10𝑗

𝑇𝑗−𝑇𝑀𝑅
10  (6) 

where 𝑗 is the organ, 𝑖 the day, 𝑝𝑎𝑗 (0-1) the living fraction of the organ, 𝐶𝑀𝑗,𝑖−1 (𝑔𝐶  𝑚
−2) the carbon 

mass of the organ from the previous day, 𝑁𝐶𝑗 (𝑔𝑁  𝑔𝐶
−1) the organ nitrogen content, 𝑀𝑅𝑁 (𝑔𝐶  𝑔𝑁

−1 𝑑−1) 

the respiration rate per nitrogen unit, 𝑄10𝑗 (dimensionless) the response of organ respiration to 



12 

 

temperature, 𝑇𝑗 (°𝐶) the temperature of the organ and 𝑇𝑀𝑅 (°𝐶) the base temperature for maintenance 

respiration. The leaf temperature of the plant layer (𝑇𝑐) that is computed in Eq. (44) is used as a proxy 

for 𝑇𝑗.  

3.4.5.  Carbon allocation to organs 

The allocation of carbohydrates to the organs is limited by either the 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 or by the organ demand 

for carbon. The 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is distributed to the different organs following a hierarchical allocation scheme 

(Lacointe, 2000). For coffee, Charbonnier et al. (2017) reported that allocation to the woody 

compartments remained quite steady whatever the fruit load, so DynACof supplies this compartment 

with priority. In contrast, carbon allocation to fruits appeared to prevail over allocation to leaves 

(Charbonnier et al., 2017; Gutierrez et al., 1998), so DynACof supplies carbon assimilates to fruits just 

after woody compartments, and the remaining carbon is allocated to leaves fine roots, and eventually 

reserves. The demand from the woody compartments is considered to always be equal to the 𝑆𝑢𝑝𝑝𝑙𝑦𝑖, 

the demand from fine roots is considered constant, whereas the demands by leaves and fruits are 

computed (see section 3.4.11). If the demand for assimilates by the fruits is sufficiently high, the carbon 

allocated to fruits potentially represents all the remaining global carbon 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 after allocation to the 

woody compartments, leaving nothing for the leaves and the fine roots.  

In practice, the carbon 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is first partitioned between shoot wood (𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖) and stump and coarse 

roots wood (𝐶𝐴𝑆𝐶𝑅,𝑖) using constant coefficients 𝜆𝑠ℎ𝑜𝑜𝑡 and 𝜆𝑆𝐶𝑅: 

𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 = 𝜆𝑠ℎ𝑜𝑜𝑡 ∙ 𝑆𝑢𝑝𝑝𝑙𝑦𝑖   (7) 

𝐶𝐴𝑆𝐶𝑅,𝑖 = 𝜆𝑆𝐶𝑅 ∙ 𝑆𝑢𝑝𝑝𝑙𝑦𝑖  (8) 

𝜆𝑠ℎ𝑜𝑜𝑡 + 𝜆𝑆𝐶𝑅 < 1  

Carbon allocation to the coffee fruits is computed as the minimum between the total fruit demand (see 

Eq. (38)) and the remaining carbon supply. 

𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖 =  min (𝐷𝐸𝑓𝑟𝑢𝑖𝑡,𝑖  ;  𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖) (9) 

The remaining carbon supply, if any, is then shared between leaves and fine roots following a coefficient 

of allocation (𝜆𝑟𝑗) for the remaining carbon:   

𝑆𝑢𝑝𝑝𝑙𝑦𝑙𝑒𝑎𝑓,𝑖 = 𝜆𝑟𝑙𝑒𝑎𝑓 ∙ (𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖) (10) 

𝑆𝑢𝑝𝑝𝑙𝑦𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝜆𝑟𝐹𝑅𝑜𝑜𝑡 ∙ (𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖) (11) 

with 𝜆𝑟𝑙𝑒𝑎𝑓 + 𝜆𝑟𝐹𝑅𝑜𝑜𝑡 = 1 (12) 

The allocation to both organs is the minimum between their respective supply and demand: 

𝐶𝐴𝑙𝑒𝑎𝑓,𝑖 = min (𝐷𝐸𝑙𝑒𝑎𝑓,𝑖, 𝑆𝑢𝑝𝑝𝑙𝑦𝑙𝑒𝑎𝑓,𝑖) (13) 

𝐶𝐴𝐹𝑅𝑜𝑜𝑡,𝑖 = min (𝐷𝐸𝐹𝑅𝑜𝑜𝑡 , 𝑆𝑢𝑝𝑝𝑙𝑦𝐹𝑅𝑜𝑜𝑡,𝑖) (14) 

Demand by the fine roots is a constant parameter, but demand by the leaves depends on the plant 𝐿𝐴𝐼 

compared to the maximum observed 𝐿𝐴𝐼: 

𝐷𝐸𝑙𝑒𝑎𝑓,𝑖 = 𝐷𝐸𝐿𝑀 ∙
𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔𝑖
10,000

∙
𝐿𝐴𝐼𝑚𝑎𝑥 − 𝐿𝐴𝐼𝑖
𝐿𝐴𝐼𝑚𝑎𝑥 + 𝐿𝐴𝐼𝑖

  (15) 
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where 𝐷𝐸𝐿𝑀 is the maximum leaf carbon demand (𝑔𝐶  𝑝𝑙𝑎𝑛𝑡
−1 𝑑−1) per coffee plant, 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔𝑖 is the 

coffee planting density on day i (𝑝𝑙𝑎𝑛𝑡 ℎ𝑎−1), and 𝐿𝐴𝐼𝑚𝑎𝑥 the maximum observed 𝐿𝐴𝐼 on the field. 

This equation allows to upper bound the 𝐿𝐴𝐼 values of the coffee layer by reducing carbon allocation to 

the foliage. 

Finally, if both leaf and fine root carbon demands are satisfied, the remaining carbon is stored in the 

reserves for future use: 

𝐶𝐴𝑅𝐸,𝑖 = 𝑂𝑓𝑓𝑒𝑟𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖 − 𝐶𝐴𝑙𝑒𝑎𝑓,𝑖 − 𝐶𝐴𝐹𝑅𝑜𝑜𝑡,𝑖 (16) 

3.4.6.  Growth respiration 

Growth respiration is the energy cost in carbohydrates to make new biomass from 𝐶𝐴 on day 𝑖. It is 

computed using a construction cost coefficient (𝜀𝑗 , 𝑔𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑔𝐶𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
−1 ) applied to the carbon allocated 

to the organ 𝑗: 

𝑅𝑔𝑗,𝑖 = 𝐶𝐴𝑗,𝑖 ∙ 𝜀𝑗 (17) 

3.4.7.  Net primary productivity 

Maintenance respiration is already accounted for before any carbon allocation (see 3.4.3), therefore, the 

net primary productivity of each organ 𝑗 for day 𝑖 (𝑁𝑃𝑃𝑗,𝑖, 𝑔𝐶  𝑚
−2 𝑑−1) is computed using the difference 

between the carbon allocated to the organ and the growth respiration: 

𝑁𝑃𝑃𝑗,𝑖 = 𝐶𝐴𝑗,𝑖 − 𝑅𝑔𝑗,𝑖 (18) 

𝑗 = {𝑠ℎ𝑜𝑜𝑡|𝑆𝐶𝑅|𝑓𝑟𝑢𝑖𝑡|𝑙𝑒𝑎𝑓|𝐹𝑅𝑜𝑜𝑡} (19) 

The net primary productivity of the plant is the sum on 𝑗 of the 𝑁𝑃𝑃𝑗,𝑖 of the layer considered, and the 

total net primary productivity of the stand is the sum of all 𝑁𝑃𝑃𝑗,𝑖 in all the layers. 

3.4.8.  Mortality 

Mortality is the sum of the natural mortality (turnover rate, 𝑀𝑛𝑎𝑡), of pruning (𝑀𝑝𝑟𝑢𝑛), diseases and 

of the lack of carbon (𝑀𝐶) when the carbohydrate budget (𝐺𝐶𝐵𝑖) is negative.  

The natural mortality of an organ 𝑗 (𝑀𝑛𝑎𝑡𝑗,𝑖, 𝑔𝐶  𝑚
−2𝑑−1) is proportional to its carbon mass from the 

previous day (𝐶𝑀𝑗,𝑖−1, 𝑔𝐶𝑚
−2), and is computed using a lifespan parameter (𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑗, 𝑑): 

𝑀𝑛𝑎𝑡𝑗,𝑖 =
𝐶𝑀𝑗,𝑖−1

𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑗
 (20) 

The annual pruning of coffee plants affects the shoot wood and the leaves, and it is assumed that leaf 

loss is accompanied by fine root loss. Pruning also affects the branches of the shade trees. For the leaves 

and shoots, pruning is adjusted using a pruning intensity coefficient (𝑃𝐼) as follows. It is considered that 

two separate 𝑃𝐼s are needed for the leaves and the shoots because the distribution of wood and leaf 

biomass may be heterogeneous between resprouts of different ages in the coffee plant as reported in 

Charbonnier et al. (2017).  
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𝑀𝑝𝑟𝑢𝑛𝑗,𝑖 = 𝑃𝐼𝑗 ∙ 𝐶𝑀𝑗,𝑖−1 (21) 

Mortality due to pruning of the fine roots is related to the mortality of pruned leaves using a constant 

parameter (𝑚𝐹𝑅𝑜𝑜𝑡):  

𝑀𝑝𝑟𝑢𝑛𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝑀𝑝𝑟𝑢𝑛𝑙𝑒𝑎𝑓,𝑖 ∙ 𝑚𝐹𝑅𝑜𝑜𝑡 (22) 

Leaf disease mortality is only implemented for coffee, using a module to compute the American Leaf 

Spot (ALS) according to Avelino et al. (2007). 

Mortality due to lack of carbohydrates to meet the maintenance respiration requirements (𝑀𝐶𝑖) is 

computed as:  

𝑀𝐶𝑗,𝑖 = {
−
𝐺𝐶𝐵𝑖 ∙ 𝐶𝑀𝑗,𝑖−1

𝐶𝑀𝑡𝑜𝑡,𝑖−1

   𝑖𝑓 𝐺𝐶𝐵𝑖 < 0

0                      𝑖𝑓 𝐺𝐶𝐵𝑖 ≥ 0

} (23) 

where 𝐶𝑀𝑗,𝑖−1 is the carbon mass of the organ 𝑗 from the day before 𝑖 (see Eq. (24)) and 𝐶𝑀𝑡𝑜𝑡,𝑖−1 is 

the total carbon mass of the leaves, shoots, fine roots stump and coarse roots of the previous day. 

Finally, the total mortality of each organ 𝑀𝑗,𝑖 is computed as the sum of all mortalities: natural, pruning, 

leaf disease (for coffee only) and lack of carbohydrates.  

3.4.9. Carbon and dry mass of organs 

The carbon mass of an organ is incremented daily by adding its 𝑁𝑃𝑃𝑗,𝑖 and removing its mortality: 

𝐶𝑀𝑗,𝑖 = 𝐶𝑀𝑗,𝑖−1 + 𝑁𝑃𝑃𝑗,𝑖 −𝑀𝑗,𝑖 (24) 

The organ dry mass is computed using the carbon mass and the carbon content of each organ 

(𝐶𝐶𝑗, 𝑔𝐶  𝑔𝐷𝑀
−1 ). 

3.4.10. Branch nodes 

The plagiotropic branches of a coffee plant present several nodes of decreasing age from the orthotropic 

branch to the tip:  

- several unproductive old nodes, close to the orthotropic branch; 

- productive nodes from the previous year that potentially bear flower buds, and then fruits; 

- newly formed nodes that bear leaves. 

