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ABSTRACT
Post-OCR is an important processing step that follows optical char-
acter recognition (OCR) and is meant to improve the quality of OCR
documents by detecting and correcting residual errors. This paper
describes the results of a statistical analysis of OCR errors on four
document collections. Five aspects related to general OCR errors are
studied and compared with human-generated misspellings, includ-
ing edit operations, length effects, erroneous character positions,
real-word vs. non-word errors, and word boundaries. Based on the
observations from the analysis we give several suggestions related
to the design and implementation of effective OCR post-processing
approaches.
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1 INTRODUCTION
In an effort to preserve and provide an easy access to past docu-
ments, optical character recognition (OCR) techniques have been
developed to transform paper-based documents into digital doc-
uments. However, various layouts and poor physical quality of
degraded documents pose big challenges to OCR engines. Post-
OCR is crucial for improving the quality of OCR documents by
detecting and correcting errors.
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Although OCR errors share some common features with spelling
errors, OCR errors have their own special characteristics as they
are created by different processes than spelling errors. Naturally,
better understanding of OCR errors can help to create better post-
OCR approaches. However, to this date, few analyses were done
to uncover common characteristics of OCR errors, and they all
have been on a coarse level [13, 23]. This paper reports then the
results of the analyses of various characteristics of OCR errors
on popular public datasets, and compares them with misspellings.
Particularly, edit operation types and edit distance are considered.
In addition, we concentrate not only on word lengths but also on
OCR token lengths. Moreover, positions of incorrect characters and
real-word vs. non-word errors are analyzed. Problems related to the
wrong deletion/insertion of white spaces (word boundaries) are
also examined.

For the analysis, we utilize four public English datasets along
with their ground truth data. Two of them come from the English
part of the Post-OCR text correction competition dataset [4] - the
largest public, aligned dataset of this kind [5] 1. Two others are
the OverProof Evaluation data [7]2. While other datasets contain
synthetic data or are private, these two datasets (and their manual
GT) include OCR texts of old documents collected from two well-
known libraries and are made public.
Our analysis should be beneficial for researchers and practitioners
helping them better understand strengths as well as weakness of
their approaches. Based on the reported results, we also provide
guidelines for building more effective post-processing approaches.

To sum up, we make the following contributions in this paper.

(1) Firstly, we analyze OCR errors and compare them with
human-generated misspellings in several aspects. Our analy-
sis forms the basis for better judgment of the pros and cons of
post-OCR approaches and for improving their performances.

(2) Secondly, we also make statistics on some extended aspects
beside typical ones for spelling errors characterization [13],
such as string similarities between errors and their ground
truthwords based on Longest Common Sequence (LCS), OCR
token lengths and different erroneous character positions.

1https://sites.google.com/view/icdar2017-postcorrectionocr/
2http://overproof.projectcomputing.com/datasets/
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(3) To provide clearer views about OCR errors, novel error
type classifications are proposed. In particular, we review
challenges of correcting short-word/long-word errors with
large/small edit distances by grouping errors according to
word length. In addition, real-word/non-word errors are also
categorized according to word-boundary problem.

(4) Finally, based on our observations, we recommend several
suggestions for designing OCR post-processing techniques,
such as ones related to edit distance thresholds, frequent edit
operation types, erroneous character positions, etc.

The remainder of this paper is organized as follows. We intro-
duces four datasets we work on in Sec. 2. Then, Sec. 3 surveys
related work. In Section 4, we analyze OCR errors and give many
useful statistics. After that, the summary of our major findings is
shown in Section 5. Finally, conclusions are discussed in Section 6.

2 DATASETS
Four analyzed datasets are public collections of historical docu-
ments obtained from four libraries.

Two first datasets come from ICDAR2017 Post-OCR text correc-
tion competition [4]. The competition data contains OCR processed
text of ancient English and French documents from two national li-
braries, the National Library of France (BnF) and the British Library
(BL). The corresponding ground truth (GT) was created by different
projects (such as Gutenberg, Europeana Newspapers). In this paper,
we focus on English OCR text of this multilingual dataset which
consists of 813 files belonging to two types: monograph and period-
ical. The competition organizers divided this English OCR text into
two datasets, Monograph and Periodical. There is no information
about which OCR engines were used to generate the OCR text of
the competition dataset.

Two others are Overproof evaluation datasets [7]. The first one
(denoted as OverNLA) consists of 159 medium-length news articles
with at least 85% correct lines, which were extracted from one of the
longest-running titles in the National Library of Australia’s Trove
newspaper archive - The Sydney Morning Herald, 1842-1954. Its
corresponding GT was additionally corrected by Evershed et al. [7]
after crowd sourcing corrections [8]. The second one (denoted as
Overproof LC) consists of 49 medium-length news articles ran-
domly selected from 5 titles of the Library of Congress Chronicling
America newspaper archive. The corresponding GT of OverNC was
manually corrected by Evershed et al. [7]. Both of the Overproof
datasets are noisier than the competition ones. Their combined size
is 208 articles/files, and theywere processed by ABBYY FineReader3,
which is the state-of-the-art commercial OCR system.

The four datasets thus contain OCR texts of past documents
from popular libraries (National Library of France, British Library,
National Library of Australia, Library of Congress Chronicling
America). The included documents are characterized by varying
levels of degradation under independent conservation and originate
from a relatively wide time range spanning from 1744 to 1954. In
view of these, altogether the datasets are representative for histori-
cal OCR texts with typical OCR errors. The details of sources, types,
years, word error rates (W.E.R), sizes and the file counts of all the
four datasets are listed in Table 1.
3https://www.abbyy.com

Table 1: Sources, types, years, word error rates (W.E.R), sizes
and a number of files of four datasets.

Sources Types Years W.E.R. Sizes Files
Monograph monograph 1862-1911 9% 4.2M 747
Periodical periodical 1744-1894 16% 1.8M 66
OverNLA news 1842-1954 25% 0.3M 159
OverLC news 1871-1921 27% 0.1M 49

3 RELATEDWORK
This paper studies OCR errors and compares them with human-
generated misspellings. Our observations are then used for drawing
several suggestions towards designing OCR post-processing meth-
ods. Consequently, in the two following sections, we review works
related to misspellings, OCR errors and post-OCR approaches.

3.1 Misspellings and OCR errors
Due to certain shared features between misspellings and OCR er-
rors, an overview of misspelled words could give basic ideas on
OCR errors. Kukich [13] made a coarse-grained survey on spelling
error characteristics and automatic spellers. Similar features of
misspellings were described in [22, 23]. Spelling errors have been
studied from the viewpoint of basic edit operation types, word
length effects, first-position errors, non-word/real-word errors, and
word boundaries.

Firstly, depending on edit distance, there are single-error tokens
with edit distance of 1 (e.g. ‘school’ vs. ‘schopl’) and multi-error
tokens with higher edit distance (e.g. ‘school’ vs. ‘schopi’). Dam-
erau [6] and Mitton [17] indicated that single-error typos were
around 80%, 69% of misspellings, respectively. Thus, the average
rate of single-error typos can be considered as 74.5%.

