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Abstract The purpose of this is the determination of appropriate friction factor

and selection of a representative equation for natural gas flow under the presented
conditions in the network. Calculation of the presented looped gas pipeline network is

done according to principles of Hardy Cross method. The final flows were calculated
for known pipe diameters and nodes consumptions while the flow velocities through

pipes have to stand below certain values. In optimization problems flows are treated
as constant, and the diameters are variables.

Keywords flow friction, gas distribution, hydraulic resistance, natural gas, pipeline
network

1. Introduction

When a gas is forced to flow through pipes it expands to a lower pressure and changes

its density. Flow rate, that is, pressure drop equations for the condition in gas distribution

networks, assumes a constant density of a fluid within the pipes. This assumption applies

only to incompressible fluids; that is, for liquids flows such as in water distribution

systems for municipalities (or any other liquid, like crude oil, etc.). For the small pressure

drops in typical gas distribution networks, gas density can be treated as constant, which

means that gas can be treated as an incompressible fluid (Pretorius et al., 2008) but not

as liquid flow. Liquid flow and incompressible flow are not synonymous. Under these

circumstances, the flow equation for water or crude oil cannot be literally copied and

applied for natural gas flow. This means that the original Darcy-Weisbach equation cannot

be used without some modifications.

Each pipe is connected to two nodes at its ends. In a pipe network system, pipes are

the channels used to convey fluid from one location to another. The physical characteris-

tics of a pipe include the length, inside diameter, and roughness. The Darcy’s coefficient

of hydraulics resistance is associated with the pipe material and age but also with fluid

flow rate and pipe diameter; that is, with relative roughness and Reynolds number. When

fluid is conveyed through the pipe, hydraulic energy is lost due to the friction between

the moving fluid and the stationary pipe surface. This friction loss is a major energy loss

in pipe flow and is a function of relative roughness and Reynolds number, as mentioned

before. In the case when the relative roughness is negligible, a typical flow regime is

hydraulically smooth, where Darcy’s coefficient of hydraulic resistance depends only on
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Gas Distribution Network 367

Reynolds number. This regime is typical for gas networks that are built using polyethylene

pipes. For that regime Darcy’s coefficient of hydraulic resistance can be calculated using

so-called Blasius-type equations or so-called Prandtl-type equations. Prandtl equations,

which are also known as Nikuradse-Prandtl-von Karman (NPK), are implicit in friction

coefficient (Moody, 1944; Coelho and Pinho, 2007). For liquid flow where the liquid

density has larger values compared to gas, the Reynolds number increases, and if it is

accompanied with increased value of relative roughness, which is typical for steel pipes,

a full turbulent regime is possible. For the fully turbulent regime the most convenient is

the von Karman type of equation from Western practice, or the Shifrinson equation from

Russian practice. For the fully turbulent flow regime, Darcy’s coefficient of hydraulic

resistance depends only on relative roughness.

In this article, new facts are provided in comparison to previous calculation of a

gas distribution network in Kragujevac, Serbian, which was done in 1994. After the

implementation, measurements were performed in situ and real measured values deviated

from calculated values. Previously published results are available and hence comparisons

are possible (Manojlović et al., 1994).

This article addresses the problem of hydraulic resistance in pipes used for construc-

tion of networks for distribution of natural gas in cities and subject to all the practical

requirements for engineers charged with design and/or analysis of such systems (Mathews

and Köhler, 1995). This article is especially addressed to those engineers willing to

understand and interpret the results of calculation properly and to make good engineering

decisions based on this subject.

2. On the Darcy’s Coefficient of Flow Friction

To predict whether flow will be laminar, hydraulically smooth, partially turbulent, or fully

turbulent, it is necessary to explore the characteristics of flow (Figure 1). A hydraulically

smooth regime is also sort of turbulent regime. One has to be very careful in these

considerations because some authors use Darcy’s friction factor, whereas the others use

Fanning’s factor (Brkić, 2009b). Darcy’s friction coefficient is four times larger than

Fanning’s though the physical meaning is equal. Graphically, the friction factor for a

known Reynolds number and relative roughness can be determined using the well-known

Moody diagram (Moody, 1944). The Darcy friction factor and the Moody friction factor

are synonymous. Note also that relative roughness is variously defined using pipe diameter

and using pipe radius, which can be source of error in the case of inappropriate use (Chen,

1979, 1980; Schorle et al., 1980; Brkić, 2009b).