The coffee reproductive phenology is based on a 2-year cycle (Camargo and Camargo, 2001). For a 

given year N, the new flush of nodes bearing new leaves will bear flower buds by the end of year N, 

while the leaves from year N-1 (born by the fruiting nodes N-1) are shed. Given that each new node 

bears two leaves, one expects some proportionality between node number and leaf area for the year N 

(Gutierrez et al., 1998). Such proportionality is used here to upscale the equations of Rodríguez et al. 

(2011) from the branch to the whole plant. The model computes the total number of newly formed nodes 

(𝐺𝑁𝑖) on the coffee plant for year N, i.e. the number of green wood nodes that will potentially bear 

flower buds by the end of the first year of the reproductive cycle:  

𝐺𝑁𝑖 = 𝐿𝐴𝐼𝑖 ∙ 𝑅𝑁𝐿 ∙ 𝐶𝑁 (25) 



15 

 

where 𝑅𝑁𝐿 is the number of nodes per 𝐿𝐴𝐼 unit at 20 °C, assuming that this parameter is dependent on 

the growth temperature. 𝐶𝑁 is an empirical temperature-dependant correction coefficient that is a 

function of the mean temperature during the vegetative growth period (𝑇𝑔𝑝, °𝐶). This relationship is 

derived from Drinnan and Menzel (1995): 

𝐶𝑁 =  0.4194773 + 0.2631364 ∙ 𝑇𝑔𝑝 − 0.0226364 ∙ 𝑇𝑔𝑝
2 + 0.0005455 ∙ 𝑇𝑔𝑝

3  (26) 

Note that this coefficient is from one of the only datasets in the literature that links coffee reproductive 

and vegetative growth to the ambient temperature. 

3.4.11. Fruit development 

The reproduction module is mostly inspired by Rodríguez et al. (2011), but upscaled to the whole plant 

(e.g. in Eq. (25)). Two main development processes are computed in the model: the flower bud cohorts 

of year N, and the fruit cohorts of the following year. The bud itself has two stages of development, 

while the fruit has five. Buds can be initiated only during the bud initialization period (BIP) from day 

𝐷𝐵𝐼𝑃1 to 𝐷𝐵𝐼𝑃2. The buds appear on branch nodes in daily cohorts every day within that time window. 

The 𝐷𝐵𝐼𝑃1 date is computed from the cumulative sum of degree-days (𝑆𝑑𝑑𝑇𝑓𝑓𝑏) after the date of end of 

vegetative development (𝐷𝑉𝐺2).  

The degree days are computed as follows: 

𝑑𝑑𝑖 = {
𝑇𝑐𝑎𝑛𝑖 − 𝑇𝑚𝑖𝑛    𝑖𝑓 𝑇𝑐𝑎𝑛𝑖 > 𝑇𝑚𝑖𝑛 𝑎𝑛𝑑 𝑇𝑐𝑎𝑛𝑖 < 𝑇𝑚𝑎𝑥

0          𝑖𝑓 𝑇𝑐𝑎𝑛𝑖 ≤ 𝑇𝑚𝑖𝑛  𝑜𝑟   𝑇𝑐𝑎𝑛𝑖 ≥ 𝑇𝑚𝑎𝑥
} (27) 

where 𝑑𝑑𝑖 are the degree days (°C) of day 𝑖, 𝑇𝑐𝑎𝑛𝑖 the mean daily coffee canopy temperature, 𝑇𝑚𝑖𝑛 

the minimum (i.e. base temperature) and 𝑇𝑚𝑎𝑥 the maximum temperature for physiological activity. 

One originality here is that the degree days are computed using the canopy temperature rather than 

measured air temperature because the microclimate close to the plant may differ depending on the local 

conditions (e.g. the cooling effect of shade trees). 

𝐷𝐵𝐼𝑃1is computed as: 

{
 

 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝐷𝑉𝐺2

    𝑖𝑓 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 < 𝐹𝑇𝑓𝑓𝑏

𝐷𝐵𝐼𝑃1 = 𝐷                       𝑖𝑓 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 = 𝐹𝑇𝑓𝑓𝑏  

 (28) 

where 𝐹𝑇𝑓𝑓𝑏 is the threshold value in degree days that triggers the start of the bud development window. 

It is considered that bud cohorts stop initializing when the first bud cohort initiated on the plant enters 

the fruit stage. This day is denoted 𝐷𝐵𝐼𝑃2.  

The number of buds initiated daily on a given cohort (𝐵𝑢𝑑𝑆1) from 𝐷𝐵𝐼𝑃1 to 𝐷𝐵𝐼𝑃2  depends on several 

factors: the incoming radiation (𝑅𝐴𝐷,𝑀𝐽 𝑚−2 𝑑−1), the canopy degree-day computed following Eq. 

(27) and the number of green nodes to support the buds (𝐺𝑁𝑖). This computation follows Eq. (12) from 

Rodríguez et al. (2011), here adapted to the whole plant:  

𝐵𝑢𝑑𝑆1𝑖  = (𝑎𝑏𝑢𝑑 − 𝑏𝑏𝑢𝑑 ∙ 𝑅𝐴𝐷𝑖) ∙ 𝐺𝑁𝑖 ∙ 𝑑𝑑𝑖 (29) 

where 𝑎𝑏𝑢𝑑 and 𝑏𝑏𝑢𝑑 are parameters. 
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Each bud initiated on day 𝑖 is considered to belong to the bud cohort of day 𝑖. There are as many cohorts 

as days between 𝐷𝐵𝐼𝑃1 and 𝐷𝐵𝐼𝑃2.  

Once initiated, bud cohorts develop for 𝐹𝑏𝑢𝑑𝑆1degree-days until they become dormant on day 𝐷𝑏𝑢𝑑𝑆1:  

{
 𝑆𝑑𝑑𝑏𝑆1 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝑖𝑛𝑖𝑡

 𝑖𝑓  𝑆𝑑𝑑𝑏𝑆1 < 𝐹𝑏𝑢𝑑𝑆1

 𝐷𝑏𝑢𝑑𝑆1 = 𝐷                 𝑖𝑓 𝑆𝑑𝑑𝑏𝑆1 = 𝐹𝑏𝑢𝑑𝑆1

       (30) 

where 𝑖𝑛𝑖𝑡 is the day of initialization of the cohort. 

To potentially break dormancy, the bud cohort has to experience a minimum amount of cumulated 

rainfall (𝐹𝑟𝑎𝑖𝑛) after 𝐷𝑏𝑢𝑑𝑆1:  

{
 

 𝑆𝑟𝑎𝑖𝑛 = ∑ 𝑟𝑎𝑖𝑛𝑖

𝐷

 𝑖=𝐷𝑏𝑢𝑑𝑆1

   𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 < 𝐹𝑟𝑎𝑖𝑛

𝐷𝑟𝑎𝑖𝑛 = 𝐷                          𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 = 𝐹𝑟𝑎𝑖𝑛

       (31) 

However, the bud cohort can cumulate a maximum of 𝐹𝑏𝑢𝑑𝑆2 degree-days during its lifetime. If it does 

not break its dormancy before the day when this threshold is reached (𝐷𝑏𝑢𝑑𝑆2), it is considered 

desiccated. 𝐷𝑏𝑢𝑑𝑆2 is computed as: 

{
 

   𝑆𝑑𝑑𝑏𝑆2 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝐷𝑏𝑢𝑑𝑆1

      𝑖𝑓  𝑆𝑑𝑑𝑏𝑆2 < 𝐹𝑏𝑢𝑑𝑆2

 𝐷𝑏𝑢𝑑𝑆2 = 𝐷                         𝑖𝑓 𝑆𝑑𝑑𝑏𝑆2 = 𝐹𝑏𝑢𝑑𝑆2   

 (32) 

The time window when buds from a cohort can potentially break their dormancy (𝑊𝑓𝑟𝑢𝑖𝑡𝑆1) is then found 

by solving Eq. (31) and Eq. (32): 

𝑊𝑓𝑟𝑢𝑖𝑡𝑆1 = [𝐷𝑟𝑎𝑖𝑛; 𝐷𝑏𝑢𝑑𝑆2]    𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 = 𝐹𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝐷𝑟𝑎𝑖𝑛 <  𝐷𝑏𝑢𝑑𝑆2  (33) 

The time window is shared by all the buds in the same cohort, but all the buds will not necessarily break 

their dormancy on the same day. The number of buds in a given cohort that break their dormancy on a 

given day within 𝑊𝑓𝑟𝑢𝑖𝑡𝑆1 depends on the combination of two factors: the mean diurnal air temperature 

within the coffee canopy during bud growth (𝐶𝐵, °𝐶) and the leaf water potential (𝛹𝑙𝑒𝑎𝑓 ,𝑀𝑃𝑎) of the 

coffee plant. These conditions reflect the need for a drier period followed by an intense rainfall event 

for optimal dormancy break (Rodríguez et al., 2011). The number of buds breaking dormancy 

(𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘) on a given day is computed as: 

𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘𝑖 = 𝐵𝑢𝑑𝑆2𝑖 ∙ 𝑃𝑏𝑟𝑒𝑎𝑘𝑖 ∙ 𝐶𝐵 (34) 

where 𝐵𝑢𝑑𝑆2𝑖 is the number of stage 2 buds in the cohort that have not yet broken dormancy, 𝐶𝐵 is a 

temperature-dependant correction coefficient, and 𝑃𝑏𝑟𝑒𝑎𝑘𝑖 is the rate at which they break dormancy, 

which is related to the leaf water potential (𝛹𝑙𝑒𝑎𝑓 ,𝑀𝑃𝑎) using two parameters (𝑎𝑝 and 𝑏𝑝) as follows: 

𝑃𝑏𝑟𝑒𝑎𝑘𝑖 =
1

1 + 𝑒𝑎𝑝+𝑏𝑝∙𝛹𝑙𝑒𝑎𝑓,𝑖
 (35) 

𝐶𝐵 is implemented to include the effect of the average canopy temperature on the number of buds 

initiated during growth of the coffee plant. It is computed from a monotone Hermite spline (Fritsch and 
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Carlson, 1980) fitted on the rather unique Drinnan and Menzel (1995) dataset relating temperature and 

blossoming. More details are available on the help page of the eponym function of the R package of 

DynACof (https://vezy.github.io/DynACof/reference/CB.html). 

When buds do break dormancy, they enter the fruit stage by forming a flower (stage 1 fruit). Then, the 

fruits develop and finally become mature (stage 4) then overripe (stage 5), when they fall onto the 

ground. Each bud breaking dormancy on day 𝑖 forms a new cohort of fruits, meaning that fruits forming 

a fruit cohort can originate from several different bud cohorts. The stage 1 fruits of the cohort then enter 

the carbon allocation scheme to undergo the successive stages of maturation. Under optimal conditions, 

the carbon mass of the fruit increases following a logistic distribution over the growing period until it 

becomes overripe. This logistic growth during physiological development can be modeled as: 

𝐿 = (1 + 𝑒
𝐹𝑑𝑑𝑖𝑛𝑓 −𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡

𝑠 )

−1

  (36) 

where 𝐹𝑑𝑑𝑖𝑛𝑓  is the inflexion value of the logistic distribution (in degree-days), 𝑠 is the steepness of the 

logistic curve, and 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡  is the number of degree-days accumulated by the fruit since its flowering 

date.  