Secondly, word lengths have been also considered from the
viewpoint of misspellings tendency. Errors were examined as for
whether they appear in short words (defined as words of 2, 3 and
4 characters) or longer-length words. Let us call errors involving
short words as short-word errors. Kukich [12] found that 63% of
errors involved short words.

Thirdly, misspellings can occur at the first character (e.g. ‘world’
vs. ‘uorld’) or at other characters (e.g. ‘world’ vs. ‘workd’, ‘world’
vs. ‘worlh’). Mitton [17] described that 7% of the misspellings of his
dataset appeared at the first character. In the dataset of Kukich [12],
that proportion was 15%. The average rate of first-position errors
can be then considered to be around 11% of misspellings.

Next, if a token is not a lexicon entry, it is deemed a non-word
error. In this case, determination of an error depends then on the
coverage and quality of a particular lexicon used. If a valid word
occurs in a wrong context, it is considered as a real-word error.
For example, in two phrases ‘glow-worm candles’ vs. ‘glow-wonn
candies’, a non-word error is ‘glow-wonn’ and ‘candies’ is a real-word
error. Researches on different datasets informed different rates of
real-word errors. Mitton [17] revealed that 40% of misspelled words
involved real-word errors. Young et al. [28] showed that the rate of
real-word errors of their corpus was 25%. On average, one could
assume that 67.5% of misspellings are related to non-word errors.

As to the problem ofword boundaries, wrongly deleting/inserting
white spaces results in incorrect split errors (e.g. ‘depend’ vs. ‘de

https://www.abbyy.com
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pend’) and run-on errors (e.g. ‘is said’ vs. ‘issaid’). In the corpus of
Kukich [12], the percent of word boundary spelling errors were 15%
with 13% of run-on errors, and 2% of incorrect split errors. Moreover,
Kukich mentioned that OCR text tended to split than to join tokens.

While Kukich mainly focused on spelling errors, Nagy et al. [18]
concentrated on examining selected examples of erroneous OCR
tokens. Their work pointed out possible causes of OCR errors,
including imaging defects, similar symbols, punctuation, and ty-
pography, then gave several potential solutions. However, it did
not provide any detailed statistics on each source of OCR errors.

3.2 OCR post-processing approaches
A typical post-processing approach consists of two steps, detecting
and correcting errors. In terms of the detection task, dictionary and
character n-gram models are often used to detect non-word errors.
In terms of the correction task, for each OCR error, the list of can-
didates are generated based on different sources at character level,
word level. The best candidate is the correction in an automatic
mode, or the top n candidates are suggested to correct the error in
a semi-automatic mode.

Awide range of approaches was devoted to OCR post-processing,
which can be classified into two main types: dictionary-based and
context-based types. The dictionary-based type aims to correct
isolated-word errors and does not take nearby context into consid-
eration [3, 20], hence this type cannot deal with real-word errors.
The context-based type, which considers grammatical and seman-
tic contexts of errors, promises to overcome the issues of the first
type. Most of the techniques of this type rely on noisy channel
and language model [1, 15, 27]. The others explore several machine
learning techniques to suggest correct candidates [2, 10, 16].

Jones et al. [1] and Tong et al. [27] explored several features,
including character n-grams, character confusion (or device map-
ping statistics), and word bi-gram in different ways to detect and
correct erroneous OCR tokens. Using similar features, Llobet et
al. [15] built an error model and a language model, then added one
more model built from character recognition confidences, called
hypothesis model. Three models were compiled separately into
Weighted Finite-State Transducers (WFSTs), then were composed
into the final transducer. The best token was the lowest cost path
of this final transducer. However, character recognition confidence
is often missing at least with the whole competition dataset [4] and
Overproof evaluation datasets [7].

Along with the development of machine translation techniques,
some approaches considered OCR post-processing asmachine trans-
lation (MT), which translates OCR text into the correct one in the
same language. Afli et al. [2] and some competition approaches of
the competition [4] applied machine translation techniques (from
statistical MT, neural MT to hybrid MT at word and/or character
level) to deal with detecting and correcting OCR errors.

Other approaches [10, 16] explored different sources to generate
candidates and then ranked them using a regression model. Several
features were extracted such as confusion probability, uni-gram
frequency, context feature, term frequency in the OCR text, word
confidence, and string similarity. Then, a regression model was
used to predict the best candidate for erroneous OCR token.

Figure 1: Error rates based on edit operation types

Post-processing approaches offered different views about OCR
errors however none of them gave a general hierarchy of OCR
errors. Some mainly focused on real-word and non-word errors [27].
Other approaches considered errors with segmentation at word or
character level [10, 16]. Lastly, some others [1, 2, 7, 24–26] just gave
examples of OCR errors without any detailed statistics.

In contrast to the above-discussed researches, our work focuses
on analyzing OCR errors and gives detailed statistics based on four
public datasets. Besides the aspects mentioned in the survey [13],
we examine additional features like non-standard substitution map-
pings, different erroneous character positions, OCR token lengths.
Moreover, we give novel classifications and provide several sugges-
tions about the design of post-OCR techniques.

4 ANALYSIS OF OCR ERRORS
In the following sections, we present five main types of analyses
conducted on all the datasets.

4.1 Edit operations
In this section, we discuss edit operation types, standard/non-
standard substitution mappings (denoted as standard/non-standard
mappings), edit distance and string similarity based on LCS.
4.1.1 Edit operation types. In order to transform token A to token
B, four basic edit operation types can be performed: deletion, in-
sertion, substitution, and transposition [6]. Prior works [11, 16, 27]
indicated that transposition is common in misspellings but rarely
occurs in OCR errors. We then only consider the three first types.

Fig. 1 shows the percentages of single modification error types
(deletion, insertion and substitution denoted as del, ins and sub, re-
spectively) and ones of their possible combinations (del+ins, del+sub,
ins+sub, del+ins+sub, respectively) in all the four datasets. Among
single edit operation types, the average percentage of substitution
(51.6%) is much higher than that of two others. Furthermore, the
total percentage of three single edit operation types is about 77.02%,
thus higher than that of their combinations. It leads to the conclu-
sion that post-OCR techniques can correct most of errors by just
concentrating on a single modification type.

As to the combinations of edit operation types, deletion and
insertion rarely occur together. In fact, the combinations of dele-
tion and insertion have very small occurrence rate being 0.24%
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(del+ins) and 1% (del+ins+sub). Post-OCR approaches could then in
our opinion pay less attention on the combinations in candidate
generation.

Moreover, the average rate of OCR errors involving substitu-
tion, insertion, deletion are approximately 5:1:1, which is useful
information for some post-OCR approaches [7, 15, 19] to decide
the number of substitution/insertion character candidates for each
OCR character position in candidate generation. If the rate is too
small, no correct candidates can be suggested. Otherwise, many
incorrect candidates are created negatively affecting the candidate
ranking process.

