Poster Open Access

3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection

Durrant A.; Leontidis G.; Kollias S.


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/945982af-280f-4748-a686-5d947e53a6c9/2019_Durrant_FISA2019_poster_V1.pdf"
      }, 
      "checksum": "md5:07e024cd67f35130df4614dd61dc058a", 
      "bucket": "945982af-280f-4748-a686-5d947e53a6c9", 
      "key": "2019_Durrant_FISA2019_poster_V1.pdf", 
      "type": "pdf", 
      "size": 1484348
    }
  ], 
  "owners": [
    45514
  ], 
  "doi": "10.5281/zenodo.3243887", 
  "stats": {
    "version_unique_downloads": 34.0, 
    "unique_views": 27.0, 
    "views": 30.0, 
    "version_views": 30.0, 
    "unique_downloads": 34.0, 
    "version_unique_views": 27.0, 
    "volume": 50467832.0, 
    "version_downloads": 34.0, 
    "downloads": 34.0, 
    "version_volume": 50467832.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3243887", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3243886", 
    "bucket": "https://zenodo.org/api/files/945982af-280f-4748-a686-5d947e53a6c9", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3243886.svg", 
    "html": "https://zenodo.org/record/3243887", 
    "latest_html": "https://zenodo.org/record/3243887", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3243887.svg", 
    "latest": "https://zenodo.org/api/records/3243887"
  }, 
  "conceptdoi": "10.5281/zenodo.3243886", 
  "created": "2019-06-12T15:46:08.224445+00:00", 
  "updated": "2020-01-20T17:25:40.734185+00:00", 
  "conceptrecid": "3243886", 
  "revision": 4, 
  "id": 3243887, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3243887", 
    "description": "<p>Poster on&nbsp;3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection at&nbsp;9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management (FISA 2019 - Euradwaste&rsquo; 19)</p>", 
    "language": "eng", 
    "title": "3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3243886"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3243887"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "754316", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::754316"
        }, 
        "title": "Core monitoring techniques and experimental validation and demonstration", 
        "acronym": "CORTEX", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Reactor safety, modeling, CORTEX"
    ], 
    "publication_date": "2019-06-07", 
    "creators": [
      {
        "affiliation": "University of Lincoln", 
        "name": "Durrant A."
      }, 
      {
        "affiliation": "University of Lincoln", 
        "name": "Leontidis G."
      }, 
      {
        "affiliation": "University of Lincoln", 
        "name": "Kollias S."
      }
    ], 
    "meeting": {
      "acronym": "FISA 2019 - Euradwaste' 19", 
      "dates": "4-7 June 2019", 
      "place": "Pitesti, Romania", 
      "title": "9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "poster", 
      "title": "Poster"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3243886", 
        "relation": "isVersionOf"
      }
    ]
  }
}
30
34
views
downloads
All versions This version
Views 3030
Downloads 3434
Data volume 50.5 MB50.5 MB
Unique views 2727
Unique downloads 3434

Share

Cite as