Note that the Darcy friction factor is defined in theory as � D .8 � �/=.� � v2/.

As mentioned in introduction, for polyethylene pipes absolute roughness k is very

small compared to the pipe diameter Din; that is, relative roughness is negligible

.k=Din ! 0/, and Darcy’s friction coefficient depends only on Reynolds number. For the

low value of Reynolds number, but above 2,320, the flow regime is hydraulically smooth

(there is no effect of roughness). For the Reynolds number below 2,320 the regime is

laminar. The upper limit for a hydraulically smooth regime is � D 16. A typical partially

turbulent regime occurs for 16 < � < 200, and for � > 200 a fully turbulent regime is

possible. Parameter � can be found using:

� D k � Re �
p

�

Din

(1)
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368 D. Brikić

Figure 1. Physical description of flow regimes.

So, as Reynolds number increases, the flow becomes transitionally rough; that is, the

flow regime is partially turbulent in which the friction factor rises above the smooth

value and is a function of both relative roughness and Reynolds number. As Reynolds

number continues to increase, the flow reaches a fully turbulent or so-called rough regime,

in which Darcy’s friction coefficient is independent of Reynolds number and depends

only on relative roughness. In a hydraulically smooth pipe flow, the viscous sublayer

completely submerges the effect of roughness on the flow. For turbulent flow in smooth

pipes, friction losses are completely determined by Reynolds number. In rough pipes,

however, the value of friction coefficient depends for large values of Reynolds number

also on the roughness of the inside pipe surface. The important point is not so much the

absolute roughness size because for the same absolute roughness, the flow resistance in

large pipes is considerably smaller than the resistance in small pipes.

Darcy’ friction factor for a hydraulically smooth regime can be determined after

Renouard (1952):

� D 0:172

Re1:8
(2)

This equation belongs to the so-called Blasius type of equations for a hydraulically

smooth regime.

For a fully turbulent regime, the following Shifrinson equation is available from the

Russian literature (Nekrasov, 1969; Sukharev et al., 2005):

� D 0:11 �
�

k

Din

�
1

4

(3)
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Figure 2. Gas pipeline network in Kragujevac, Serbia.

The Shifrinson Eq. (3) was used for calculation of a gas network in Kragujevac in 1994.

In our case for the Kragujevac gas network, gas dynamic viscosity is � D 1:0758 � 10�5

Pas, which is typical for natural gas, density of natural gas is 0.84 kg/m�3 (that implies

that relative density is 0.64). The value of absolute roughness is 0:007 � 10�3 m for the

polyethylene pipes in Kragujevac as reported in Manojlović et al. (1994), which is even

smaller compared to the value reported in Sukharev et al. (2005). Sukharev et al. (2005)

found that the absolute roughness of inner surface of polyethylene pipes is 0:002�10�2 m.

To find which flow regime occurred in a network it is necessary to find parameter �, and

hence every tenth pipe from the network shown in Figure 2 was examined and results

are listed in Table 1.

Results of a random samples of pipes shown in Table 1 proved the assumption that

flow in the presented gas network is in a hydraulically smooth regime because � < 16,

and hence the Renouard Eq. (2) is more suitable for this calculation. The Shifrinson

Eq. (3) used in Kragujevac in 1994, which is suitable for rough pipes, cannot be used.

In some pipes such as 21 (see Figure 2), the regime is not even smooth, it is rather

laminar. The velocity of gaseous fluids depends on the pressure in the pipe because they
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370 D. Brikić

Table 1

Determination of flow friction regime

Velocity,

m/sec Friction coefficient � Criterion �d

Pipe

Di n,

mm Q, m3/sec Liquid Gasa Re Renouardb Shifrinsonc Renouard Shifrinson

1 220.4 0.295497222 7.75 1.94 20,391.6 0.028828830 0.008258 0.11 0.06

11 158.6 0.126230556 6.39 1.60 12,105.2 0.031666022 0.008966 0.10 0.05

21 15.4 0.000383333 2.06 0.51 378.6 0.05908245 0.016062 0.04 0.02

31 96.8 0.040133333 5.45 1.36 6,305.8 0.035610262 0.010144 0.09 0.05

41 96.8 0.059622222 8.10 2.03 9,367.9 0.033161384 0.010144 0.12 0.07

51 109.8 0.086647222 9.15 2.29 12,002.3 0.031714738 0.009829 0.14 0.08

61 79.2 0.021661111 4.40 1.10 4,159.7 0.038379256 0.010666 0.07 0.04

aFor 4 bar abs; see Eq. (4).
bSee Eq. (2).
cSee Eq. (3).
d See Eq. (1); Renouard equation can be used if � < 16, and Shifrinson if � > 200, but in both cases only

if Re > 2,320.