4.1.2 Standard mapping. Secondly, we consider standard and non-
standard mappings. While misspellings often have standard map-
ping 1:1 (e.g. ‘hear’ vs. ‘jear’), OCR errors contain not only standard
mappings 1:1 but also non-standard mappings, such as n:1 and 1:n
(e.g. ‘link’ vs. ‘hnk’, ‘link’ vs. ‘liiik’).

The standard mapping 1:1 of our datasets is illustrated in Table 2.
In this table, we compute the percentage of appearance frequency
of each GT character being recognized as an OCR character for
each dataset. Let us name this percentage as mapping percentage.
In order to make the table compact, we only show OCR characters
whose mapping percentages are more than 0.1%. Other cases whose
mapping percentages are less than 0.1% are denoted as @. Because
1 GT character can be recognized as 1 or n OCR characters, so other
cases include OCR characters in 1:1 mappings and 1:nmappings. For
example, the percentages of frequency of character b in Periodical
being recognized as ‘b’, ‘h’ and other characters are 96.7%, 1.6% and
1.7%, respectively.
Table 2 indidates that the characters with the highest and lowest
recognition accuracy are t, z with 98.53% and 88%, respectively.
Moreover, the statistics also reveal that characters sharing similar
shapes are easily confused, such as ‘b’ vs. ‘h’; ‘c’ vs. {‘o’, ‘e’}; ‘e’ vs.
{‘o’, ‘c’}.

This standard mapping is used to create character confusion
matrix - one of the most important sources to generate and rank
candidates. It is obvious that the more similar frequent error pat-
terns between a training part and a testing part of the used datasets
are, the higher the probability that the correct candidates are gener-
ated. However, OCR errors can vary from OCR engines, layouts as
well as degradation levels of documents, and etc. Therefore, some
very frequent characters along with their highly possible misrecog-
nition (e.g. ‘e’ vs. ‘o’, ‘j’ vs. ‘i’) may not occur in the large training
part and only appear in the small testing part. In such cases, it is
impossible to generate valid candidates for unseen error patterns
of the testing part.

4.1.3 Non-standard mappings. Besides the standard mapping 1:1,
OCR errors are also subject to more complex mappings [1, 12].
Different from past related work, our study provides the detailed
statistics on the four popular datasets instead of only giving exam-
ples of non-standard mappings.

The first point is 1:n mapping, in which one GT character is rec-
ognized as n OCR characters (e.g. ‘main’ vs. ‘rnain’). The mapping
percentages of frequency of each GT character being recognized as
n OCR characters are calculated for each dataset in Table 3. With
the same compactness reason as in Table 2, this table only contains
n OCR characters whose mapping rates are greater than 0.01%. As

Figure 2: Error rates based on edit distances

mentioned in Sec 4.1.2, in Table 2, character @ denotes other char-
acters of 1:1 and 1:n mappings. Table 3 clarifies the 1:n mapping.
For instance, the percentage of frequency of character ‘b’ in Peri-
odical being recognized as ‘li’, ‘ti’, ‘th’, ‘l.’ are 0.19%, 0.02%, 0.02%,
0.02%, respectively. The 1:n mapping statistics indicate that there
are some frequent patterns along with their average percents, such
as ‘b’{‘li’:0.05, ‘h’:0.03}; ‘d’{‘il’:0.07, ‘cl’:0.03}; ‘h’{‘li’:0.34, ‘ii’:0.06}.

The second point is n:1 mapping, in which n GT characters
are recognized as one OCR character (e.g. ‘main’ vs. ‘mam’). The
frequency rates of n GT characters being recognized as one OCR
character are computed on four datasets in Table 4. This table
only shows GT character ngrams whose mapping percentages are
higher than 0.01% and which appear at least 10% of max frequency
of their ngrams. Different from Table 2 and 3, in Table 4 we group
percentages according to OCR characters because it is inefficient to
show many GT character ngrams in the first column. For example,
in Monograph dataset, the percentage of appearance frequency of
GT character bigram ‘li’ being recognized as ‘b’ is 0.03%.
Based on the statistics of n:1 mappings, some common patterns
with their average rates emerge, (shown as 1 OCR character: n
GT characters), such as ‘b’{‘si’:0.05, ‘li’:0.04}; ‘d’{‘il’:0.7, ‘ll’:0.12};
‘h’{‘li’:0.16, ‘ly’:0.1}.

Our observations on these mappings support a conclusion that
some characters ‘b’, ‘d’, ‘h’, ‘m’, ‘n’ are easily recognized as ‘li’, {‘il’,
‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’}, respectively. In opposite way, ‘li’, {‘il’,
‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’} can be recognized as ‘b’, ‘d’, ‘h’, ‘m’, ‘n’,
respectively. These kinds of mappings also play important roles in
generating and ranking candidates.
It should be noted that the statistics of these non-standard map-
pings are extracted from aligned OCR and their corresponding GT.
Although we make a full use of OCR text along with its correspond-
ing GT, there are still some unavoidable noises in our statistics due
to the lack of character recognition confidences from OCR engines.
4.1.4 Edit distances. In case of edit distances, the survey on
spelling errors [13] pointed out two main types: single-error to-
kens (with one edit distance) and multi-error tokens (with higher
edit distances). It is obvious that the smaller edit distance an error
has, the easier the correction task is.

Percentages of errors based on edit distances of our datasets in
Fig. 2 show that most of OCR errors are single-error tokens with ap-
proximately 58.92% occurrences. That rate is smaller than the rate
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Table 2: Percentages of standard mapping 1:1 (one GT character is substituted by one OCR character). Only values higher than
0.1% are shown, other characters (including sequences of more than one character) are denoted as @.

GT
Char

Monograph Periodical Overproof NLA Overproof LC

a {a: 99.5, @: 0.5} {a: 97.5, u: 0.4, n: 0.2, e: 0.2, i: 0.2, @: 1.5} {a: 92.7, n: 2.1, i: 1.1, u: 1.0, o: 0.3, m: 0.2, @: 2.6} {a: 92.8, n: 2.7, u: 0.8, i: 0.5, m: 0.3, o: 0.2, @: 2.7}
b {b: 98.7, h: 0.8, @: 0.5} {b: 96.7, h: 1.6, @: 1.7} {b: 96.2, h: 1.7, l: 0.5, t: 0.3, @: 1.3} {b: 93.9, h: 1.8, l: 0.5, n: 0.4, i: 0.3,

t: 0.3, o: 0.2, m: 0.2, @: 2.4}
c {c: 97.0, o: 2.0, e: 0.6, @: 0.4} {c: 96.2, e: 1.2, o: 1.0, @: 1.6} {c: 93.9, e: 1.7, o: 1.5, r: 0.4, t: 0.2,

