Conference paper Open Access

SD: a Divergence-based Estimation Method for Service Demands in Cloud Systems

Salvatore Dipietro; Giuliano Casale


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">service demands</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">inference</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">cloud</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">NoSQL database</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">queueing</subfield>
  </datafield>
  <controlfield tag="005">20191101191330.0</controlfield>
  <controlfield tag="001">3243604</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Giuliano Casale</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">34195</subfield>
    <subfield code="z">md5:a2a3151bf50eb160e16bf3f0b9d0bd36</subfield>
    <subfield code="u">https://zenodo.org/record/3243604/files/SD-ficloud2019.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-11</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:3243604</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Salvatore Dipietro</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">SD: a Divergence-based Estimation Method for Service Demands in Cloud Systems</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Estimating performance models parameters of cloud systems presents several challenges due to the distributed nature of the applications, the chains of interactions of requests with architectural nodes, and the parallelism and coordination mechanisms implemented within these systems.&lt;/p&gt;

&lt;p&gt;In this work, we present a new inference algorithm for model parameters, called state divergence&amp;nbsp;(SD) algorithm, to accurately estimate resource demands in a complex cloud application. Differently from existing approaches, SD attempts to minimize the divergence between observed and modeled marginal state probabilities for individual nodes within an application, therefore requiring the availability of probabilistic measures from both the system and the underpinning model.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Validation against a case study using the Apache Cassandra NoSQL database and random experiments show that SD can accurately predict demands and improve system behavior modeling and prediction.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3243603</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3243604</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
11
0
views
downloads
All versions This version
Views 1111
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 1010
Unique downloads 00

Share

Cite as