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Preface 

SHR was one of the first research institutes in Europe, who already in the 1990´s did 

substantial research work to develop wood modification processes. It appeared, that this 

research area was very complex, and that for a successful application of potential processes 

different expertise’s was needed. A good network between research partners and industry was 

needed and the “European Network on Wood Modification” was created. 15 years ago, in 

2003, the first European Conference on Wood Modification “ECWM” was held to present the 

outcomes of this EU financed network. Since than, ECWM´s were held each 2-3 years at 

different places around Europe, and now we can celebrate the 9th ECWM in the Netherlands, 

organized by SHR where it all began. 

As already before, ECWM 9 is linked up to the European COST organisation. Thanks to the 

COST Action FP 1407 ModWoodLife to join and strengthen our network! 

The participation of researchers of all around the world make it obvious that the name 

“European conference” is much too small…so: a warm welcome to researchers from industry 

and academia from Europe and abroad! This success has led, once again, to a large number of 

abstracts submitted to the organizers. In general, these abstracts were of a high quality and the 

members of the Scientific Committee had a hard time to select 44 full presentations and 50 

poster presentations out of the many applications. We hope we have found the right balance 

between scientific and applied presentations to reach the key goal of ECWM: to attract 

researchers from academia and industry to join their expertises in this very exciting research 

area “wood modification”. 

The local conference organizers from SHR have done a great job this past year to make us 

feel welcome in The Netherlands and to let the conference be a success. Thank you very much 

to Bôke and team! 

 

Prof. Dr. Holger Militz 

Chairman of Scientific Committee 

Georg-August-University Göttingen, Germany 
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Wood modification in practice 

 

The European Conference on Wood Modification takes place on the 17th and 18th of 

September 2018 in Arnhem, The Netherlands and is organised by SHR. At this conference 

researchers and people from industry from all over the world will come together to share their 

knowledge and experiences with the latest developments on wood modification methods, 

applications and products. The conference was given the subtitle “Wood modification comes 

home”, which refers to the role The Netherlands and SHR have played – and still play – in the 

development and industrial application of modified wood. 

Techniques and methods designed for improving wood properties are almost as old as 

mankind itself. However the scientific and industrial rise of wood modification became 

significant under the influence of a number of social and economic developments in the 

eighties and nineties of the previous century. A strong need was felt to find alternatives for the 

use of tropical hardwoods and preservative treated wood, which were both under pressure for 

a variety of reasons. The discussions regarding a clean environment, sustainable forest 

management, wood use and the increasing wood demands from emerging markets in Asia 

also had a big impact. Wood modification was recognized to have the ability to offer a more, 

better and sustainable way of making use of wood as a durable material in a broad range of 

applications. Besides that, it was found to be a supreme method for upgrading the properties 

of lesser used timber species and to provide technical solutions to overcome some of the 

natural deficiencies of wood as water uptake, decay and dimensional changes. 

Over the last decades an enormous amount of scientific work has been performed and 

published. We have seen many innovative modification ideas, methods and techniques 

passing by during the previous eight ECWM’s. To make a real impact, ideas need to be 

developed further and put into practice. We are proud that in The Netherlands we have 

created a setting with a high level of knowledge, innovative thinking combined with 

entrepreneurship, which lead to a variety of flourishing companies involved in industrial 

production of modified wood. Not only producing companies, but also the wood processing 

industry has adopted modified wood as a highly appreciated durable material. We can declare 

that modified wood has become a lasting factor in the wood processing industry. 

For these reasons SHR and we as the organising team, are excited to welcome you all here in 

The Netherlands for the 9th European Conference on Wood Modification. We hope you will 

enjoy your stay here in Arnhem and become inspired by all attendees, presenters and new 

insights this conference has to offer.  

Welcome! 