i: 0.2, @: 2.1}
{c: 92.2, o: 3.1, e: 1.6, u: 0.3, s: 0.3,
n: 0.2, a: 0.2, r: 0.2, t: 0.2, @: 1.7}

d {d: 99.7, @: 0.3} {d: 98.4, l: 0.2, i: 0.2, @: 1.2} {d: 97.1, a: 0.4, l: 0.2, i: 0.2, @: 2.1} {d: 96.8, l: 0.5, i: 0.3, u: 0.3, @: 2.1}
e {e: 98.7, o: 0.2, @: 1.1} {e: 96.9, o: 0.6, c: 0.5, a: 0.2, s: 0.2, @: 1.6} {e: 86.1, o: 9.2, c: 1.6, i: 0.3, a: 0.2, @: 2.6} {e: 80.8, o: 14.8, c: 0.9, u: 0.4, i: 0.3, r: 0.2,

n: 0.2, @: 2.4}
f {f: 98.2, @: 1.8} {f: 96.2, t: 1.2, l: 0.9, i: 0.4, @: 1.3} {f: 94.3, l: 1.5, t: 1.0, i: 0.9, @: 2.3} {f: 94.1, l: 1.8, t: 1.4, i: 0.6, @: 2.1}
g {g: 99.6, @: 0.4} {g: 98.3, @: 1.7} {g: 93.4, c: 0.4, p: 0.4, r: 0.4, e: 0.3,

s: 0.3, i: 0.3, u: 0.3, t: 0.2, f: 0.2, @: 3.8}
{g: 95.2, j: 0.3, i: 0.3, c: 0.2, e: 0.2, @: 3.8}

h {h: 99.1, b: 0.4, @: 0.5} {h: 95.2, b: 1.7, i: 0.4, n: 0.2, @: 2.5} {h: 95.1, b: 1.1, l: 0.8, i: 0.7, n: 0.2, @: 2.1} {h: 95.7, l: 1.0, i: 0.6, b: 0.5, n: 0.3, @: 1.9}
i {i: 99.1, @: 0.9} {i: 97.6, l: 0.6, t: 0.2, @: 1.6} {i: 90.7, l: 3.3, m: 0.4, t: 0.3, u: 0.2, n: 0.2, @: 4.9} {i: 94.0, l: 1.6, @: 4.4}
j {j: 99.7, @: 0.3} {j: 97.4, i: 0.3, l: 0.3, c: 0.2, @: 1.8} {j: 85.0, i: 1.5, l: 0.4, t: 0.4, @: 12.7} {j: 92.7, @: 7.3}
k {k: 99.5, @: 0.5} {k: 98.6, t: 0.2, @: 1.2} {k: 95.6, l: 1.0, i: 0.3, h: 0.2, t: 0.2, @: 2.7} {k: 97.5, a: 0.2, i: 0.2, h: 0.2, @: 1.9}
l {l: 95.6, i: 0.8, d: 0.2, @: 3.4} {l: 96.9, i: 0.8, t: 0.2, @: 2.1} {l: 96.2, i: 0.8, @: 3.0} {l: 96.8, i: 0.7, @: 2.5}
m {m: 99.1, @: 0.9} {m: 97.4, n: 0.5, i: 0.2, @: 1.9} {m: 94.3, n: 1.6, i: 0.8, r: 0.5, u: 0.2, @: 2.6} {m: 93.9, n: 1.3, i: 1.1, u: 0.3, r: 0.2, t: 0.2, @: 3.0}
n {n: 99.1, u: 0.2, @: 0.7} {n: 96.4, u: 1.2, a: 0.3, m: 0.2, o: 0.2,

i: 0.2, @: 1.5}
{n: 96.2, u: 1.0, i: 0.4, m: 0.3, a: 0.2, @: 1.9} {n: 92.6, u: 4.0, i: 0.8, m: 0.2, a: 0.2, @: 2.2}

o {o: 99.4, @: 0.6} {o: 97.9, e: 0.5, a: 0.2, @: 1.4} {o: 98.0, n: 0.2, i: 0.2, @: 1.6} {o: 97.2, n: 0.3, u: 0.3, e: 0.3, @: 1.9}
p {p: 99.8, @: 0.2} {p: 98.7, n: 0.2, @: 1.1} {p: 97.9, n: 0.7, i: 0.2, r: 0.2, @: 1.0} {p: 96.8, n: 0.5, j: 0.3, o: 0.2, i: 0.2,

r: 0.2, @: 1.8}
q {q: 99.4, @: 0.6} {q: 97.7, o: 0.2, i: 0.2, j: 0.2, @: 1.7} {q: 97.3, a: 1.5, o: 0.9, @: 0.3} {q: 90.7, i: 3.3, m: 2.9, @: 3.1}
r {r: 99.4, @: 0.6} {r: 98.5, i: 0.3, t: 0.2, @: 1.0} {r: 93.4, i: 3.3, l: 0.4, n: 0.3, t: 0.2, @: 2.4} {r: 98.1, i: 0.2, t: 0.2, @: 1.5}
s {s: 98.8, a: 0.5, f: 0.3, @: 0.4} {s: 94.2, a: 0.8, e: 0.7, t: 0.3, i: 0.3, @: 3.7} {s: 91.7, a: 1.2, i: 0.5, e: 0.3, n: 0.2,

b: 0.2, t: 0.2, @: 5.7}
{s: 90.8, t: 0.6, i: 0.5, e: 0.5, a: 0.4, n: 0.3,
f: 0.3, u: 0.2, l: 0.2, o: 0.2, h: 0.2, @: 5.8}

t {t: 99.7, @: 0.3} {t: 98.7, i: 0.2, l: 0.2, @: 0.9} {t: 97.7, l: 0.7, i: 0.2, @: 1.4} {t: 98.0, l: 0.6, i: 0.2, @: 1.2}
u {u: 99.2, n: 0.2, @: 0.6} {u: 96.6, n: 1.1, a: 0.7, o: 0.3, i: 0.2, @: 1.1} {u: 96.1, n: 1.0, i: 0.6, a: 0.3, m: 0.2, @: 1.8} {u: 96.1, i: 0.7, a: 0.5, o: 0.2, n: 0.2,

j: 0.2, @: 2.1}
v {v: 99.6, @: 0.4} {v: 97.9, r: 0.7, y: 0.2, @: 1.2} {v: 92.2, i: 0.8, r: 0.5, y: 0.3, n: 0.3,

t: 0.2, @: 5.7}
{v: 97.7, i: 0.3, r: 0.3, m: 0.3, @: 1.4}

w {w: 99.6, @: 0.4} {w: 98.7, @: 1.3} {w: 92.8, v: 1.1, n: 0.5, y: 0.3, m: 0.2,
i: 0.2, @: 4.9}