The carbon demand of a cohort 𝑐 on day 𝑖 is computed as the sum of the carbon mass incremented by 

all fruits in the cohort under optimal conditions. It is computed using the derivative of the Eq. (36) as 

follows: 

𝐷𝐸𝑐 = {
𝐹𝑟𝑢𝑖𝑡𝑆1 ∙ 𝐷𝐸𝑜𝑝𝑡 ∙ 𝐿

′     𝑖𝑓 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡 < 𝐹𝑜𝑣𝑒𝑟
0                                       𝑖𝑓 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡 ≥ 𝐹𝑜𝑣𝑒𝑟

} (37) 

where 𝐹𝑟𝑢𝑖𝑡𝑆1 is the number of fruits in the cohort, 𝐷𝐸𝑜𝑝𝑡 is the total carbon demand of a coffee fruit 

thoughout its development under optimal conditions including growth respiration, and 𝐹𝑜𝑣𝑒𝑟 (degree 

days) the physiological age for fruits to become overripe and no longer require carbohydrates because 

they fall to the ground. Thereby, the total plant-scale fruit carbon demand is computed as the sum of the 

demand of all the cohorts growing on the coffee plant: 

𝐷𝐸𝑓𝑟𝑢𝑖𝑡,𝑖 = ∑ 𝐷𝐸𝑛
𝑐=1 𝑐,𝑖

   (38) 

The fruit demand for carbon can be considered as a genetic growth potential, with optimal fruit growth 

when there are no limitations to the supply. This sink strength depends on the number of fruits and the 

degree-days and is independent of the carbon supply. Consequently, the allocation of carbon to fruits is 

constrained either by fruit demand or by the carbon supply as in Eq. (9). The fruit mass is then computed 

as in Eq. (24). The fruits that become overripe (i.e. are not harvested) are removed from the coffee plant 

and considered as a mortality. 

Coffee bean quality is also computed using the fruit sucrose content of each fruit cohort (𝑐) based on 

the number of days after flowering, following the model of Pezzopane et al. (2012): 

𝑆𝑀𝑖 =∑
𝐶𝑀𝑐,𝑖

𝐶𝐶𝑓𝑟𝑢𝑖𝑡
∙ (𝑆𝑦0 +

𝑆𝑎 ∙ 100

1 + (
𝑖
𝑆𝑥0
)
𝑆𝑏
)

𝑛

𝑐=1
 (39) 

https://vezy.github.io/DynACof/reference/CB.html
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𝑆𝑀𝑂𝑝𝑡𝑖 =∑
𝐶𝑀𝑐,𝑖

𝐶𝐶𝑓𝑟𝑢𝑖𝑡
∙ (𝑆𝑦0 + 𝑆𝑎 ∙ 100)

𝑛

𝑐=1
 (40) 

𝑀𝑎𝑡𝑖 =
𝑆𝑀𝑖

𝑆𝑀𝑂𝑝𝑡𝑖
 (41) 

where 𝑆𝑀𝑖  is the sucrose mass of all the cohorts 𝑐 on day 𝑖, and 𝑆𝑀𝑂𝑝𝑡𝑖 is the optimal sucrose mass of 

the coffee bean, i.e. the sucrose mass of the bean if it was fully mature. 𝐶𝑀𝑐,𝑖 is the carbon mass of the 

cth cohort on day i, 𝐶𝐶𝑓𝑟𝑢𝑖𝑡 is the carbon content of the fruit, 𝑆𝑦0 is the sucrose content at the beginning 

of the fruit development, 𝑆𝑥0 is the day at which the maturation is at the inflexion point, and 𝑆𝑎 and 𝑆𝑏 

are two maturation parameters. Harvest maturity is then simply the global fruit maturity on the day of 

harvest.  

Harvesting takes place once each growing season, it is triggered on the date when total cumulated fruit 

mortality has been higher than fruit growth for more than ten days. This simple method ensures that 

harvesting occurs when the fruit stock is at its maximum to optimize yield. 

3.4.12. Shade tree allometric relationships  

In addition to the common allocation scheme, each shade tree species has its own set of allometric 

relationships. Any kind of allometric equation can be implemented and can then be used as input for the 

metamodels, or as an informative model output. In this study, allometric relationships were used to 

compute the tree crown radius and height from the tree branch dry mass and the tree density. The crown 

radius and height were then used to compute the LAD (leaf area density, 𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑐𝑟𝑜𝑤𝑛

−3 ) which is an 

input for the metamodels for the light extinction coefficients. Shade tree height is mandatory to compute 

the aerodynamic conductance and was computed in this study using an allometric relationships with the 

tree stem dry mass. The tree diameter at breast height was also computed from stem dry mass. 

3.4.13. Temperature 

The temperature of the foliage and the air inside the canopy is computed using the formalism proposed 

by Van de Griend and Van Boxel (1989) using the diffusivities for momentum transport and potential 

energy flow inside and in-between the inertial sublayer, the roughness sublayer, the air space of each 

canopy layers, the foliage and the soil. The temperature of the air inside the canopy is computed as:  

𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑙 =  𝑇𝑎𝑖𝑟𝑖 +
𝐻𝑖,𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑏𝑢𝑙𝑘𝑖
 (42) 

with 𝑖 the day, 𝑙 the canopy layer, 𝑇𝑎𝑖𝑟 the air temperature measured above the canopy, 𝐻 the sensible 

heat flux (𝑀𝐽 𝑚−2𝑑−1), 𝜌 the air density (𝑘𝑔 𝑚−3), 𝐶𝑝 the specific heat of air for constant pressure 

(𝑀𝐽 𝐾−1𝑘𝑔−1) and 𝑔𝑏𝑢𝑙𝑘 the aerodynamic conductance for heat above the canopy (𝑚 𝑠−1). If the 

coffee plants are grown in monoculture, Eq. (42) is applied directly to the coffee layer. If they are grown 

under shade trees, Eq. (42) is used for the shade tree, and the air temperature inside the coffee canopy is 

computed as follows:   
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𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑐𝑜𝑓 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑡𝑟𝑒𝑒 +
𝐻𝑖,𝑐𝑜𝑓

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑖
 (43) 

with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑡𝑟𝑒𝑒 the temperature of the air inside the shade tree canopy computed using Eq. (42) and 

𝑔𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦 the aerodynamic conductance at the interface between both canopy layers (𝑚 𝑠−1). 

The leaf temperature (𝑇𝑐𝑎𝑛) of each layer is then computed as:  

𝑇𝑐𝑎𝑛𝑖,𝑙 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑙 +
𝐻𝑖,𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑏ℎ𝑖
 (44) 

with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 the air temperature inside the given canopy layer, and 𝑔𝑏ℎ the leaf boundary layer 

conductance for heat (𝑚 𝑠−1). 

The temperature at the soil surface is similarly computed as: 

𝑇𝑠𝑜𝑖𝑙𝑖 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑐𝑜𝑓 +
𝐻𝑖,𝑠𝑜𝑖𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛
 (45) 

with 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛 the canopy to soil aerodynamic conductance (𝑚 𝑠−1). 

3.4.14. Soil, water, and energy 

The soil water-balance module was inspired by the BILJOU model (Granier et al., 1999), which has 

already been parameterized for this coffee agroforestry system (Gómez-Delgado et al., 2011) and is 

given in Appendix A. It has three layers, 0 to 1.25 m, 1.25 to 1.75 m and 1.75 to 3.75 m, respectively, 

to cover the whole root profile of the coffee plants (Defrenet et al., 2016).  

The net radiation of the soil was computed using a MAESPA metamodel, and the partitioning between 

latent and sensible fluxes was parameterized using the average partitioning from the outputs of the 

MAESPA simulations (Vezy et al., 2018). The shade tree and coffee leaf water potential (𝛹𝑙𝑒𝑎𝑓), 

transpiration (𝑇𝑟) and sensible heat (𝐻) were simulated using MAESPA metamodels. The net radiation 

of the shade tree and the coffee layers was computed as the sum of the latent (𝐿𝐸) and the sensible (𝐻) 

heat fluxes of each layer. The stand net radiation (𝑅𝑛) was then computed by summing the net radiation 

of the shade tree, the coffee and the soil.  

3.4.15. Inputs and outputs 

All parameters needed for a DynACof simulation are stored in specific input files for the shade tree, the 

coffee, the soil, the site and the meteorology. A set of example data is included into the package so any 

user can start a simulation without any data. This set of example file is also archived as a git repository 

on github.com (https://github.com/VEZY/DynACof_inputs) for convenience. The main input values 

used for this study are listed on the paragraph 3.5. The input variables for the meteorology file should 

provide at least the maximum and minimum air temperature of the day (°C), the RAD or PAR (MJ m-2 

d-1), and the relative humidity (%) or vapor pressure deficit (hPa). The full list of mandatory and optional 

inputs the user can provide are available from the documentation 

(https://vezy.github.io/DynACof/reference/Meteorology.html). 

https://github.com/VEZY/DynACof_inputs
https://vezy.github.io/DynACof/reference/Meteorology.html
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The model has 245 output variables, mainly for energy balance, water balance, carbon assimilation and 

allocation, respiration, plant growth, yield and mortality for each organ type. The full list is available 

from the documentation (https://vezy.github.io/DynACof/reference/DynACof.html). 

3.5. Model parameterization using a multi-objective approach 

The MAESPA model was parameterized according to Vezy et al. (2018) and was run on a 0.2 ha sub-

plot of 4176 coffee resprouts (3 resprouts per coffee plant in average) and 14 shade trees at a half-hourly 

time-step throughout the year 2011. Metamodels were then built from daily plot scale aggregations of 

MAESPA outputs and integrated in DynACof (Figure 1). The metamodels were built using linear 

regressions with MAESPA input variables as predictors. The MAESPA dataset created from the 

simulations of the year 2011 was taken as a representative sample of most of the conditions of the 

growing cycle, with yearly climate variations, a highly variable shade tree LAI due to almost total leaf 

fall, and highly variable coffee plant structure, with resprouts ranging from zero to five years old.  

DynACof was run from January 1979 to the end of December 2016 at a daily time step. The climate 

inputs to the model came from the Coffee-Flux project between 2009 and 2016, and were computed 

between 1979 and 2008 using the method and data described in Hidalgo et al. (2017). The values and 

sources of the parameters used in DynACof are listed in Table 1 for climate and coffee, in Table 2 for 

the shade tree species, and in Table 3 for the soil. Given the large number of parameters and the scarce 

data on coffee and shade trees, some parameters were not measured in this study and were not found in 

the literature either, for example, the coffee carbon allocation coefficients (λ). Because allocation 

coefficients have multiple repercussions on other variables, notably on respiration through organ mass 

and on light interception through LAI, a multi-objective parameterization was needed. As computation 

time was a limiting factor, manual multi-objective parameterization was preferred to algorithmic 

optimization. The values of the parameters were found by starting from expert a priori, and tuned 

manually to minimize the simulation error for NPP and biomass for each compartment using the first 

year of measurements reported in Charbonnier et al. (2017) at a stand age of 33 year after planting, 

always keeping the values within a plausible range. In any case, the outputs of the model were evaluated 

on the second year of measurements, which was not used for model parameterization. 

  

https://vezy.github.io/DynACof/reference/DynACof.html
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Table 1. Main parameters used in DynACof (full list available at https://github.com/VEZY/DynACof). NB: SCR= 

Stump and Coarse Roots, FRoot= Fine roots, Shoot= Resprout wood (i.e. orthotropic axis and branches).  

