There is a newer version of this record available.

Preprint Open Access

The P versus NP Problem

Frank Vega


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/a05cd3ec-dc35-44e2-9ff4-c0d37c51998a/manuscript.pdf"
      }, 
      "checksum": "md5:8019c4c5f8dc67bfbb6b2fc7c512b06c", 
      "bucket": "a05cd3ec-dc35-44e2-9ff4-c0d37c51998a", 
      "key": "manuscript.pdf", 
      "type": "pdf", 
      "size": 257120
    }
  ], 
  "owners": [
    45971
  ], 
  "doi": "10.5281/zenodo.3239377", 
  "stats": {
    "version_unique_downloads": 68.0, 
    "unique_views": 9.0, 
    "views": 9.0, 
    "downloads": 6.0, 
    "unique_downloads": 6.0, 
    "version_unique_views": 100.0, 
    "volume": 1542720.0, 
    "version_downloads": 89.0, 
    "version_views": 124.0, 
    "version_volume": 22649508.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3239377", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3237140", 
    "bucket": "https://zenodo.org/api/files/a05cd3ec-dc35-44e2-9ff4-c0d37c51998a", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3237140.svg", 
    "html": "https://zenodo.org/record/3239377", 
    "latest_html": "https://zenodo.org/record/3239560", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3239377.svg", 
    "latest": "https://zenodo.org/api/records/3239560"
  }, 
  "conceptdoi": "10.5281/zenodo.3237140", 
  "created": "2019-06-05T15:50:04.720185+00:00", 
  "updated": "2019-11-01T19:13:32.829180+00:00", 
  "conceptrecid": "3237140", 
  "revision": 6, 
  "id": 3239377, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3239377", 
    "description": "<p>P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. To attack the P versus NP problem, the NP-completeness is a useful tool. We prove the known NP-complete problem MONOTONE 1-IN-3 3SAT can be polynomially reduced to the polynomial language 2SET PACKING. In this way, MONOTONE 1-IN-3 3SAT must be in P. If any NP-complete problem can be solved in polynomial time, then every language in NP has a polynomial time algorithm. Hence, we demonstrate the complexity class P is equal to NP.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "The P versus NP Problem", 
    "relations": {
      "version": [
        {
          "count": 5, 
          "index": 1, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3237140"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3239560"
          }
        }
      ]
    }, 
    "keywords": [
      "Complexity Classes", 
      "Completeness", 
      "Polynomial Time", 
      "MONOTONE 1-IN-3 3SAT", 
      "2SET PACKING"
    ], 
    "publication_date": "2019-06-02", 
    "creators": [
      {
        "orcid": "0000-0001-8210-4126", 
        "affiliation": "Joysonic", 
        "name": "Frank Vega"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "preprint", 
      "type": "publication", 
      "title": "Preprint"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3237140", 
        "relation": "isVersionOf"
      }
    ]
  }
}
124
89
views
downloads
All versions This version
Views 1249
Downloads 896
Data volume 22.6 MB1.5 MB
Unique views 1009
Unique downloads 686

Share

Cite as