{w: 98.1, v: 0.2, o: 0.2, @: 1.5}

x {x: 99.0, @: 1.0} {x: 97.4, i: 0.8, s: 0.2, r: 0.2, t: 0.2, @: 1.2} {x: 94.6, v: 0.9, i: 0.7, t: 0.6, o: 0.4,
n: 0.3, s: 0.2, @: 2.3}

{x: 97.1, g: 1.2, t: 0.6, @: 1.1}

y {y: 99.5, @: 0.5} {y: 98.0, v: 1.1, @: 0.9} {y: 87.9, j: 3.4, v: 3.1, i: 0.4, r: 0.3,
s: 0.2, @: 4.7}

{y: 96.9, v: 1.3, j: 0.3, f: 0.2, @: 1.3}

z {z: 99.2, s: 0.5, @: 0.3} {z: 86.0, s: 2.5, x: 1.6, r: 1.2, i: 1.1, a: 0.9,
g: 0.3, t: 0.3, v: 0.3, c: 0.2, b: 0.2, e: 0.2,
k: 0.2, l: 0.2, o: 0.2, n: 0.2, u: 0.2, @: 4.2}

{z: 68.7, r: 6.2, s: 1.9, b: 1.6, n: 1.6,
m: 1.5, y: 1.5, i: 0.8, u: 0.7, l: 0.5, @: 15.0}

{z: 98.1, @: 1.9}

Table 3: Percentages of non-standard mapping 1:n (one GT character is substituted by n OCR characters). Only values higher
than 0.01% are shown. For each GT character, percentages shown for each dataset are parts of corresponding percents of @ in
Table 2.

GT
Char

Monograph Periodical Overproof NLA Overproof NC

a {ii: 0.05, in: 0.03, -i: 0.02, .i: 0.02} {ii: 0.21, it: 0.05, in: 0.05, .i: 0.05, iu: 0.03}
b {li: 0.19, ti: 0.02, th: 0.02, l.: 0.02} {’h: 0.11, ili: 0.04}
c {See: 0.03, foe: 0.02} {t-: 0.05, e-: 0.04, le: 0.03, i’: 0.02, .e: 0.02} {Hle: 0.07, ’C: 0.02, iriw: 0.02}
d {il: 0.15, tl: 0.05, cl: 0.03, ri: 0.03, t4: 0.02} {il: 0.15, cl: 0.07, rt: 0.06, tl: 0.05, nl: 0.04}
e {io: 0.04, lc: 0.02, ic: 0.02} {io: 0.14, iu: 0.03, no: 0.02, oo: 0.02, n;: 0.02}
f {’l: 0.03, l’: 0.02} {l’: 0.1, l": 0.05, he: 0.02}
g {iR: 0.09, a-: 0.08, tr: 0.08, fr: 0.07, er: 0.06} {i": 0.33, e:: 0.21, uu: 0.14, (;: 0.14, ..:.-: 0.13}
h {li: 0.07} {li: 0.78, ii: 0.23, il: 0.07, ri: 0.05, ir: 0.04} {li: 0.3, il: 0.06, ll: 0.05, ji: 0.02, i(.li: 0.02} {li: 0.21, di: 0.04, Ii: 0.04, ’li: 0.04, ti: 0.03}
i {vl: 0.03, ll: 0.02} {ll: 0.04, l’: 0.02, ’.: 0.02}
j {.t: 0.08, i.: 0.08}
k {lc: 0.06, fc: 0.03} {lr: 0.12, l;: 0.12, lt: 0.08, fc: 0.06, ’,: 0.04}
l {ii: 0.02, uit: 0.02, ->: 0.02} {’.: 0.05}
m {rn: 0.36, ni: 0.04, in: 0.03} {in: 0.17, ra: 0.12, rn: 0.09, ni: 0.08, tn: 0.06} {in: 0.37, rn: 0.29, ni: 0.13, ra: 0.09, tn: 0.08} {in: 0.65, ni: 0.48, ro: 0.16, rn: 0.15, tn: 0.11}
n {r.: 0.07, ri: 0.03, ii: 0.03} {ii: 0.11, ti: 0.03} {ii: 0.12, ti: 0.11, ri: 0.08, t.: 0.06, iti: 0.03}
o {in: 0.03, .i: 0.02, i.: 0.02}
p {ji: 0.03} {ii: 0.05, iv: 0.03, .i: 0.02} {fi: 0.1, iiiti: 0.07, ii: 0.03}
q {cp: 0.03} {tj: 0.1, .l: 0.05, ri: 0.05, -’t: 0.05} {.v: 0.03}
r {ii: 0.02, i-: 0.02, li: 0.02, i’: 0.02} {ii: 0.04, t’: 0.02}
s {la: 0.03, t,: 0.02, iB: 0.02} {.-: 0.04, c-: 0.04, nl’: 0.04, i’: 0.04, .": 0.03}
t {ln: 0.03, Uo: 0.02}
u {ti: 0.04, ii: 0.02, tt: 0.02, it: 0.02} {ii: 0.19, ti: 0.08, li: 0.04, tii: 0.03, i.: 0.02} {ti: 0.11, ii: 0.1, tl: 0.06, ri: 0.05, i’: 0.04}
v {Ham: 0.09, %’: 0.05, s’: 0.04, «.: 0.02} {\*: 0.24}
w {vv: 0.03, vr: 0.02, sr: 0.02} {vv: 0.44, tv: 0.15, ir: 0.07, *v: 0.05, v»: 0.05} {st: 0.11, fiH: 0.07}
x {’∼: 0.02} {ts: 0.03} {.i: 0.39}
y {nj: 0.07, i,: 0.05, ij: 0.05, )*: 0.05, ’j: 0.04} {tv: 0.04, iiv: 0.04, ino: 0.04, IV: 0.04}
z {sa: 0.16, .i: 0.16, r.: 0.16, id: 0.16, ti: 0.16}
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Table 4: Percentages of non-standard mapping n:1 (n GT characters are substituted by one OCR character). Only OCR charac-
ters are results of n GT characters mis-recognition are listed, and only values higher than 0.01% are shown. Even though this
table shows 1:n mapping, the presentation is in a reverse way (1:n) in order to save space.