Parameter Unit Value Description Source 

Site     

 Latitude degree 9.93833 Latitude This study1 

 Longitude degree -83.728 Longitude This study1 

 Timezone  6 Time zone This study1 

 Elevation m 1040 Elevation This study1 

 Height_Coffee m 1.2 Coffee height, for zht and z0 This study1 

 ZHT m 25 Climate data meas. height This study1 

 Stocking_Coffee Plant ha-1 5580 Coffee initial planting density This study1 

Coffee light interception  

 KDif 0-1 0.4289 Diffuse light extinction coeff. This study1 (MAESPA) 

 KDir 0-1 0.3579 Direct light extinction coeff. This study1 (MAESPA) 

Vegetative development  

 AgeCofMax Year 40 Max. length of plantation cycle This study1 

 AgePruning Year 5 Age at first pruning This study1 

 D_pruning DOY 74 Day of year for pruning This study1 

 SLA 𝑚𝑙𝑒𝑎𝑓
2  𝑘𝑔𝐷𝑀

−1  10.97 Specific leaf area Charbonnier et al. (2017)1 

 RNL Node LAI-1 91.2 Ref. # nodes per LAI unit at 20°C Drinnan and Menzel (1995)2 

 DELM 𝑔𝐶  𝑐𝑜𝑓
−1𝑑−1 7 Max. leaf carbon demand This study1 

 LAI_max 𝑚𝑙𝑒𝑎𝑓
2  𝑚𝑠𝑜𝑖𝑙

−2  6 Max. LAI This study1 

 DVG1 DOY 105 Beginning of vegetative growth This study1 

 DVG2 DOY 244 End of vegetative growth This study1 

 kres 0-1 0.08 Max. reserves used per day Cambou (2012) 

 𝜆_Shoot 0-1 0.14 Allocation to resprout wood Charbonnier et al. (2017)3 

 𝜆_SCR 0-1 0.075 Alloc. to perennial wood Charbonnier et al. (2017)3 

 𝜆𝑟_Leaf 0-1 0.85 Remaining carbon alloc. to leaves Charbonnier et al. (2017)3 

 𝜆𝑟_FRoot 0-1 0.15 Rem. carbon alloc. to fine roots Charbonnier et al. (2017)3 

 lifespan_Leaf day 265 Leaf lifespan Charbonnier et al. (2017) 

 lifespan_Shoot day 7300 Resprout lifespan van Oijen et al. (2010a) 

 lifespan_SCR day 7300 Perennial wood lifespan van Oijen et al. (2010a) 

 lifespan_FRoot day 365 Fine root lifespan Defrenet et al. (2016) 

 m_FRoot 0-1 0.05 Fine root to leaf pruning effect This study3 

 CC_Fruit 𝑔𝐶  𝑔𝐷𝑀
−1  0.4857 Fruit dry mass carbon content Cambou (2012) 

 CC_Leaf 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Leaf dry mass carbon content Cambou (2012) 

 CC_Shoot 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Resprout wood dry mass C content Cambou (2012) 

 CC_SCR 𝑔𝐶  𝑔𝐷𝑀
−1  0.475 Perennial wood dry mass C content Cambou (2012) 

 CC_Shoot 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Resprout wood dry mass C content Cambou (2012) 

 𝜀Fruit 𝑔𝐶  𝑔𝐶
−1 1.6 Fruit growth respiration cost Poorter (1994)2 

 𝜀Leaf 𝑔𝐶  𝑔𝐶
−1 1.279 Leaf growth respiration cost Dufrêne et al. (2005)3 

 𝜀FineRoot 𝑔𝐶  𝑔𝐶
−1 1.279 Fine root growth respiration cost Dufrêne et al. (2005)3 

 𝜀Shoot 𝑔𝐶  𝑔𝐶
−1 1.2 Shoot wood growth resp. cost Dufrêne et al. (2005)3 

 𝜀SCR 𝑔𝐶  𝑔𝐶
−1 1.31 Perennial wood growth resp. cost Dufrêne et al. (2005)3 

 NC_Fruit 𝑚𝑔𝑁  𝑔𝐶
−1 11 Fruit nitrogen content van Oijen et al. (2010a) 

 NC_Leaf 𝑚𝑔𝑁  𝑔𝐶
−1 29.6 Leaf nitrogen content Ghini et al. (2015) 

 NC_Shoot 𝑚𝑔𝑁  𝑔𝐶
−1 4.1 Resprout wood nitrogen content Ghini et al. (2015) 

 NC_SCR 𝑚𝑔𝑁  𝑔𝐶
−1 5 Perennial wood nitrogen content Cambou (2012) 

 NC_FRoot 𝑚𝑔𝑁  𝑔𝐶
−1 18 Fine root nitrogen content van Praag et al. (1988) 

 Q10_Fruit 1 2.4 

Temperature effect on Rm 

Charbonnier (2013) 

 Q10_Leaf 1 2.4 Charbonnier (2013) 

 Q10_Shoot 1 2.4 Charbonnier (2013) 

 Q10_SCR 1 1.65 van Oijen et al. (2010a) 

 Q10_FRoot 1 1.65 van Oijen et al. (2010a) 

 MRN 𝑔𝐶  𝑔𝑁
−1 𝑑−1 0.06336 Base maintenance respiration Ryan (1991)2 

 pa_Fruit 0-1 1 Percentage of living cells in fruits This study3 

 pa _Leaf 0-1 1 P. of living cells in leaves This study3 

 pa_FRoot 0-1 1 P. of living cells in fine roots This study3 

 pa_Shoot 0-1 0.37 P. of living cells in resprout wood Dufrêne et al. (2005) 

 pa_SCR 0-1 0.21 P. of living cells in perennial wood Dufrêne et al. (2005) 

https://github.com/VEZY/DynACof
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Table 1 (continued). Main parameters used in DynACof. 

Parameter Unit Value Description Source 

Reproductive development 

 a_bud 𝐵𝑢𝑑𝑠 𝑑−1 0.00287 Number of buds initiated per day Rodríguez et al. (2011) 

 b_bud 1 -4.1. e-6  Param. for bud initialization Rodríguez et al. (2011) 

 F_Tffb Degree-day 4000 Time of first floral buds  Rodríguez et al. (2011) 

 a_p 1 5.78 Probability of bud dormancy break 

calculated from leaf water potential 

Drinnan and Menzel (1995); 

Rodríguez et al. (2011)  b_p 1 1.90 

 F_rain mm 40 Cumulative rain to break bud 

dormancy 

Zacharias et al. (2008) 

 age_Maturity Year 3 First age of flowering after planting van Oijen et al. (2010a) 

 VF_Flowering Degree day 5500 Very first flowering of coffee plant Rodriguez et al., 2001 

 F_buds1 Degree day 840 Bud stage 1 Meylan (2012); van Oijen et 

al. (2010a)  F_buds2 Degree day 2562 Bud stage 2 

 F_over Degree day 3304 From pinhead to overripe (stage 5) Rodríguez et al. (2011) 

 s 1 0.05 Empirical coefficient for fruit growth Rodríguez et al. (2011) 

 FtS 0-1 0.63 Fruit to seed dry mass ratio Wintgens (2004) 

Sucrose accumulation 

 S_a [sucrose] 5.3207 Parameters used to model sucrose 

accumulation in coffee fruit 

Pezzopane et al. (2012) 

 S_b 1 -28.556 Pezzopane et al. (2012) 

 S_x0 Degree day 190.972 This study3 

 S_y0 [sucrose]  3.4980 Pezzopane et al. (2012) 

 DE_opt 𝑔𝐷𝑀 0.164 Optimum berry C demand Wintgens (2004) 
(1) Parameters effectively measured or computed for this study. 
(2) Parameters computed from another source (e.g. MRN from Ryan (1991) transformed to a daily time scale) 
(3) Parameters tuned starting from source value to make the model outputs match the first year of measurements from 

Charbonnier et al. (2017). Expert a priori is used as start value when no value was found in the literature.  
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Table 2. Parameters used in DynACof for the shade tree layer (E.poeppigiana). NB: Leaf life span was computed using 

the phenology routine. CR= Coarse Roots, FRoot= Fine roots. 

Parameter  Unit Value Description Source 

Vegetative development 

 SLA 𝑚𝐿𝑒𝑎𝑓
2  𝑘𝑔𝐷𝑀 17.4 Specific leaf area van Oijen et al. (2010a) 

 DELM_Tree 𝑔𝐶  𝑡𝑟𝑒𝑒
−1𝑑−1 778.5 Max. leaf carbon demand Charbonnier et al. (2017)2 

 𝜆_Stem 0-1 0.20 Alloc. to stem This study3 

 𝜆_Branch 0-1 0.25 Alloc. to branches This study3 

 𝜆_CR 0-1 0.10 Alloc. to coarse roots This study3 

 𝜆_Leaf 0-1 0.26 Alloc. to leaves This study3 

 𝜆_𝐹Root 0-1 0.05 Alloc. to fine roots This study3 

 lifespan_Branch day 7300 Branch life span van Oijen et al. (2010a) 

 lifespan_FRoot day 90 Fine root life span van Oijen et al. (2010a) 

 lifespan_CR day 7300 Coarse root life span van Oijen et al. (2010a) 

 CC 𝑔𝐶  𝑔𝐷𝑀
−1  0.47 Tree dry mass carbon content van Oijen et al. (2010a) 

 𝜀_Branch 𝑔𝐶  𝑔𝐶
−1 1.2 Branch growth respiration cost This study3 

 𝜀_Stem 𝑔𝐶  𝑔𝐶
−1 1.2 Stem growth respiration cost This study3 

 𝜀_CR 𝑔𝐶  𝑔𝐶
−1 1.33 Coarse root growth resp. cost Litton et al. (2007) 

 𝜀_Leaf 𝑔𝐶  𝑔𝐶
−1 1.392 Leaf growth respiration cost Villar and Merino (2001) 

 𝜀_FRoot 𝑔𝐶  𝑔𝐶
−1 1.392 Fine root growth resp. cost = 𝜀Leaf 

 NC_Branch 𝑚𝑔𝑁  𝑔𝐶
−1 5.0 Branch nitrogen content This study3 

 NC_Stem 𝑚𝑔𝑁  𝑔𝐶
−1 5.0 Stem nitrogen content This study3 

 NC_CR 𝑚𝑔𝑁  𝑔𝐶
−1 8.4 Coarse root nitrogen content van Oijen et al. (2010a) 

 NC_Leaf 𝑚𝑔𝑁  𝑔𝐶
−1 35.9 Leaf nitrogen content van Oijen et al. (2010a) 

 NC_FRoot 𝑚𝑔𝑁  𝑔𝐶
−1 8.4 Fine root nitrogen content van Oijen et al. (2010a) 

 Q10_CR 1 2.1 Temperature effect on Rm This study3 

 Q10_Leaf 1 1.896 Temperature effect on Rm This study3 

 Q10_Branch 1 2.1 Temperature effect on Rm This study3 

 Q10_Stem 1 1.7 Temperature effect on Rm van Oijen et al. (2010a) 

 Q10_FRoot 1 1.4 Temperature effect on Rm van Oijen et al. (2010a) 

 pa_Branch 0-1 0.4:0.05 Percentage of living cells in branch This study3 

 pa_Stem 0-1 0.3:0.05 P. of living cells in stem This study3 

 pa_CR 0-1 0.21 P. of living cells in coarse roots Dufrêne et al. (2005) 

 pa_Leaf, FRoot 0-1 1 P. of liv. cells in leaves and fine 

roots 

This study3 

Allometries 

 LAD_max/min 𝑚𝐿𝑒𝑎𝑓
2  𝑚−3 0.76/0.21 Max/Min leaf area density Charbonnier et al. (2013) 

 AgePruning year 1:21 Ages at which trees are pruned This study1 

 Stocking 𝑡𝑟𝑒𝑒 ℎ𝑎−1 250/7.38 Tree density (before/after thinning) Taugourdeau et al. (2014) 
(1) Parameters effectively measured or computed for this study. 
(2) Parameters computed from another source 
(3) Parameters set using an expert value (e.g. values from other species) or tuned starting from a source value to make the 

model outputs match the first year of measurements from Charbonnier et al. (2017). 