are compressible:

v D 4 � pst � Qst

p � D2
in � �

D 4 � Q

D2
in � �

(4)

Assumption of gas compressibility means that it is compressed and forced to convey

through pipes, but inside the pipeline system the pressure drop of already compressed

gas is small and hence further changes in gas density can be neglected. This is the

main difference between liquid and incompressible flow. According to this, water flow in

pipelines is liquid incompressible flow, whereas the gas flow is gaseous incompressible

flow.

The calculated Darcy’s friction factor using the Shifrinson relation (3) in Kragujevac

in 1994 is more than three times smaller in comparison to the results obtained using the

recommended Renouard Eq. (2) (Figure 3).

Previous results (Manojlović et al., 1994) are not in correlation with the Moody

diagram (1944). One can conclude that below a laminar and smooth regime, or below

the lines in the Moody diagram, which represent these regimes exist some other regimes

(Figure 3). Of course, regimes such as sublaminar or some kinds of turbulent regimes

below the hydraulically smooth regime cannot exist (Figure 1).

3. General Equation for Fluid Flow

Loss of energy, or head (pressure) loss, depends on the shape, size, and roughness of a

channel and the velocity and viscosity of a fluid, and it does not depend on the absolute

pressure of the fluid. For gaseous fluids some laws of thermodynamics also have to be

included.

3.1. General Equation for Liquid Flow

Experiments show that in many cases pressure drop is approximately proportional to the

square of the velocity (5). Equation (5) is called the Darcy-Weisbach equation, named
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Gas Distribution Network 371

Figure 3. Identification of the problem in a characteristic diagram.

after Henry Darcy, a French engineer of the 19th century, and Julius Weisbach, a German

mining engineer and scientist of the same era.

p1 � p2 D � � L

Din

� v2

2
� � (5)

In the previous equation velocity and gas density must be correlated, because the gas

is incompressible fluid, and hence for gas an equation in the following from is more

suitable because Q � � D Qst � �st .

p1 � p2 D � � L

D5
in

� 8 � Q2

�2
� � D � � L

D5
in

� 8 � Q2
st

�2
� �st (6)

For example, pressure drop using the Darcy-Weisbach equation for liquid flow (6) in a

random set of pipes chosen from gas network from Kragujevac is shown in Table 2.

In (6), if flow rate Q is given for pressure in a gas pipeline, that is, for 4 � 105 Pa

abs, and not for normal conditions, density also has to be adjusted for this existing value

of pressure in the pipeline (volume of gas is four times smaller in 4 � 105 than Pa in

1 � 105 Pa).

3.2. General Equation for Steady-State Flow of Gas

Density of gas can be noted as:

� D p � M

z � R � T
(7)
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372 D. Brikić

Table 2

Pressure drop using the Darcy-Weisbach

equation for liquid flow

Pressure drop,a Pa

Pipe L, m Renouard Shifrinson

1 84 276.84 79.30

11 119 407.40 115.35

21 212 1,446.82 393.32

31 115 528.42 150.52

41 278 2,625.35 803.07

51 78 792.36 245.57

61 383 1,506.96 418.78

aUsing (5) or (6) and values from Table 1; gas
density is �0.84 kg/m3.