OCR
Char

Monograph Periodical Overproof NLA Overproof NC

a {whe: 0.03, we: 0.02, The: 0.02} {ste: 0.07, ur: 0.05, pe: 0.05, our: 0.04, es: 0.04,
co: 0.02, nc: 0.02, us: 0.02, ec: 0.02,
et: 0.02, ly: 0.02}

{s.: 1.69, s,: 0.36, ce: 0.09, ut: 0.07, en: 0.03,
nd: 0.03, er: 0.03}

{si: 0.55, he: 0.07}

b {li: 0.03} {li: 0.08, ch: 0.02, el: 0.02, le: 0.02, th: 0.02} {hi: 0.07, li: 0.06, is: 0.05} {si: 0.21}
c {pe: 0.05} {el: 0.04, ea: 0.03, pe: 0.02, es: 0.02, rs: 0.02} {e,: 0.47, le: 0.13, ee: 0.12, ne: 0.12, er: 0.03, ng: 0.02} {ess: 0.36, es: 0.25, ee: 0.18, se: 0.1, le: 0.02}
d {il: 2.62, ll: 0.45, ill: 0.02} {il: 0.1, el: 0.06, ll: 0.04, ct: 0.03, rt: 0.02,

al: 0.02, ti: 0.02}
{il: 0.08, ol: 0.03} {si: 0.24, on: 0.08}

e {ho: 0.04, oun: 0.02} {io: 0.02} {s.: 0.12, ic: 0.07, ol: 0.03} {can: 1.31, ic: 0.57, ac: 0.43, his: 0.27, ct: 0.02}
f {wa: 0.02} {ta: 0.13}
h {li: 0.28, la: 0.02} {li: 0.08, la: 0.06, is: 0.04, le: 0.04, si: 0.02} {ly: 0.38, li: 0.26, s.: 0.04} {ld: 0.12}
i {wa: 0.02} {ac: 0.03, ll: 0.03, ea: 0.03, ec: 0.02, ra: 0.02,

pe: 0.02, ho: 0.02}
{r.: 3.46, s.: 0.39, nce: 0.38, al: 0.05, as: 0.05,
st: 0.04, ha: 0.04, er: 0.04, nd: 0.03, at: 0.02}

{ta: 0.26, on: 0.05}

j {ie: 0.03, ee: 0.02, la: 0.02} {or: 0.05}
k {le: 0.04, ic: 0.03, io: 0.03, is: 0.02} {ly: 0.22}
l {ir: 0.03, ie: 0.03, is: 0.02} {ni: 0.26, ri: 0.19, si: 0.18, di: 0.14, r.: 0.07, st: 0.02} {ir: 1.02, ai: 0.6, ot: 0.21, in: 0.12, re: 0.06}
m {in: 0.07, ste: 0.03, ra: 0.02} {us: 0.15, ns: 0.11, un: 0.1, in: 0.1, res: 0.08,

nt: 0.08, ur: 0.05, ss: 0.05, ver: 0.04, ee: 0.04,
ra: 0.04, ne: 0.03, rs: 0.02, an: 0.02, ar: 0.02,
re: 0.02, si: 0.02, io: 0.02, co: 0.02}

{n,: 0.43, ur: 0.3, ni: 0.29, in: 0.29, ia: 0.25,
ns: 0.16, ai: 0.15, ree: 0.12, as: 0.07, rs: 0.05,
or: 0.04, ou: 0.03, an: 0.03, on: 0.02, ra: 0.02,
he: 0.02}

{ld: 0.55, ns: 0.42, ll: 0.21, nt: 0.11, es: 0.09,
ee: 0.08, on: 0.05}

n {ri: 0.22, ll: 0.02, ra: 0.02} {ri: 0.24, rs: 0.14, us: 0.05, wh: 0.05, rt: 0.04,
ll: 0.04, il: 0.04, Th: 0.03, ro: 0.03, ss: 0.02,
ut: 0.02, re: 0.02, as: 0.02, at: 0.02, li: 0.02,
ic: 0.02, is: 0.02}

{ri: 1.61, ry: 0.54, ia: 0.54, am: 0.23, ma: 0.13,
ra: 0.13, s.: 0.12, s,: 0.12, st: 0.12, ll: 0.11,
ti: 0.1, ay: 0.08, ar: 0.05, at: 0.05, er: 0.04,
il: 0.03}

{rs: 0.99, ss: 0.47, om: 0.41, as: 0.28, ar: 0.05,
es: 0.03}

o {el: 0.02} {el: 0.04, ay: 0.03, ee: 0.02, si: 0.02, se: 0.02} {e,: 0.75, ic: 0.35, ie: 0.27, nc: 0.23, ne: 0.13,
me: 0.12, es: 0.09, ive: 0.07, he: 0.07}

{ee: 0.32, se: 0.3, ll: 0.15, es: 0.14, en: 0.08,
re: 0.03}

p {ve: 0.12, s,: 0.12, ing: 0.1, on: 0.02}
q {s.: 0.27} {ar: 0.1}
r {ot: 0.02, ve: 0.02, la: 0.02} {ac: 0.23, ss: 0.12, ee: 0.09, ce: 0.03, he: 0.03} {me: 0.21, en: 0.18}
s {ear: 0.06, ta: 0.02} {e,: 0.14, ng: 0.07, he: 0.03} {tor: 1.99, an: 0.08}
t {be: 0.04, il: 0.04, ce: 0.03, ge: 0.03, ie: 0.03,

nc: 0.02, si: 0.02, li: 0.02, ra: 0.02}
{ine: 0.6, e,: 0.29, one: 0.22, s.: 0.16, le: 0.13,
er: 0.04, nd: 0.03}

u {oo: 0.02, we: 0.02, ir: 0.02, il: 0.02} {ss: 0.12, as: 0.1, ta: 0.08, nde: 0.06, ie: 0.06,
il: 0.04, ns: 0.04, is: 0.03, tr: 0.03, ne: 0.03,
ri: 0.03, ai: 0.03, rt: 0.02, ec: 0.02, li: 0.02,
ee: 0.02, io: 0.02, si: 0.02}

{is: 0.37, ri: 0.28, so: 0.27, ia: 0.25, ll: 0.25,
rs: 0.19, as: 0.19, hi: 0.16, ti: 0.13, il: 0.12,
ha: 0.11, le: 0.1, in: 0.07, ra: 0.06, st: 0.06,
li: 0.06, ee: 0.05, ai: 0.04, re: 0.03, it: 0.02, he: 0.02}

{ns: 0.7, na: 0.65, fo: 0.24, st: 0.2, an: 0.15,
ea: 0.14, te: 0.06, is: 0.06}

v {ai: 0.03} {ry: 0.04}
w {hav: 0.03} {ss: 0.19, ec: 0.05, se: 0.05, ar: 0.04, tr: 0.03,

ea: 0.03, co: 0.02, ve: 0.02, un: 0.02, ur: 0.02,
ee: 0.02, si: 0.02, fo: 0.02, ta: 0.02}

{si: 0.11, or: 0.02} {ear: 1.08, se: 0.29}

of single-error typos in misspelled words (74.5% on average) [13]. In
terms of multi-error tokens, most of them are of edit distance 2 (on
average 22.57%). These statistics reveal that OCR post-processing
approaches can mainly concentrate on edit distances 1 and 2 (with
total 81.49% on average) at beginning steps. Relying on these statis-
tics, the edit distance threshold can be set at 2 for removing many
irrelevant candidates.