 
Table 3. BILJOU sub-module parameters 

Parameter  Unit Value Description Source 

 TotalDepth m 3.75 Total simulated soil depth This study 

 Wm1; Wm2; Wm3 mm 210;58;64 Minimum water content, layers 1, 2, 3 Gómez-Delgado et al. (2011) 

 Wf1; Wf2; Wf3 mm 290; 66; 69 Field capacity, layer 1;2;3 Gómez-Delgado et al. (2011) 

 IntercSlope 𝑚𝑚 𝐿𝐴𝐼−1 0.2 Rainfall interception by leaves Gómez-Delgado et al. (2011) 

 WSurfResMax mm 120 Max. water on the surface reservoir Gómez-Delgado et al. (2011) 

 fc 𝑚𝑚 𝑑𝑎𝑦−1 13.4 Min. infiltration capacity Gómez-Delgado et al. (2011) 

 alpha 1 101.561 Coef. for max. infilt. capacity Gómez-Delgado et al. (2011) 

 kB day-1 0.038 Discharge coeff. for surface runoff Gómez-Delgado et al. (2011) 

 Soil_LE_p % 0.70 Soil energy partitioning coefficient  This study (MAESPA) 
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4. Results 

4.1. Metamodels  

The metamodels for shade tree 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 are presented in Table 4, and were computed using the 

shade tree 𝐿𝐴𝐷 (𝐿𝐴𝐷𝑇𝑟𝑒𝑒 , 𝑚
2 𝑚−3) as predictor. The metamodel for 𝐿𝑈𝐸 (𝑔𝐶  𝑀𝐽

−1) was made using 

climate inputs because it was found to depend more on the environment than on the plant structure. The 

other metamodels for plant transpiration (𝑇𝑟,𝑚𝑚), sensible heat fluxes (𝐻,𝑀𝐽 𝑚−2), leaf water 

potential (𝛹𝑙𝑒𝑎𝑓 ,𝑀𝑃𝑎) and soil net radiation are all presented in Table 4. 

Table 4. MAESPA metamodel equations. 𝑻𝒂𝒊𝒓 (°𝑪) and 𝑽𝑷𝑫𝒂𝒊𝒓 (𝒉𝑷𝒂) are the air temperature and vapor pressure deficit 

measured above the canopy, 𝑭𝑩𝑬𝑨𝑴 and 𝑭𝑫𝑰𝑭 (%) the beam and diffuse fraction of the light, respectively, and 𝑷𝑨𝑹𝒍 
(𝑴𝑱 𝒎−𝟐 𝒅𝒂𝒚−𝟏) the photosynthetically active radiation reaching the layer considered (e.g. PAR transmitted by the 

shade tree layer for the 𝑳𝑼𝑬𝑪𝒐𝒇 and transmitted by the coffee layer for 𝑹𝒏𝑺𝒐𝒊𝒍), 𝜳𝒔𝒐𝒊𝒍 the soil water potential (𝑴𝑷𝒂). 

Cof: Coffee, RMSE: Root Mean Squared Error, EF: modelling efficiency, R2: adjusted r-squared. RMSE and EF 

statistics were computed on out-of-sample data, R2 on the sample used to train the model. 

Metamodel R2 RMS

E 

EF 

𝐾𝐷𝑖𝑓𝑇𝑟𝑒𝑒 =  0.6161 −  0.5354 ∙ 𝐿𝐴𝐷𝑇𝑟𝑒𝑒 0.95 0.02 0.95 

𝐾𝐷𝑖𝑟𝑇𝑟𝑒𝑒 =  0.4721 −  0.3973 ∙ 𝐿𝐴𝐷𝑇𝑟𝑒𝑒 0.61 0.05 0.71 

𝐿𝑈𝐸𝐶𝑜𝑓 =  2.784288 + 0.009667 ∙ 𝑇𝑎𝑖𝑟 + 0.010561 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 − 0.710361 ∙ √𝑃𝐴𝑅𝐶𝑜𝑓 0.94 0.09 0.92 

𝐿𝑈𝐸𝑇𝑟𝑒𝑒 =  2.87743 + 0.07595 ∙ 𝑇𝑎𝑖𝑟 − 0.03390 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 − 0.24565 ∙ 𝑃𝐴𝑅𝑡𝑟𝑒𝑒 0.87 0.25 0.86 

𝑇𝑟𝐶𝑜𝑓 = −0.7208 + 0.07319 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 − 0.76984 ∙ 𝐹𝐵𝐸𝐴𝑀 + 0.13646 ∙ 𝐿𝐴𝐼𝐶𝑜𝑓 + 0.1291

∙ 𝑃𝐴𝑅𝐶𝑜𝑓 
0.86 0.15 0.88 

𝑇𝑟𝑇𝑟𝑒𝑒 = −0.2366 + 0.6591 ∙ 𝐴𝑃𝐴𝑅𝑇𝑟𝑒𝑒 + 0.1324 ∙ 𝐿𝐴𝐼𝑇𝑟𝑒𝑒 0.80 0.07 0.85 

𝐻𝐶𝑜𝑓 =  1.256 − 0.2886 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 − 3.628 ∙ 𝐹𝐷𝐼𝐹 + 2.648 ∙ 𝑇𝑟𝐶𝑜𝑓 + 0.4389 ∙ 𝑃𝐴𝑅𝐶𝑜𝑓 0.96 0.35 0.97 

𝐻𝑇𝑟𝑒𝑒 =  0.34062 + 0.82001 ∙ 𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑒𝑐𝑡,𝑇𝑟𝑒𝑒 + 0.32883 ∙ 𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑓𝑢𝑠𝑒,𝑇𝑟𝑒𝑒 − 0.75801

∙ 𝐿𝐴𝐼𝑇𝑟𝑒𝑒 − 0.57135 ∙ 𝑇𝑟𝑇𝑟𝑒𝑒 − 0.03033 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 
0.92 0.05 0.87 

𝛹𝑙𝑒𝑎𝑓,𝐶𝑜𝑓 = 0.04073 − 0.005074 ∙ 𝑉𝑃𝐷𝑎𝑖𝑟 − 0.037518 ∙ 𝑃𝐴𝑅𝐶𝑜𝑓 + 2.676284 ∙ 𝛹𝑠𝑜𝑖𝑙  0.92 0.02 0.95 

𝑅𝑛𝑆𝑜𝑖𝑙 =  −1.102 + 1.597 ∙ 𝑃𝐴𝑅𝑆𝑜𝑖𝑙 + 1.391 ∙ √𝐹𝐵𝐸𝐴𝑀 0.98 0.19 0.99 

 

Their performance was also assessed using three different statistics which showed that, despite being 

simple models, the metamodel predictions were in agreement with the validation sub-sample of the 

outputs of MAESPA in the simulated year 2011 (Table 4). Indeed, all metamodels gave high R2 on the 

data on which they were trained, and high modelling efficiency and low RMSE when applied to new 

data, except for 𝐾𝐷𝑖𝑟, which failed to capture the high day-to-day variability, but still followed the 

overall trend. The highest errors for all metamodels except 𝐾 and 𝐿𝑈𝐸 were found when the iterations 

for the computation of 𝑇𝐶𝑎𝑛𝑜𝑝𝑦 by MAESPA did not converge. This is not surprising considering the 

high impact of this variable on the energy balance simulated by the model.  
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4.2. GPP and energy fluxes 

The modeled GPP, water and energy balance from DynACof were compared to the whole period of 

measurements using data gathered during the long-term Coffee-Flux eddy-covariance monitoring.  

Overall, the model outputs for these variables computed in 2011 through metamodels were close to those 

computed directly from MAESPA (RMSE: GPP = 0.86 gC m-2 d-1, Rn= 1.51 MJ m-2 d-1). Indeed, plant 

transpiration, plant sensible heat fluxes and soil net radiation were computed using MAESPA 

metamodels, and the parameter for soil energy partitioning into sensible and latent heat (i.e. soil 

evaporation) was determined using the average value from the MAESPA simulations. 

The simulated net radiation was close to measured values, with relatively high modeling efficiency 

(0.83) (Figure 2, Rn), but presented a skewed relationship with the measured low values linked to the 

evapotranspiration simulation error, and a bias of -0.90 MJ m-2 d-1 that was reflected in the cumulated 

energy in Figure 3.a. The high point density along the identity function indicated that modeled 

evapotranspiration (Figure 2, AET) was relatively close to the measurement in average, even though the 

simulations presented a skewed relationship with measured values in the range of 1 to 1.5 mm d-1, and 

a relatively high error for a few measurements (in dark blue in the figure). Yet, the cumulated AET from 

DynACof (Figure 3.b) showed good consistency compared to cumulated measurements, indicating that 

the simulation error at the daily time-step is rather low in the longer term.  
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Figure 2. Comparison between measured (x-axis) and modeled (y-axis, DynACof) net radiation (Rn, 2009-01-01 to 2016-

11-28),  actual evapotranspiration (AET, 2009-03-01 to 2013-12-31), sensible heat flux (H, 2009-03-01 to 2013-12-31) 

and gross primary productivity (GPP, 2009-01-01 to 2013-12-31) from the Coffee-Flux project in the Aquiares coffee 

agroforestry plantation at the scale of the whole plot (shade tree + coffee + soil layers) and at daily time scale. The color 

scale represents point density. RMSE= Root mean square error, EF= modeling efficiency and bias= modeling bias. One 

dot represents one day. 

The simulated sensible heat fluxes were in agreement with measured fluxes, except for a quasi-

systematic bias of 1.06 MJ m-2 d-1 (Figure 2, H). The simulated GPP was close to the observed GPP in 

general (Figure 2, GPP), with a low positive bias of 0.69 and a RMSE of 1.60 gC m-2 d-1. However, 

modelling efficiency remained low (0.1), mainly due to the high dispersion of the residuals, especially 

for high GPP values. Yet, when considering cumulated values of GPP over the whole period, the 

simulated GPP remained within the range of the measurement error (Figure 3.c). We also stress here 

that GPP remains a data-model product, derived from net ecosystem carbon-flux measurements, but 

subject to several partitioning and modeling assumptions. 



27 

 

Overall, DynACof predictions of GPP and energy fluxes were in agreement with their respective 

measurements over the whole period (Figure 2 and Figure 3), confirming that the model performs 

reasonably well beyond the data on which the metamodels were calibrated (i.e. data from 2011). 

 

Figure 3. DynACof simulation of cumulated partitioning for a\ energy, b\ evapotranspiration and c\ gross primary 

productivity over the 2009-2016 period at daily time-scale. MAESPA simulation of Rn (net radiation) and AET (actual 

evapotranspiration) in the year 2011 and measurements of the three variables are also presented for model assessment. 

Missing cumulative GPP values (i.e. gaps between measurement polygons) were gap filled using DynACof modelled 

GPP to present a longer measurement period. The inserts in figures a\ and b\ show the cumulative energy partitioning 

and evapotranspiration for the year 2011 for easier comparison with MAESPA simulations from Vezy et al. (2018).   

DynACof outputs were also compared to standard equations (Allen et al., 1998; Landsberg et al., 2001) 

that are widely used for crops or plantations with more homogeneous canopies (i.e. constant LUE and 

Ks parameters for GPP, Rn computed using an average albedo, LE computed using the Penman-

Monteith equation). As expected, the error was higher when the net radiation, the sensible and latent 
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heat flux and the GPP were simulated using this approach compared to a simulation using metamodels 

from MAESPA (Table 5 and Figure C.1). Hence, the choice of metamodels in DynACof was justified. 

 

Table 5. DynACof modelling performance with (yes) and without (no) metamodels from MAESPA.  

Statistics RMSE EF Bias 

Metamodel yes no yes no yes no 

Rn (MJ m-2 d-1) 

 

 

1.88 3.25 0.83 0.49 -0.9 2.87 

LE (MJ m-2 d-

1) 

 

 

 

1.55 2.54 0.28 -0.92 -0.5 1.68 

H (MJ m-2 d-1) 

 

 

 

1.34 5.12 0.55 -5.5 1.06 4.82 

GPP (gC m-2 d-

1) 

 

 

 

1.6 2.68 0.1 -1.53 0.69 1.37 

4.2.1. Growth and yield 

 Overall, the multi-objective calibration of DynACof yielded realistic results for most compartments 

that were documented by field measurements. 