Considering the momentum equation applied to a portion of the pipe length, inside

which flows a compressible fluid with an average velocity, for example, natural gas, and

assuming steady-state conditions, a general equation for gas flow can be written as:

Z 2

1

dp C
Z 2

1

�
dL

Din

v2

2
� D

Z 2

1

�dp C
Z 2

1

�
dL

Din

v2

2
�2

D M

zavr � R � Tavr

p2
1 � p2

2

2
C �

�L

Din

v2

2
�2 D 0

(8)

In (9) flow can be used instead of velocity (8) and, combined with (7), gives:

.v�/2 D Q2

A2
�2 D Q2

st

A2
�2

st D 16 � Q2
st

D4
in � �2

p2
st � M 2

z2
st � R2 � T 2

st

(9)

Considering that gas density (see Eq. (7)) at standard pressure conditions is equal as

in average pressure in pipeline .�st D �avr/, and finally assuming that for perfect gas

M D Mair � �r , a general equation for steady-state flow of gas can be written as:

p2
1 � p2

2 D �
16 � �L � Q2

st

D5
in � �2

p2
st � Mair � �st

zst � R � Tst

(10)

This equation was rearranged by Renouard (1952) in the well-known equation:

C D p2
1 � p2

2 D 4810 � Q1:82
st � L � �r

D4:82
in

(11)

The previous equation is correlated with Renouard’s equation used for calculation

of Darcy’s friction factor for a hydraulically smooth regime (2), but with the only

difference that Darcy’s factor does not need to be calculated as for Eq. (10) because it

is already incorporated by setting of appropriate coefficients and exponents in Eq. (11).

Renouard (1952) assumed that dynamic viscosity of natural gas is � D 1:0757 � 10�5
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Pas, factor of compressibility is z D 1, and that pressure and temperature in a pipeline

are actually standard (Tst D Tavg D 288:15 K, Pst D 1:01325 � 105 Pa). This means

that by fixing the value of gas kinematic viscosity, the density is also kept fixed, which

is physically inaccurate when considering compressible gas flow at medium or high

pressure, because the kinematic viscosity of gases is highly dependent upon pressure.

According to this, gas flow in a city distribution network can be treated as incompressible,

as in Kragujevac where pressure drop was minor, and hence the Renouard Eq. (11) can

be used.

Some other transformations of a general equation for steady-state flow of gas are

available in Coelho and Pinho (2007).

4. Comparison of the Actual and Previous Results

In Figure 2 a ring-like part of the gas distribution network from one municipality of the

Serbian town of Kragujevac (Manojlović et al., 1994) is shown. There are 29 independent

nodes in the ring-like network, 43 branches belonging to rings with 25 branches mutual

to the two rings. The total network gas supply input in node 1 is 2,339.4 m3/hr.

The Hardy Cross method can give good results in design of a looped gas pipeline

network of composite structure (Cross, 1936; Corfield et al., 1974; Brkić, 2009a). Results

in Table 3 are calculated for locked up diameters from previous calculation available in

Manojlović et al. (1994), and flows are treated as variables. In last two columns in

Table 3, an optimization problem take place where flows are treated as constant and

diameters are variables. Gas consumption per nodes is presented in Figure 2 in brackets

and computation results using Renouard’s equation adjusted for gas pipelines (11) are

shown in Table 3.

The flow direction in branches 15 and 16 is opposite to the flow direction shown in

Figure 2.

The velocity limits are 6 m/sec for small diameter (up to 90 mm) pipes and 12 m/sec

for large diameter pipes (up to 225 mm) according to the original project (Manojlović

et al., 1994). But calculated velocities in each of the pipes do not reach even 3 m/sec.

For example, velocity in some of the pipes is higher than proposed only with the

assumption that gas is actually a liquid. In previous calculations the fact that gas is

actually compressed and hence that volume of gas is decreased is neglected. Hence, the

mass of gas is constant, but the volume is decreased when gas density is increased.

According to this gas network is not nearly optimized and for gas network with input

pressure 4�105 Pa abs; that is, 3�105 Pa gauge all values of velocities are in the ranges

of proposed limits. It is much different with liquid. For example, gas velocity in pipe

1 from Table 1 is only 1.94 m/sec, but in the case of water or crude oil equivalent an

volume of fluid cannot be initially compressed and hence this observed liquid is forced

to convey with increased velocity. For pipe 1 from Table 1 this velocity for liquid flow

is 7.75 m/sec.