4.1.5 String similarity based on Longest Common Sequence (LCS).
LCS is another way to measure the similarity between two strings.
Islam et al. [9] proposed two variations of LCS, including Nor-
malized Longest Common Subsequence (NLCS) and Normalized
Maximal Consecutive Longest Common Subsequence (NMCLCS).
NLCS considers lengths of two related strings, as follows:

NLCS(wc ,we ) =
len(LCS(wc ,we ))2
len(wc ) ∗ len(we )

(1)

There are three variations ofMCLCS (Maximal Consecutive Longest
Common Subsequence) with some additional conditions. MCLCS1
and MCLCSn use MCLCSs beginning at the first, and at the n-th
character, respectively;MCLCSz only considers MCLCSs ending at
the last character.

NMCLCSi (wc ,we ) =
len(MCLCSi (wc ,we ))2

len(wc ) ∗ len(we )
(2)

whereMCLCSi can beMCLCS1,MCLCSn orMCLCSz .
The similarity of the two strings S is calculated as below:

S(wc ,we ) = α ∗ NLCS(wc ,we ) +
∑

i ∈{1,n,z }
αi ∗ NMCLCSi (wc ,we )

(3)

where α ,αi are weights of NLCS and NMCLCSi .
We reuse the same weights suggested by Islam et al. [9] in our
statistics. Fig. 3 shows rates of errors on the four datasets with
different threshold values of similarity S . Our observation reveals
that about 83.5% of all errors have the similarity S equal or greater
than 0.125. Similar to edit distance, the threshold of LCS similarity
can be used in removing many incorrect candidates for each error.

4.2 Length effects
As to length effects, we examine not only word lengths but also
OCR token lengths. Furthermore, we suggest a novel classification
by grouping errors according to word lengths and edit distances.

4.2.1 Word length. In terms of word length, Kukich [13] found
that more than 63% of the spelling errors are short-word errors.

Percentages of correct/incorrect word recognition according to
word lengths on our datasets are shown in Fig. 4. According to our
statistics, about 42.1% of OCR errors are short-word errors, which
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Figure 3: Error rates based on the LCS similarity S

Figure 4: Rates of correct and incorrect word recognition
based on word lengths

is a lower value than that of misspellings with 63% on average. In
addition, from the highest percentage at length 3, the percentage
of incorrect word recognition decreases gradually according to the
increase of GT token length. Furthermore, around 85.27% of all
OCR errors occur in words of lengths from 2 to 9.

4.2.2 OCR token length. In practice, post-OCR approaches have
to deal with OCR tokens instead of GT words, and lengths of OCR
tokens can differ from those of GT words, therefore we consider
lengths of OCR tokens. For example, in OCR tokens ‘scho ol’ and
their GT word ‘school’, two incorrect OCR tokens are ‘scho’ of

Figure 5: Error rates based on OCR token lengths

length 4, and ‘ol’ of length 2; these OCR tokens come from GT word
of length 6.

Similar to word length, the analysis of incorrect OCR token
lengths (see Fig. 5) suggests that incorrect OCR tokens of length 3
are the most common one. In addition, about 80.55% of all invalid
OCR tokens are of lengths between 2 and 9.

4.2.3 Two-dimensional classification based on word lengths and edit
distances. There are some arguments that it is more difficult to deal
with short-word errors than with errors appearing in longer-length
words. Because short-word errors are more likely to yield another
lexicon entry when applying character edit operations [14].

However, we believe that the problem does not only result from
length but also from edit distance between an error and its GT
word. For example, there are two errors (e.g. ‘ict’, ‘lct’) and their
GT word (e.g. ‘let’). The first error ‘ict’ requires 2 edit operations to
be transformed into its GT word, which is more challenging than
the second error ‘lct’ needing only 1 modification to be converted
to its GT word. To give a clear view of such problem, we suggest a
novel classification by grouping errors according to word lengths
and edit distances. With run-on errors (e.g. ‘blue sky’ vs. ‘blucsky’),
we assume the sum of lengths of words related to the errors as their
word length.

The two-dimensional classification of four datasets is shown in
Fig. 6. Based on this classification, some post-processing approaches
can decide edit distance thresholds for each word length. As men-
tioned in Sec 4.1.4, around 81.49% of errors have edit distance of 1,
2. In other words, maximum number of possible errors that post-
processing approaches can correct is about 81.49% if edit distance
threshold is set as 2 for all word lengths.

In our opinion, by adjusting edit distance threshold according
to word length, post-OCR techniques can deal with higher rate of
errors. Based on our observations, we suggest to set edit distance
thresholds 2, 3, 4 for word lengths less than 4, 10, 13, respectively.
On average, those settings increase the rate of errors that post-OCR
techniques can process from 81.49% to 89.15%.

4.3 Erroneous character positions
The survey on misspellings [13] has shown that there are a few
errors at the 1st character. However, there is no research related to
erroneous character positions in OCR text. Hence, we examine OCR
errors at different character positions, including the first/last/middle
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Figure 6: Error rates based on word lengths and edit dis-
tances

position (denoted as first, last, nth, respectively), and their possible
combinations (denoted as first+last, first+nth, last+nth, first+last+nth
respectively). In case of run-on errors, because this error type incor-
rectly removes white space at the end of the first word, we decide
that this error type always has one last-position error.

Details of erroneous character positions of our datasets are
shown in Fig. 7. While 12.46% of OCR errors are first-position errors,
spelling errors have slightly smaller percent of such errors with
average 11% of all errors.

It is noticeable that on average 27.37% of all errors are last-
position errors, which are even comparable with that of middle-
position errors (28.69%). Moreover, our observations on four datasets
indicate that erroneous characters rarely appear at the first/last
position in the same error. In fact, statistics show that less than 10%
of errors belong to (first + last) or (first + last + nth) combinations.
Therefore, OCR post-processing can firstly focus on single positions
or some combinations (first+nth, last+nth).

4.4 Real-word vs. non-word errors
In the next analysis we study the rate of real-word and non-word
errors in OCR text. Real-word errors are valid in dictionary but
incorrect in context (e.g. ‘hear’ vs. ‘bear’). The amount of real-word

Figure 7: Error rates of erroneous character positions

Figure 8: Rates of real-word vs. non-word errors

errors varies naturally with the size of the lexicon [21]. Too small
lexicon can ignore valid tokens and increase the number of false
negatives. In contrast, a too large dictionary can match invalid
tokens to low-frequent lexical entries or special domain terms,
potentially raising the number of false positives. In other words,
the larger the lexicon is, the more real-word errors can occur.

On the other hand, non-word errors are invalid in dictionary (e.g.
‘hear’ vs. ‘hcar’). It is obvious that non-word errors are easier to
be detected and corrected than real-word errors. In addition, there
are words which appear in GT but are not lexicon entries, known
as out-of-vocabulary (OOV) words. Using the word frequency of
COHA corpus, the rate of OOV words in our datasets is found to
be about 1%.

The statistics of real-word errors and non-word errors in Fig. 8
show that approximately 59.21% of OCR errors are real-word errors.
The proportion of real-word errors in our four datasets is about
1.47 times higher than that of non-word ones. On the contrary,
misspellings have opposite trend with 67.5% non-word errors.