The organising team 
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COST 1407 - Foreword 

 

It is our pleasure that COST Action FP1407 “Understanding wood modification through an 

integrated scientific and environmental impact approach” (ModWoodLife) in part of 9th 

European Conference of Wood Modification. The conference brings together researchers 

from across Europe and beyond that jointly are addressing the mounting pressure on 

renewable resources (as a material source, for recreational, ecological, and other uses). By 

maximising the efficiency of materials derived from them, the wood modification community 

plays an important role. The efficiency can only be achieved if new methods to improve the 

functionality, durability, properties, and environmental impacts will be developed. Wood 

modification addresses these requirements directly, allowing wood to be used in more 

applications, including increased use of under-utilised species. Wood modification also 

addresses undesirable characteristics of wood such as fungal resistance, UV-stability, and 

moisture sensitivity. The COST Action FP1407 has been successful in addressing these needs 

in the past 3 years. We are in the last year of the Action and therefore it is even more 

important for us to be at ECWM9. Only sustainable collaboration and joint efforts will deliver 

the impacts. That objective of the Action FP1407, to characterise the relationship between 

wood modification processing, product properties, and the associated environmental impacts 

in order to maximise sustainability and minimize environmental impacts, has great value for 

the forest sector, for researchers, and society at large.  

Wishing you a successful and memorable conference full of fruitful discussions.  

 

Andreja Kutnar 

Chair, COST FP1407 

 

Denis Jones 

Vice-Chair, COST FP1407 
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Effect of wood modification and weathering progress 

on the radiation emissivity  

Paolo Grossi1, Jakub Sandak2,3,4, Marta Petrillo5 and Anna Sandak 6 

1CNR-IVALSA, via Biasi 75, 30010 San Michele all’Adige, Italy [email: grossi@ivalsa.cnr.it] 
2InnoRenew CoE, Livade 6, 6310 Izola, Slovenia [email: Jakub.Sandak@innorenew.eu] 
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Keywords: emissivity, modified wood, thermography, thermal images, weathering, heat transfer 

ABSTRACT 

The research reported here is a part of the BIO4ever project, which aims to develop numerical 

models simulating performance of the bio-based cladding materials in relation to the exposure 

time or so-called “weather dose”. The value of emissivity is one of the thermodynamic material 

constants, highly affecting heat transfer calculations. The lack of reliable emissivity data for 

several investigated materials was discovered during model’s preparation, especially in a case 

of modified woods and coated samples. It was especially important since the emissivity is 

directly affecting the surface state/condition, and might change due to the weathering process. 

The overall objective of this research was therefore to determine actual emissivity coefficients 

for diverse cladding materials (various wood species and modification processes) in different 

ambient conditions (temperature). 

The thermographic (radiometric) measurements were conducted with the thermal camera FLIR 

T200, covering a spectral range from 7.5 to 13 µm. Tests were carried out on preselected 

samples to highlight the differences between diverse materials. The emissivity coefficient was 

determined at different surface temperatures by conditioning samples in climatic chambers for 

a period of at least six hours. The emissivity values obtained experimentally were used for 

improvement of finite element method models of the solar irradiation and of the surface 

moisture content changes for all investigated bio-materials. Subsequently, simulation of the 

façade appearance implemented within BIO4ever project, considering simultaneously time of 

service, geographic location, local microclimate and intrinsic material characteristic, become 

more realistic and trustworthy. 

INTRODUCTION 

Infrared thermography is a non-destructive and non-contact testing method that is applied in 

building physics to evaluate structure’s energetic performance (Barreira et al. 2016). The 

technology is especially interesting nowadays when infrared measuring instruments become 

portable and affordable, being reasonably accurate at the same time (Sandak and Sandak 2017). 

The emissivity (material property), is defined as an amount of electromagnetic energy radiated 

from the material’s surface to that radiated from a blackbody. The emissivity is usually defined 

in two spectral bands, including solar (short wavelength λ <2.5µm) and ambient (long 

wavelength λ >2.5µm) ranges. The usual procedure of emissivity estimation bases on the 

measurements of a single sample conditioned to the thermodynamic equilibrium (heating or 

cooling) with the surrounding ambient (Pitarma et al. 2016). The main disadvantage of this 



Session Seven: Poster Session 2 
 
 
 

570 

procedure is relatively long time that elapses before the thermal image readings, especially 

when the difference of temperature between the sample and the ambient is high.  

