Poster Open Access

3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection

Durrant A.; Leontidis G.; Kollias S.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Reactor safety, modeling, CORTEX</subfield>
  </datafield>
  <controlfield tag="005">20200120172540.0</controlfield>
  <controlfield tag="001">3243887</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-7 June 2019</subfield>
    <subfield code="g">FISA 2019 - Euradwaste' 19</subfield>
    <subfield code="a">9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management</subfield>
    <subfield code="c">Pitesti, Romania</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Lincoln</subfield>
    <subfield code="a">Leontidis G.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Lincoln</subfield>
    <subfield code="a">Kollias S.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1484348</subfield>
    <subfield code="z">md5:07e024cd67f35130df4614dd61dc058a</subfield>
    <subfield code="u">https://zenodo.org/record/3243887/files/2019_Durrant_FISA2019_poster_V1.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3243887</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Lincoln</subfield>
    <subfield code="a">Durrant A.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">754316</subfield>
    <subfield code="a">Core monitoring techniques and experimental validation and demonstration</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Poster on&amp;nbsp;3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection at&amp;nbsp;9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management (FISA 2019 - Euradwaste&amp;rsquo; 19)&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3243886</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3243887</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
30
34
views
downloads
All versions This version
Views 3030
Downloads 3434
Data volume 50.5 MB50.5 MB
Unique views 2727
Unique downloads 3434

Share

Cite as