 

Figure 4. Main outputs of the Erythrina poeppigiana shade tree simulated by DynACof over the whole rotation. Coffee 

plants were planted in 1979 together with Erythrina. Trees were pruned twice a year until thinning in 2000, and then 
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allowed to grow freely. The thinning event is represented by the vertical dashed line. a\ LAI dynamics compared to 

measurements by LAI2000 (Taugourdeau et al., 2014) +/-SD ; b\ Light transmitted by the shade tree compared to 

Charbonnier et al. (2013) plot average; c\ Stem and d\ branch carbon mass compared to measured values reported in 

Charbonnier et al. (2017). 

Despite the high initial planting density, the LAI of the shade trees remained relatively low during the 

first period when the shade trees were pruned, i.e. from planting to thinning, when it dropped to a 

particularly low value of 0.02 m2 m-2 on average in the first year, then resumed during the second period. 

The LAI of the shade trees subsequently increased to reach a maximum of ca. 0.66 m2 m-2 in the last 

year of the simulation (Figure 4). The leaves of E. poeppigiana shed naturally between January and 

February in Aquiares and then recover rapidly until May (Taugourdeau et al., 2014). The observed 

phenology was matched by the model, with a simulated range and dynamic of LAI values close to the 

observations made in the same plot averaged over the whole measurement period (Taugourdeau et al., 

2014). Despite a low density of 7.3 trees ha-1 after thinning in 2000, the simulated shade trees intercepted 

up to 14.8% of the light at maximum LAI in 2013, which was consistent with the values measured in 

the same plot (Charbonnier et al., 2013). The simulated dry mass of tree stem and branches represented 

on average 55.9% and 5.1% of the total plot shade tree carbon mass while pruned, and 37.0% and 35.1% 

of the total carbon mass, respectively, at the end of the cycle when left to grow freely. The annual stem 

mass growth was close to linear under pruning management and became close to exponential when trees 

were not pruned after thinning, with the stem NPP increasing almost five times in the five last years of 

the simulation compared to the five years preceding thinning (Table 6). Branch mass grew much more 

slowly due to higher mortality when pruned but grew as fast as the stem when the tree was left to grow 

freely. As seen in Figure 4, both stem and branch mass simulations were in the range of the observations 

reported by Charbonnier et al. (2017) in the same plot. 
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Figure 5. Simulated coffee plant carbon biomass per organ (dotted lines) over a full plantation cycle (1979-2016), 

compared to measured biomass (green dots: one observation, green lines: continuous measurement and polygon: mean 

observation +/- SE). a/ Simulated leaf C mass compared to measured NDVI calibrated using LAI2000, and converted 

into dry mass using leaf SLA and dry mass to carbon mass ratio (Taugourdeau et al., 2014), see Table 1;  b/ Simulated 

wood C mass from branches compared to average +/-SE measured by Charbonnier et al. (2017); c/ Simulated C mass 

in stump and coarse roots compared to measured stump C mass +/- SE in Charbonnier et al. (2017) + measured 

perennial root C mass from Defrenet et al. (2016); d/ Simulated fruit dry mass compared to values measured by 

Charbonnier et al. (2017) for 2011 and 2012 at harvest; e/ Simulated fine roots C mass compared to a 2011 measurement 

by Defrenet et al. (2016); and f/ Simulated reserves compared to reserves measured by Cambou (2012), assumed to 

represent the minimum value of the year. 
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Dynamic simulations of the carbon mass of the coffee organs are plotted for a full growing cycle from 

1979 to 2016 in Figure 5. Coffee leaf carbon mass (Figure 5.a) increased rapidly until reaching its 

maximum value of 164.7 gC m-2 at three years old (onset of fruiting). Coffee pruning started five years 

after planting, and leaf carbon mass then fluctuated between 57.9 and 159.4 gC m-2 until the end of the 

simulation, corresponding to LAI values between 1.4 and 3.8 m2 m-2. The LAI dynamics expressed a 

yearly minimum by April after the drier season and just after pruning, and a second minimum in 

September, during bean filling, very similar to field observations reported by Taugourdeau et al. (2014). 

Interestingly, this realistic phenology was not prescribed into the model but appeared after the 

introduction of fruit cohorts, inducing a strong but progressive competition between sinks (here with the 

leaves) throughout the fruiting season. Resprout wood (Figure 5.b) grew rapidly from 0 to 4 YAP, before 

the onset of the pruning cycle which occurred every year for all resprouts aged more than 5. Resprout 

wood growth then decreased to reach a stable value of ca. 496 gC m-2 at around 13 YAP, with only intra-

annual fluctuations due to pruning. The perennial compartment represented by both the stump and the 

coarse roots grew progressively throughout the crop cycle because it was not subject to pruning and has 

a very long lifespan: it reached a maximum value of 1794 gC m-2, or 37.8 tDM ha-1 in the end of 2016 

(Figure 5.c). The coffee fruit compartment (Figure 5.d) started to yield from the third YAP with a carbon 

mass of between 99 and 146 gC m-2 at harvest, an average modeled green bean production of 1 623 

(±154) kg ha-1 year-1, and an average harvest maturity of 94.3 (±2) %. The simulated carbon mass of 

the fruits was close to values measured by Charbonnier et al. (2017) in 2012 and 2013. The fine roots 

(Figure 5.e) grew rapidly in the early growth stages, i.e. until the third YAP when the combined effects 

of pruning and natural mortality maintained their carbon mass at a relatively stable level from one year 

to the next with values of ca. 139 gC m-2. The reserves compartment fluctuated seasonally, always in 

opposition with the fruit carbon growth. Because the model was parameterized using this data, the 

simulated carbon reserve was close to the reserves measured by Cambou (2012) in the same plot (Figure 

5.f). 

The modelled coffee carbon allocation by organs showed that plant reserves represented the 

compartment with by far the highest carbon flow, capturing on average 40.2% of the yearly plant carbon 

supply during the five last years of the simulation, with a daily maximum allocation of 69.3% and a 

minimum of 0% during fruit production (Table 6). This compartment also had a high turnover rate 

because reserves were re-distributed back to the carbon supply pool, making it an effective carbon buffer 

for the coffee plant from one season to another. Leaves and branches were the organs with the highest 

NPP, representing 20.3% and 13.9% of the total yearly NPP respectively, during the last five years of 

the simulation. Fine roots represented 9.1%, stump and coarse roots 6.8%, and fruits 9.7% of total NPP. 

The high productivity of the branches was related to their high carbon demand that was often met by the 

supply, as well as for the stump and coarse roots. The high productivity rates of the leaves was due to 

their high demand when the LAI was low (see Eq. (15)). The simulated NPP was reasonably consistent 

with measurements for coffee (Table 5). We had no direct measurements of the whole rooting system 
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for the shade trees, and therefore the comparison is not proposed here. Nevertheless, when cumulated 

into biomass, the results for both species were realistic (Figure 4, Figure 5). 

Table 6. DynACof simulation of NPP per organ type and plant layer separated according to shade tree management 

options, either with high density and pruned (until 2000) or free growing with low density after thinning in 2000. 

Average measurements for two years (2011/2012 – 2012/2013) from Charbonnier et al. (2017) are also provided for 

comparison. 

Organ Average NPP (𝑔𝐶  𝑚
−2 𝑦𝑒𝑎𝑟−1 ± 𝑆𝐷) for the last 5 years 

Coffea arabica Pruned Ep Free growing Ep Measured (free growing Ep) 

 Leaves 313.9 (2.1)  310.1 (5.3) 263.5 

  Perennial wood: Stump + coarse roots 105.5 (5.5) 101.0 (12.0) 161.5 

 Branches 214.9 (11.3) 206.0 (24.5) 210 

 Fine roots 141.3 (11.1) 135.7 (19.5) 148 

 Fruits 150.3 (12.0) 142.9 (13.7) 126 

 Reserve balance 623.0 (79.7) 585.7 (136.1)  

5. Discussion 

5.1. Metamodels 

Simulating complex processes in crop models using metamodels is a promising way to reduce 

computation intensity and avoid numerous equations that are often an important part of the development 

and application effort. Another advantage is that physiological data (e.g. photosynthetic parameters) are 

often sampled at a fine scale but can be used to parameterize a precise model (in this case, MAESPA) 

at a sub-hourly time step, and then be upscaled to field scale and to daily scale. In the present study, 

metamodels helped DynACof consider fine-scale processes explicitly such as spatial anisotropy instead 

of only using a parameter (e.g. a percentage of canopy cover), which significantly improved the model 

simulations. Replacing some metamodels by simple standard plot-scale models leads to a dramatic 

increase in simulation errors, as shown in the present study (Table 5), evidence that our metamodeling 

approach was appropriate. 

The quality of the predictions of a metamodel relies first upon the ability of the original model to 

correctly simulate the processes involved in the system, and secondly on the ability of the metamodel to 

reproduce the outputs of the original model. The first point was investigated in a previous work (Vezy 

et al., 2018) were MAESPA successfully simulated the energy balance and the evapotranspiration in the 

same experimental plot. The second point was addressed by choosing metamodels according to the best 

possible balance between the model complexity, the number of explanatory variables, and out-of-sample 

prediction quality. Marie et al. (2014) found that despite being slower to compute, neural networks and 

multi-linear regressions with two or three level of interactions yielded higher R2 than multi-linear 

regressions with no interactions, like those used in our study. However, six out of ten metamodels in our 

study gave R2 higher than 0.90 with low RMSE, which is considered highly accurate, three gave R2 

higher than 0.80, which is considered accurate (Villa-Vialaneix et al., 2012), and only one metamodel 

could be considered not sufficiently accurate with a R2 of 0.61. For example, the LAD was used alone 
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to predict the light extinction coefficient of the shade tree layer which was then used to compute its light 

absorption from its LAI. The diffuse extinction coefficient was predicted with high accuracy with an EF 

and a R2 both equal to 0.95. The balance between the simplicity and accuracy of this metamodel is 

because the LAD can be considered as a proxy for within crown foliage aggregation, which was 

determined - along with the LAI - as the most important characteristic to model light penetration by 

Sampson and Smith (1993). The metamodels for 𝐿𝑈𝐸 yielded R2 and RMSE similar to those found in 

Christina et al. (2016): R2 of 0.87 compared to 0.87 and 0.94 for shade tree and coffee respectively in 

our study, and an RMSE of 0.20 gC MJ-1 compared to 0.25 and 0.09 (shade tree and coffee resp.) in our 

study. Yet, despite being generally effective at reproducing a complex model output, applying 

metamodels to new conditions requires caution, as they can produce unexpected results outside their 

training values, especially if they use non-linear equations or when there is covariance between 

predictors. This was of particular concern in the present study because metamodels were fitted using a 

one yearlong simulation of MAESPA only (2011). To overcome these problems, the metamodels were 

made using linear regression only, and the 2011 data was checked to present a broad range of values for 

the target variables. Some conditions were still not met in the training sample, such as the period before 

the year 2000, when shade trees were pruned twice a year while the metamodels were trained on the 

system with free-growing trees. Yet, the 2011 training period included some days with very low E. 

poeppigiana LAI (i.e. 0.04 m2 m-2) because E. poeppigiana loses all its leaves once a year, which helped 

the metamodel simulate a plausible range of transmittance values under low LAI pruning conditions. 

Considering the coffee layer, López et al. (2014) found that Coffea arabica presents a poor leaf-level 

plasticity to light for the photosynthetic parameters, suggesting that the metamodels could equally be 

used for GPP predictions under other conditions.   