5. Optimized Design of a Gas Distribution Pipeline Network

In the problem of optimization of pipe diameters, flow rates calculated previously and

shown in Table 3 are not treated as variables. Results of optimization problem are shown

in the last two columns of Table 3. These flow rates in the next calculation will be treated
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374 D. Brikić

Table 3

Computational results for gas network in Kragujevac

Optimized design

Pipe

number

Pipe

diameter,

mm

Pipe

length,

m

Flows,

m3/hr

Velocity,

m/sec

Pipe

diameter,a

mm

Velocity,

m/sec

1 220.4 84 1,035.86 1.89 104.28 8.42

2 220.4 72 1,303.54 2.37 109.77 9.57

3 198.2 170 913.63 2.06 91.34 9.68

4 109.8 206 270.28 1.98 48.13 10.32

5 198.2 224 987.13 2.22 94.14 9.85

6 198.2 37 964.70 2.17 96.85 9.09

7 198.2 30 934.50 2.10 99.21 8.39

8 176.2 35 544.21 1.55 82.23 7.12

9 176.2 64 513.02 1.46 80.10 7.07

10 158.6 34 481.83 1.69 77.91 7.02

11 158.6 119 434.48 1.53 69.71 7.91

12 158.6 154 422.78 1.49 68.83 7.89

13 44.0 639 21.40 0.98 19.24 5.11

14 35.2 268 6.85 0.49 11.01 5.00

15 35.2 164 �7.52 �0.54 10.77 5.73

16 44.0 276 �25.35 �1.16 19.23 6.06

17 27.4 363 0.52 0.06 5.59 1.47

18 123.4 175 390.43 2.27 65.26 8.11

19 44.0 52 25.34 1.16 23.52 4.05

20 15.4 177 0.96 0.36 6.91 1.78

21 15.4 212 0.99 0.37 7.02 1.78

22 109.8 161 288.91 2.12 47.57 11.29

23 123.4 108 262.18 1.52 49.77 9.36

24 55.4 194 35.65 1.03 23.44 5.74

25 96.8 135 147.75 1.39 38.42 8.85

26 27.4 215 2.69 0.32 9.02 2.92

27 141.0 155 386.54 1.72 60.96 9.20

28 158.6 34 608.08 2.14 69.78 11.04

29 158.6 48 540.58 1.90 69.25 9.97

30 123.4 86 376.63 2.19 57.16 10.19

31 96.8 115 140.56 1.33 37.21 8.98

32 35.2 75 18.02 1.29 14.63 7.44

33 55.4 70 75.75 2.18 26.00 9.91

34 96.8 102 196.90 1.86 36.38 13.15

35 96.8 52 179.83 1.70 35.76 12.43

36 35.2 104 12.45 0.89 12.35 7.22

37 96.8 101 157.18 1.48 34.32 11.80

38 96.8 86 156.35 1.48 43.11 7.44

39 96.8 37 120.51 1.14 37.04 7.77

40 96.8 30 297.39 2.81 52.12 9.68

41 96.8 278 200.27 1.89 39.79 11.18

42 96.8 115 230.24 2.17 46.88 9.26

43 123.4 199 367.24 2.13 53.34 11.41

aFirst larger or smaller standard diameter has to be chosen.
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as constant while the pipe diameters will be treated as variables:

@.p2
1 � p2

2/

@Din

D @C

@Din

D
@

�

4810 � Q1:82
st � L � �r

D4:82
in

�

@Din

D �4:82 � 4810 � Q1:82
st � L � �r

D5:82
in

(12)

For example, for loop XIV from the network shown in Figure 2, the previous so-called

loop equation can be written as:

@CXI V .D/

@DfXI V g

D @.j � C17.D17/j C j � C18.D18/j C jC43.D43/j/
@DfXI V g

D �4:82 � 4810 � �r

�
�

ˇ

ˇ

ˇ

ˇ

� .Q1:82
17 /st � L17

.D5:82
17 /in

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

� .Q1:82
18 /st � L18

.D5:82
18 /in

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

.Q1:82
43 /st � L43

.D5:82
43 /in

ˇ

ˇ

ˇ

ˇ

�

(13)

An optimized design of a gas distribution pipeline network for the Kragujevac gas network

is shown in last two columns in Table 3. This optimization is for average velocity of gas

in a network of 9 m/sec. Some pipes have very small diameters after optimization and

hence after adoption of a larger standard diameter, calculation of flow distribution for

these new standard diameters has to be repeated.

According to the principles of the Hardy Cross method, loop equations, that is,

the condition after Kirchhoff’s second law has to be fulfilled at the end of calculation.

