Presentation Open Access

DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications (AICosmo'19 workshop)

Defferrard, Michaël


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3243381</identifier>
  <creators>
    <creator>
      <creatorName>Defferrard, Michaël</creatorName>
      <givenName>Michaël</givenName>
      <familyName>Defferrard</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6028-9024</nameIdentifier>
      <affiliation>EPFL</affiliation>
    </creator>
  </creators>
  <titles>
    <title>DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications (AICosmo'19 workshop)</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-06-11</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3243381</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="arXiv" relationType="IsSupplementTo">arXiv:1810.12186</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/SwissDataScienceCenter/DeepSphere</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3243380</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Talk on DeepSphere, a graph-based spherical CNN for cosmological applications, presented at the AI methods in Cosmology workshop (https://sites.google.com/site/aicosmo2019) in Ascona, Switzerland.&lt;/p&gt;</description>
  </descriptions>
</resource>
175
91
views
downloads
All versions This version
Views 175175
Downloads 9191
Data volume 1.1 GB1.1 GB
Unique views 146146
Unique downloads 7979

Share

Cite as