Likewise, the cumulated evapotranspiration and energy balance were satisfactorily predicted compared 

to measurements, even outside their training period, although both computations largely depended upon 

metamodels. The metamodel for the coffee LUE predicted an increase in values with a reduction in 

incoming radiation on the plant layer, which is in agreement with previous results reported in 

Charbonnier et al. (2017). As a result, DynACof simulations of Rn, GPP and AET were close to those 

produced by MAESPA reported in Vezy et al. (2018), and more importantly, close to the eddy-

covariance measurements from the long term Coffee-Flux monitoring from 2009 to the end of 2016 

(Figure 2 and Figure 3). The agreement between simulated and measured values was particularly strong 

when cumulative fluxes were compared, which confirmed the high degree of consistency throughout 

the measurement period. Hence, metamodels proved to be powerful tools to overcome the long-term 

trade-off between speed, accuracy, genericity and fast development of growth and yield models able to 

simulate whole crop rotations. 
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5.2. Growth and yield model outputs from DynACof 

The evaluation of a crop model is often challenging due to the lack of data for parameterization and 

validation, yet our model was subjected to multi-objective evaluation using numerous observations from 

the same experimental field or from the literature. Nevertheless, it should be noted that the model was 

mostly parameterized using values in the literature, and better results would be expected using 

measurements or an optimization algorithm such as Bayesian calibration or evolutionary algorithms 

(Van Oijen et al., 2005). However, the model satisfactorily predicted most ecosystem services at plot 

scale with little or no discrepancy. The total autotrophic respiration represented 55% of the GPP, which 

is close to the 57% reported by Litton et al. (2007) in a review of results from a wide range of forest 

ecosystems. The simulated LAI for coffee was in agreement with the measured LAI, and the mean 

simulated leaf dry mass from 2011 (= 146.9 𝑔𝐶  𝑚
−2) was in agreement with the measured values 

reported in Charbonnier et al. (2017), Taugourdeau et al. (2014) and Siles et al. (2010), with values of 

140.5, 143.7 and ranging from 102 to 176 𝑔𝐶  𝑚
−2 respectively. The seasonal behavior of leaf biomass 

revealed a drop at the end of the “drier” season corresponding to natural leaf shedding followed by 

pruning, then a rapid increase at the beginning of the rainy season with a secondary minimum when fruit 

dry mass was high. Interestingly, the simulations well mimicked the seasonal observations reported by 

Taugourdeau et al. (2014), and the simulation was close to measured values. The seasonality of the LAI 

was represented using two main drivers: pruning the leaves once a year, and the introduction of fruit 

cohorts. The first is a forced process, but the second is the result of successive computations that allows 

a smooth distribution of the demand for carbon required for grain filling during the period of 

reproductive development, depending on the developmental stage of each cohort. However, to date, the 

interannual variability in leaf area is barely perceivable in the simulations compared to the field 

conditions. We assume that some processes driving this variability still need to be incorporated in the 

model, for example, a dynamic leaf life span using cohorts of leaves, more leaf diseases or nitrogen 

effects. Indeed, American leaf spot (ALS) was already included in the model following Avelino et al. 

(2007), but coffee leaf rust is the predominant disease affecting coffee plants in this region, which is not 

yet included due to the absence of a published model linking disease severity and leaf loss.  

Total NPP is the consequence of the carbon assimilation, its allocation and the respiration of each 

specific organ. Comparing the measured and simulated total NPP is an integrative evaluation of the 

model, and the total coffee NPP simulated by DynACof was in agreement with the NPP measured by 

Charbonnier et al. (2017), with an overestimation of ca. 3% for both years (2011-2012 and 2012-2013).  

However, the most important but most challenging integrative process to simulate is fruit yield, because 

its allocation follows a complex scheme spread out over two years with numerous development stages 

(Camargo and Camargo, 2001), which was modeled in DynACof using a formalism inspired by 

Rodríguez et al. (2011). DynACof predicted a green bean yield of 1683 (±162) kg ha-1 year-1, which 

was within the range of values observed by Campanha et al. (2004), van der Vossen et al. (2015) and of 
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the average yield in Central America (Söndahl et al., 2005). Furthermore, the Aquiares farm reported 

average yields of green beans of around 1333 (±336) kg ha-1 year-1 between 1995 and 2014 for fields 

close to the experimental plot, confirming that DynACof yield predictions were consistent. However, 

this comparison is only indicative and should be interpreted with caution because the conversion from 

whole fruit dry mass into processed green beans was made using a simple parameter (FtS, see Table 1) 

that may change depending on several factors, and because DynACof only simulates potential yield in 

the absence of fruit diseases or predators. Yet, the model was compared to in situ measurements reported 

in gC m-2 by Charbonnier et al. (2017), and predictions were found to be close to measured values, even 

following the same pattern of yearly variability, which is particularly hard to achieve considering the 

number of formalisms in use, and the potential cumulated error from one process to another.  

The shift in the shade tree management from pollarded to free growing appeared to have little impact 

on fruit production or maturity at harvest. This apparent stability came from the low density of the shade 

trees, which still transmitted at least 85.2% of the light during the mature state according to DynACof, 

compared to 86% reported in Charbonnier et al. (2013). Charbonnier et al. (2017) reported that the 

higher LUE simulated by MAESPA for coffee plants under higher shade could compensate for most of 

the reduction in incident PAR, maintaining NPP at a nearly constant level as long as shade remains at 

low values. In DynACof, GPP was reduced only by 1.9% for a reduction of 6.9% in APAR thanks to an 

increase of 5.7% in the LUE between the two periods of shade tree management, i.e. from low LAI in 

pruned shade trees to higher LAI in free-growing shade trees.  

Another strength of the model is the prediction of canopy temperature under shade as a driver for plant 

biology, and water and energy balances, thanks to a full soil module inspired from the BILJOU model 

and to the MAESPA metamodels. Indeed, predictions of the cumulated AET and net radiation were very 

close to the nearly continuous measurements made from 2009 to 2015. 

Given the model gave satisfactorily results for a wide range of variables using our multiple-objective 

strategy of parameterization and evaluation, i.e. a wide range of variables measured in the same site at 

the same time, it can provide other information that cannot be discovered from the data only, and help 

researchers identify emergent properties in the system. For example, coffee LAI was strongly affected 

by pruning once a year and during the period in between by natural mortality and by the high fruit 

demand at the time of grain filling, which was also observed by Charbonnier et al. (2017). Another 

observation made using the model outputs is that except for stump and coarse roots, which are the only 

perennial compartments, biomass increased rapidly in the early stages of the plantation until it reached 

its maximum value for the whole rotation, after which biomass growth started to decrease with pruning, 

and found a new lower equilibrium between growth and mortality. The model also reproduced to some 

extent the biennial fruit production that was reported by Cannell (1985). Finally, although the measured 

variables were acquired mostly at the end of the rotation, the model ran for the full rotation and the 

simulated variables reached the values measured by the end of the rotation, thereby revealing dynamics 

that remained hidden during the unknown part of the rotation (e.g. biomass reaching a specific 
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equilibrium, according to the pruning intensity). Overall, it is clear that the model is able to compute 

several long-term ecosystem services and paves the way for the analysis of possible trade-offs between 

them, depending on different management options and climate changes. 

Although the model now needs to be applied in different soil, climate and shade management conditions 

to evaluate its true genericity, the process-based equations implemented in most modules already imply 

relative genericity. However, the user should keep in mind that metamodels are not generic, and should 

be updated when applied to new conditions (e.g. different soil or planting design). The genericity of 

DynACof should allow its application to other climate conditions such as under climate changes, other 

locations with different soils and climates, and other shade management systems such as coffee grown 

in full sun or under Cordia alliodora, banana trees, Eucalyptus sp. or any species, tree density and 

management such as pruning or thinning. In specific situations, it would be advisable to develop specific 

modules for coupling the nutrient cycles with the carbon and water cycles already available in the current 

version of DynACof. Therefore, the current version is assumed to simulate the potential outputs, only 

for situations without any nutrient stresses. Drought is already present in the model through leaf water 

potential and affects the reproductive phenology, but should be tested and refined for other vegetative 

limitations. 

6. Conclusion 

DynACof (Dynamic Agroforestry Coffee Crop Model) was developed to simulate the effects of the 

environment, the soil, the species of shade tree and the management practices on coffee growth and 

yield. The shade management module can be set to any shade type and density, under full sun or 

agroforestry systems, applying pruning or thinning at any age, if required. The model can be used for 

full rotations at a daily time step for any surface area, from plot to landscape, or even to a region, if 

properly distributed, under current, past or future climate conditions as long as the metamodels, built 

from MAESPA model simulations, are updated to the target conditions. The model was parameterized 

using state-of-the-art parameters and evaluated using a multi-objective evaluation on a comprehensive 

and unique dataset for energy and water balance, biomass and NPP. A substantial advantage of 

DynACof being a tree-average plot model is the possibility to parameterize it using plot averages or 

totals, which are more frequently available from farms (e.g. yield, pruning intensity, coffee quality, etc.) 

because data remain scarce, especially under agroforestry management.  

Two other important features of the model are the simulation of the canopy temperature (instead of air 

temperature) to control the plant growth according to the shade level, and the use of cohorts of flowers 

and fruits to consider grouped flowering in sub-tropical conditions and distributed flowering in 

equatorial climates. The model is implemented as an R package for easy sharing and collaboration, and 

can be easily modified by adding new modules to compute pest attacks, nutrient cycling, soil organic 

matter decomposition or soil respiration. The methodology can be further generalized for any type of 
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shade or climate by using different MAESPA simulation sets to train the metamodels. DynACof was 

built using a set of generic modules (e.g. functions for aerodynamic conductance) that can be used in 

other models to simulate any type of agroforestry systems or intercropped systems. 

In conclusion, DynACof concentrates considerable ecophysiological knowledge on coffee, and is an 

efficient tool to evaluate and optimize coffee crop yield, ecosystem services and their trade-offs in 

response to climate conditions and management scenarios. It was also designed to predict the impacts 

of climate change on coffee yield and the potential of changes in management to mitigate such effects. 
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Appendix A: soil water balance model 1 

The soil water-balance model is largely derived from the BILJOU model (Granier et al., 1999). It is a “bucket” 2 

model, meaning that the soil is represented by the depth dimension only, itself divided into layers of given 3 

thickness.  4 

1. Water balance 5 

The water flow is managed sequentially as in any other bucket model.  6 

1.1. Interception and leaf evaporation 7 

During a rainfall event, water can be either intercepted by the plants canopy, or directly reach the soil surface. 8 

The water intercepted by the plants is either stored on the canopy surface, or flow along the branches and trunks 9 

to finally reach the soil. The water that is stored on the canopy surface is then gradually evaporated back to the 10 

atmosphere.  11 

The first step for computing the water balance in the model is to compute a maximum potential rainfall 12 

interception using the total stand LAI and an interception parameter as follows: 13 

𝐼𝑛𝑡𝑒𝑟𝑐𝑚𝑎𝑥 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑆𝑙𝑜𝑝𝑒 ∙ 𝐿𝐴𝐼𝑝𝑙𝑜𝑡  (A.1) 

Any water intercepted by the canopy when the canopy water retention is already at full capacity (i.e. at 14 

𝐼𝑛𝑡𝑒𝑟𝑐𝑚𝑎𝑥, mm) is considered as throughfall water.  15 

The daily evaporation of the water stored in the canopy bucket is computed using the Penman-Monteith equation 16 

as found in Allen et al. (1998) with an infinite stomatal conductance and a set of aerodynamic conductances. 17 

1.2. Surface runoff 18 

Water reaching the soil surface enter the surface layer (𝑊𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑅𝑒𝑠, mm). Any water entering this layer 19 

when it is already full is considered as excess surface runoff, which is added to the superficial runoff itself 20 

computed using a parameter: 21 

𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙𝑅𝑢𝑛𝑜𝑓𝑓 = 𝑘𝐵 ∙ 𝑊𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑅𝑒𝑠 (A.2) 