These equations represent energy continuity, and Kirchhoff’s first law represents mass

continuity for nodes. Mass continuity has to be fulfilled in all iterations for all nodes

without exception. Diameter corrections are calculated using:

�Dfig D Ci .D/
ˇ

ˇ

ˇ

ˇ

@Ci .D/

@Dfig

ˇ

ˇ

ˇ

ˇ

(14)

These corrections calculated for all particular loops from the Kragujevac gas network

have to be added to the previous value of diameter according to the algebraic scheme

available in the literature (Corfield et al., 1974; Brkić, 2009a). Of course, many more

efficient methods than the original Cross (1936) method exist, but this is not the main

subject of this article. For example, calculated flows presented in the fourth column in

Table 3 are obtained using the node-loop method (Boulos et al., 2006) and the result

for the optimization problem from the last two columns in Table 3 is obtained using

an improved Hardy Cross method (Boulos et al., 2006; Brkić, 2009a). In both methods

matrix formulations are used that can be easily solved using MS Excel.

6. Conclusions

The Hardy Cross method procedure or a similar improved procedure can provide good

results in the design of a looped gas pipeline network of composite structure. According to

the price and velocity limits, the optimal design can be predicted. But all parameters, such

as friction factor and relation for calculation of pressure drop in pipes, that is, equation

for calculation of gas flow, must be chosen in a very careful way. Today, a distributive gas

network is usually calculated using the Renouard equation for determination of gas flow
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and pressure drop value. The inner surface of polyethylene pipes, which are almost always

used in gas distribution networks, are practically smooth and hence the flow regime in

the typical network is hydraulically smooth. Using an inappropriate friction factor can

lead to a paradoxical result; that is, the calculated Darcy’s friction factor can belong to

nonexistent regimes such as a sublaminar or turbulent regime that is below hydraulically

smooth. This means that the calculated Darcy’s friction factor is highly underestimated.

Further, using the Darcy-Weisbach equation for liquid flow instead of a modified version

for gaseous flow, pressure drop is overestimated. This leads to pseudo-accurate final

results. After all, visible error occurred in numerical values of some parameters, like

velocity in this case. According to previous results, the velocities in the network are

significantly larger than expected. A consequence is that the pipe diameters are too large

for the required amount of gas and hence the network is not optimal.

In the 1994 gas pipeline project in Kragujevac, Serbia, the Darcy-Weisbach equation

for liquid flow was used instead of the modified Darcy-Weisbach equation for gaseous

flow, accompanied by inappropriate usage of the Shifrinson equation for a fully turbulent

regime, which is typical for liquid flow in a steel pipes, instead of some sort of Blasius

or Prandtl form of equations, which are typical for gas flow through polyethylene pipes,

as used for the Kragujevac gas network.

The Hazen-Williams relation is frequently used for waterworks or sewerage systems

(Boulos et al., 2006) but it is not only inaccurate, or accurate within limits, the Hazen-

Williams equation is conceptually incorrect (Liou, 1998). Even assuming that gas flow

is incompressible in municipal pipelines, this relation cannot be used for such systems

as gas distribution networks.
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Nomenclature

C p2
1 � p2

2

D diameter of pipe, m

k inside pipe wall roughness, m

L length of pipe, m

M relative molecular mass

p pressure, Pa

Q flow, m3/sec

R universal gas constant D 8,314.41 J/(kmol � K)

Re Reynolds number

T temperature, K

v velocity, m/sec

z gas compressibility factor

Greek

� parameter for existing of different turbulent regimes (� < 16, smooth

turbulent regime; 16 < � < 200, partially turbulent regime; � > 200 fully

turbulent regime)

� gas dynamic viscosity, Pa � s

� Darcy friction factor or coefficient

� Ludolph’s number (3.14159)

� density, kg/m3

� shear stress, Pa

Subscripts

avr average

i counter

in inner

r relative

st at standard condition (Tst D 288:15 K, pst D 1:01325 � 105 Pa)

1 beginning of pipe (accompanied with p)

2 end of pipe (accompanied with p)

fg mark loop or contour

Other

@ partial differential

d infinitesimally small change of value

� definitive change of value
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Erratum

In volume 29, issue 4 of Petroleum Science and Technology, the incorrect author name

appeared in A Gas Distribution Network Hydraulic Problem from Practice by Brkić,

pages 366–377. The correct name is shown below.

D. Brkić

The publisher apologizes for any inconvenience caused.
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