Our observations on the four datasets also indicate that approxi-
mately 13.77% of non-word errors involve digits, and 25.08% of real-
word errors relate to punctuations. High percentage of punctuation
errors is one notable feature of OCR text. In fact, the low physical
quality of old documents causes misrecognition of punctuation.
Therefore, OCR texts tend to contain more incorrect/redundant
commas and dots than human-generated texts.
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Figure 9: Rates of correct vs. incorrect word boundary errors

4.5 Word boundary
This subsection observes word boundary aspect in detail. Let us
call errors related to wrongly identified word boundaries as incor-
rect word boundary errors, and ones unrelated to word boundary
problems as correct word boundary errors.

To give clearer views of OCR errors, we suggest to make a hierar-
chical classification based on incorrect/correct word boundary error
types, and real-word/non-word error types. We firstly separate OCR
errors into incorrect/correct word boundary error types. Secondly,
in terms of incorrect word boundary error type, depending on in-
serting/deleting white spaces we classify into two main sub-types,
including incorrect split/run-on error types. In terms of correct word
boundary error type, we divide into real-word/non-word error types.
Finally, for incorrect split/run-on error types we continue grouping
into real-word/non-word error types.

Percentages of incorrect/correct word boundary types of our
four datasets are shown in Fig. 9. It is clear that all of the four
datasets give a similar trend. Around 82.85% of errors are correct
word boundary errors, which is much higher than that of incorrect
word boundary ones.

4.5.1 Incorrect word boundary errors. In terms of incorrect word
boundary errors, we study two popular sub-types: incorrect split/run-
on error types.

Incorrectly putting two or more words together creates a run-
on error which is often not in the lexicon. In other words, most
of run-on errors are non-word errors, and they are easy to be de-
tected. Correcting such errors is more complicated because it easily
leads to a combinatorial explosion of the number of possible word
combinations.

Wrongly splitting one word into some strings results in incorrect
split errors. Both detecting and correcting such errors are challeng-
ing because some of split strings are not in the lexicon (non-word
errors) and others are lexicon entries (real-word errors).

Percentages of incorrect word boundary sub-types of four datasets
are shown in Fig. 10 with incorrect split errors denoted as split, run-
on errors denoted as run-on and their combination (split + run-on).
It is notable that the percent of incorrect split errors is on average
2.36 times higher than that of run-on errors. In contrast, most of
incorrect word boundary errors in misspellings are run-on errors
with 6.5 times higher occurrence than incorrect split ones. In ad-
dition, incorrect split and run-on errors rarely appear together in
errors. The percentage of their combination (split + run-on) is only

Figure 10: Error rates of incorrect word boundary subtypes

Figure 11: Error rates of correct word boundary subtypes

6.8% on average, therefore, post-processing approaches can ignore
it at first steps.

4.5.2 Correct word boundary. In terms of correct word boundary,
we directly classify errors into real-word/non-word error types. Per-
centages of real-word and non-word errors in correct word boundary
type are shown in Fig. 11. Real-word/non-word errors mentioned
in this section are sub-sets of the real-word and non-word errors
pointed out in Fig. 8, which reveals the similar trend with their
super-sets. Other non-word and real-word errors are of the incor-
rect word boundary type, with 28.72% real-word errors and 24.82%
non-word ones, on average.

5 SUMMARY OF MAIN FINDINGS
We summarize in this section the key observations from our study.
Firstly, we examined OCR errors and compared them with spelling
errors in several aspects. Misspellings and OCR errors have similar
trends in two cases. In particular, most of them are single-error
errors (74.5% misspellings, 58.92% OCR errors), and few of them
are first-position errors (11% misspellings, 12.46% OCR errors).

However, misspellings and OCR errors differ in three other as-
pects, including real-word vs. non-word errors, incorrect split vs.
run-on errors, short-word errors. We found that most of misspellings
(67.5%) are non-word errors while most of OCR errors (59.21%) are
real-word ones. Regarding the incorrect word boundary error type,
the percentage of run-on errors is 6.5 times higher than that of
incorrect split ones in case of spelling errors. In contrast, the propor-
tion of incorrect split errors is on average 2.36 times greater than
that of run-on errors in case of OCR errors. Moreover, while 63% of
misspellings appear in short words, only 42.1% of OCR errors are
short-word errors.
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Secondly, besides similar aspects as in Kukich’s survey, we present
novel statistics (non-standard mappings, string similarities based
on LCS, OCR token lengths, and erroneous character positions).
For non-standard mappings, our analysis reveals that some char-
acters ‘b’, ‘d’, ‘h’, ‘m’, ‘n’ are easily recognized as ‘li’, {‘il’, ‘cl’}, ‘li’,
{‘rn’, ‘in’}, {‘ri’, ‘ii’}, respectively. In opposite way, some strings ‘li’,
{‘il’, ‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’} can be recognized as ‘b’, ‘d’, ‘h’, ‘m’,
‘n’, respectively. In case of string similarities based on LCS, around
83.5% of OCR errors achieve no less than 0.125 similarity S with
their GT words. As to OCR token lengths, they show similar trend
with word lengths. Particularly, incorrect OCR token of length 3
is the most common, and most of erroneous OCR tokens are of
lengths from 2 to 9.
For erroneous character positions, around 27.37% errors are last-
position errors, and they thus are comparable to middle-position
errors (28.69%). In addition, we observe that errors rarely have er-
rorenous characters at both the first and last position (in total 9.75%
of first+last and first+last+nth).

Finally, based on the analysis on four datasets, we make some
suggestions for designing post-processing approaches. Because
last-position errors rarely appear together with first-position er-
rors, post-OCR techniques can ignore their combinations (first+last,
first+last+nth).

Our observations show that deletion, insertion and substitution
occasionally appear together in the same word (around 22.98%);
algorithms of candidate generation can then pay more attention on
single modification types instead of their combinations. Moreover,
the rate of the number of substitution/deletion/insertion character
candidates for each character position of OCR token can be set as
5:1:1 in generating candidates.

Edit distance is considered as an important criteria in selecting
relevant candidates. Interestingly, 81.49% of OCR errors are of edit
distance 1 or 2, so with edit distance threshold 2, post-processing ap-
proaches could easily removemany irrelevant candidates. Moreover,
edit distance thresholds can be adjusted according to word lengths.
With flexible settings of edit distance threshold, post-processing
techniques would be able to handle about 89.15% of errors.

6 CONCLUSION
In this paper, we examine different aspects of OCR errors towards
a better understanding of OCR errors and related challenges. Based
on our observations on four datasets we also suggest guidelines for
designing post-processing approaches. In addition, we propose a
novel two-dimensional classifications, including grouping errors
according to word lengths and edit distances, as well as grouping
of real-word/non-word errors following word boundary types. Our
work can be viewed as an important, initial step to further analyses
or towards more efficient and robust post-OCR techniques.
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