1.3. Infiltration 22 

Water from the surface layer infiltrates the first soil layer up to the first layer infiltration capacity (W1), which 23 

is computed as follows:  24 

𝐼𝑛𝑓𝑖𝑙𝐶𝑎𝑝𝑎 =

{
 
 

 
 
𝑓𝑜                                                      𝑖𝑓 𝑊1 ≤ 𝑊𝑚1                              

𝑓𝑜 −
(𝑊1−𝑊𝑚1)∙(𝑓𝑜−𝑓𝑐)

𝑊𝑓1−𝑊𝑚1 
                𝑖𝑓  𝑊1 > 𝑊𝑚1 and 𝑊1 ≤ 𝑊𝑓1

𝑓𝑐                                                      𝑖𝑓 𝑊1 > 𝑊𝑚1 and 𝑊1 > 𝑊𝑓1   
 

  (A.3) 
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With 𝑊1 the first layer water content (mm), 𝑊𝑚1 the minimum water content of the first layer, 𝑊𝑓1 the field 25 

capacity of the first layer and 𝑓𝑜 and 𝑓𝑐 the maximum and minimum infiltration capacity respectively (mm day-26 

1). 27 

Then, 𝑊1 is updated by adding the water that infiltrated from the surface bucket to its previous water content. 28 

If 𝑊1 exceeds 𝑊𝑓1 after this operation, the excess water drains into the second layer. This last operation is 29 

repeated for the two following layers, 𝑊2 and 𝑊3 with their own field capacity 𝑊𝑓2 and 𝑊𝑓3. 30 

1.4. Soil surface evaporation 31 

The soil surface evaporation (mm) is computed using the soil net radiation coming from a metamodel of 32 

MAESPA and a partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃): 33 

𝐸𝑠𝑜𝑖𝑙 =
𝑅𝑛𝑠𝑜𝑖𝑙 ∙ 𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃

λ
 (A.4) 

with λ the latent heat of vaporization (MJ kgH2O
-1). 34 

1.5. Root water uptake 35 

The water that is absorbed by the plants roots (𝑅𝑜𝑜𝑡𝑊𝑎𝑡𝑒𝑟𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑙) for a given layer 𝑙 is computed from the 36 

total stand transpiration (𝑇𝑡𝑜𝑡𝑎𝑙), the total root fraction in the layer (𝑅𝑜𝑜𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙) and the extractable water 37 

from the layer (𝐸𝑊𝑙) as follows: 38 

𝐸𝑊𝑙 = 𝑊𝑙 −𝑊𝑚𝑙  (A.5) 

𝑅𝑜𝑜𝑡𝑊𝑎𝑡𝑒𝑟𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑙 =  min (𝑇𝑡𝑜𝑡𝑎𝑙 ∙ 𝑅𝑜𝑜𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙 , 𝐸𝑊𝑙) (A.6) 

Each layer’s water content is then updated by removing to it the root water uptake. 39 

1.6. Water potential 40 

The soil water potential (𝛹𝑠𝑜𝑖𝑙) is computed using the equation from Campbell (1974) as follows: 41 

𝛹𝑠𝑜𝑖𝑙 = 𝛹𝐸 ∙ (
𝑊𝑡𝑜𝑡 ∙ 1000

𝜃𝑠
)

𝐵

 (A.7) 

with 𝛹𝐸 (MPa) the air entry water potential, 𝑊𝑡𝑜𝑡 the total soil water content (mm) and 𝜃𝑠 the saturated water 42 

content (m3 m-3).  43 

2. Energy balance 44 

The soil energy balance is computed using the soil net radiation from the metamodels of MAESPA and the 45 

partitioning coefficient as in Eq. (A.4) for both the latent and sensible fluxes. The soil heat storage is neglected 46 

because its variability is low at daily time-scale and because it tends to return at equilibrium after several days. 47 

  48 

  49 
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Appendix B: shade tree allometric equations 50 

Several allometric relationships are used in the shade tree growth module. Only the shade tree height is 51 

mandatory for the other parts of the model, because it is used to compute the canopy boundary layer 52 

conductance. Any other allometric equation can be added to the model via the tree parameter file, and can be 53 

used for user-custom metamodels or as informative output. 54 

1. DBH 55 

The diameter at breast height (DBH, m) of the Erythrina poeppigiana shade tree is computed following the 56 

equation from Rojas-García et al. (2015): 57 

𝐷𝐵𝐻 =
𝐷𝑀𝑆𝑡𝑒𝑚

(𝐶𝐶𝑤𝑜𝑜𝑑 ∙ 10 ∙
𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
0.5

)
0.625 

(A.8) 

 58 

2. Height 59 

Tree height (m) is computed following the equation from Van Oijen et al. (2010b): 60 

𝐻𝑒𝑖𝑔ℎ𝑡 = 0.46 ∙ (
𝐷𝑀𝑠𝑡𝑒𝑚

1000 ∙ 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
)
0.5

 (A.9) 

If the shade tree is pruned, it breaks the relationship between the tree stem dry mass and its height as shown in 61 

Eq. (A.9). Instead, the tree height is computed using the trunk height as follows: 62 

𝐻𝑡𝑟𝑢𝑛𝑘 = 3 ∙ (1 − 𝑒
−0.2−𝐴𝑔𝑒) (A.10) 

𝐻𝑡𝑜𝑡 = 𝐻𝑐𝑟𝑜𝑤𝑛 + 𝐻𝑡𝑟𝑢𝑛𝑘 (A.11) 

The underlying hypothesis behind Eq. (A.10) is that E. poeppigiana are pruned by stakeholders so the trunk 63 

height do not exceed 3 meters high.  64 

3. Crown dimensions 65 

The crown radius (m) is computed as follows: 66 

𝑅𝑐𝑟𝑜𝑤𝑛 = √
𝑃𝑐𝑟𝑜𝑤𝑛
𝜋

 (A.12) 

with 𝑃𝑐𝑟𝑜𝑤𝑛 the crown projection, itself computed as: 67 

𝑃𝑐𝑟𝑜𝑤𝑛 = 8 ∙ (
𝐷𝑀𝑏𝑟𝑎𝑛𝑐ℎ

1000 ∙ 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
)
0.45

 (A.13) 

with 𝐷𝑀𝑏𝑟𝑎𝑛𝑐ℎthe shade tree branch dry mass in 𝑔 𝑚−2. 68 

The crown height (𝐻𝑐𝑟𝑜𝑤𝑛) is taken as equal to the crown radius as shown in Table 2 from Charbonnier et al. 69 

(2013).  70 

4. LAD 71 

The leaf area density (LAD) is computed as follows: 72 
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𝐿𝐴𝐷 =
𝐿𝐴𝑡𝑟𝑒𝑒

𝑅𝑐𝑟𝑜𝑤𝑛
2 ∙

𝐻𝑐𝑟𝑜𝑤𝑛
2

∙ 𝜋 ∙
4
3

 (A.14) 

 with 𝐿𝐴𝑡𝑟𝑒𝑒 the shade tree leaf area. 73 

  74 
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Appendix C: comparing DynACof with and without metamodels 75 

To assess the importance of using metamodels from MAESPA to integrate fine scale processes to DynACof, 76 

we compared DynACof outputs for GPP, Rn, LE and H with and without metamodels. The GPP without 77 

metamodels was simulated using constant values for the light use efficiency and constant values for the light 78 

interception coefficients of the Beer-Lambert’s equation for both the coffee and the shade tree layers. The 79 

parameterization was made using the average values from the MAESPA simulations. The net radiation without 80 

metamodels was simulated using the equation from Allen et al. (1998) at plot-scale using the albedo computed 81 

by MAESPA. The latent heat flux without metamodels was computed using the Penman-Monteith equation at 82 

stand-scale (PENMON function from DynACof: https://vezy.github.io/DynACof/reference/PENMON.html). 83 

The sensible heat flux without metamodels was computed as the difference between the net radiation and the 84 

latent heat flux, both computed without metamodels. 85 

 86 
Figure C.1. Net radiation (Rn), latent (LE) and sensible (H) heat flux, and gross primary productivity (GPP) simulations using 87 
DynACof with metamodels from MAESPA (red) or stand-scale equations (blue) compared to field measurements.  88 

https://vezy.github.io/DynACof/reference/PENMON.html
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Figure C.1 shows that GPP simulation was highly improved when using metamodels, and that net radiation was 89 

also improved using metamodels, but mainly because the stand-scale reference equation had a systematic 90 

positive bias compared to measurements. This bias could potentially be corrected knowing it a priori. The 91 

sensible heat flux were also systematically biased without metamodels, and the bias increased with increasing 92 

values. The latent heat flux simulated without metamodel was close to the measurements for low values (< 5 93 

MJ m-2 d-1), but was increasingly overestimated with higher values. 94 

  95 
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Appendix D: further plots 96 

1. Light interception, GPP and Ra 97 

The contribution of the shade tree and the coffee plants to LAI, APAR, GPP and Ra are shown in Figure D.1. 98 

The highest coffee contribution to the plot-scale GPP can be explained by its higher LAI, and hence higher light 99 

interception compared to the shade tree. The shade tree thinning in 2000 has a high impact on these variables 100 

during the first three years. 101 

 102 
Figure D.1. Comparison of dynamic outputs from DynACof between shade tree and coffee for leaf area index (LAI), absorbed 103 
photosynthetically active radiation (APAR), gross primary productivity (GPP) and autotrophic respiration (Ra) starting from 104 
1979-01-01 until 2016-12-31. 105 

2. Water balance 106 

DynACof simulates a broad range of informative variables related to the water balance of the system.  107 
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 108 
Figure D.2. DynACof outputs related to the water balance at daily time-scale and plot scale for the period starting from 1979-109 
01-01 until 2016-12-31. θ is the volumetric water content for the full soil profile, and .  110 

3. Temperatures 111 

DynACof also simulates several temperatures and aerodynamic conductances in the system to better represent 112 

the microclimate experienced by the plants. DynACof uses the air temperature measured above the canopy as 113 

input, computes the temperature of the air inside the shade tree canopy and inside the coffee canopy, and uses 114 

them to compute the leaf temperature of the shade tree and the coffee, and the soil temperature. These 115 
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computations are dependent from other computations, such as the wind extinction, the sensible heat flux of each 116 

layer (plants and soil), and a sequence of aerodynamic conductances. The temperatures simulated by the model 117 

are shown in Figure D.3.  118 

 119 

Figure D.3. Input (Tair) and simulated temperatures. The simulated temperatures are presented as the difference between the 120 
simulated temperature and the input Tair for easier assessment.  121 

4. Litter 122 

The litter is simulated by the model as a mortality of biomass. The coffee leaf and resprout wood litter at plot 123 

scale is mainly impacted by the pruning effect each year (Figure D.4). As expected, the fruit litter follow a 124 

seasonal variation, related to the fruit production. The shade tree leaf litter is mainly impacted by the pruning 125 

effect before 2000 (pruning management), and then by the natural seasonal variation. The simulated litterfall 126 

from the coffee (i.e. mortality from leaves + resprout wood + fruits) is close to the observations made by 127 

Charbonnier et al. (2017), with values of 553.6 gC m-2 year-1 compared to 450 gC m-2 year-1 from their 128 

measurements. The simulated tree litterfall (i.e. leaves + branches wood) is also close to the observations, with 129 
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a value of 92.7 gC m-2 year-1 and 110 gC m-2 year-1 respectively. High values of tree litterfall are explained by 130 

tree pruning before 2000. 131 

 132 

Figure D.4. Simulated litter fluxes for the compartments with the highest contribution for the coffee (leaf, resprout wood, fruits) 133 
and the shade tree (leaf). 134 

 135 