In alternative, the emissivity can be determined according to ASTM1933 standard, using a 

radiometer (IR camera, spot IR thermometer) with two complementary methods, namely 

“contact thermometer method” or “noncontact thermometer method”. The first method requires 

a direct measurement of the target surface temperature through a contact thermometer. This 

measurement became the reference value used to manually adjust the settings of the radiometer 

(first iterative step). The material specific value of emissivity is properly adjusted when equal 

temperatures are determined by both reference thermometer and radiometer. The second 

method bases on an emissivity value correction by comparing instrument readings with these 

performed on reference material. It is important to assure that both, reference and characterized 

materials are at the thermal equilibrium. The reference temperature is determined with reference 

material, considering its known emissivity and specific boundary conditions. In the second step, 

the radiometer settings are adjusted to correct the apparent temperature according to the value 

of reference surface temperature. Both methods are considered to have a good precision and 

reproducibility. 

The research reported here is a part of the BIO4ever project, which aims to develop numerical 

models simulating performance of the bio-based cladding materials in relation to the exposure 

time or so-called “weather dose”. The emissivity is one of the thermodynamic material 

properties (constants) used for heat transfer calculations. The lack of real emissivity data for 

several investigated materials was discovered during FEM (finite element method) model’s 

preparation, especially in a case of modified woods and coated samples. The motivation for this 

research was therefore to experimentally determine real emissivity coefficients for diverse 

cladding materials (various wood species and modification processes) in different ambient 

conditions (temperatures). 

EXPERIMENTAL 

Experimental samples 

Twenty different cladding materials investigated within BIO4ever project were selected as 

experimental samples (Table 1). The set included natural, thermally modified, chemically 

modified, impregnated, coated, surface treated wood and bio-based composites.  

Experimental set-up 

The setup of experimental determination of emissivity coefficient is presented in Figure 1. A 

thermal IR camera (FLIR T200) with a 240×180 pixels resolution with a shutter time of 100ms 

was used to acquire the thermal images. The camera was fixed on a tripod and exposed in the 

front of a sample holder (made of polyester box), minimizing infrared reflections from 

surround. The spectral range of the IR camera covered 7.5 to 13µm. The measurable 

temperature range was from -20 to 350°C, with a producer declared accuracy of ±2%. The 

thermal sensitivity (smallest temperature difference measurable) at 30°C was <0.08°C. The 

vision angle of used lenses was 25° with a minimum focusable distance between the object and 

the camera of 0.4 m. 
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Table 1: Materials investigated within this research 

Sample# Species Material category (modification) 

   natural  composite thermal chemical impregnated surface hybrid 

A1 larch 
⚫       

A2 scots pine 
    ⚫   

A3 bamboo 
⚫       

A4 frake 
  ⚫     

A5 acetylated fiberboard 
 ⚫      

B1 spruce 
  ⚫     

B2 bamboo 
⚫       

B3 acetylated fiberboard 
 ⚫      

B4 radiate pine 
     ⚫  

B5 bamboo fiberboard 
 ⚫      

C1 pine 
   ⚫    

C2 spruce 
    ⚫   

C3 WPC 
 ⚫      

C4 larch 
     ⚫  

C5 larch 
⚫       

D1 spruce 
      ⚫ 

D2 pine 
      ⚫ 

D3 spruce 
     ⚫  

D4 radiate pine 
   ⚫    

D5 beech 
    ⚫   

 

 

  

Figure 1: FLIR T200 thermal camera test setup (left), thermal image result of a test (right). 
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Calculations 

The electrical signal recorded by the camera was transformed into a temperature value 

according to Equations 1, 2 and 3. The total radiation received by the camera (Wtot) can be 

expressed as the sum of the radiation emitted by the object (Eobj), radiation reflected by 

surroundings (Erefl) and the emission of the atmosphere (Eat). 

 

𝑊 = 𝐸𝑜𝑏𝑗 + 𝐸𝑟𝑒𝑓𝑙 + 𝐸𝑎𝑡               (1) 

 

 

𝑊𝑡𝑜𝑡 = 𝜀𝑜𝑏𝑗 ∙ 𝜎 ∙ 𝑇𝑜𝑏𝑗
4 ∙ 𝜏𝑎𝑡 + (1 − 𝜀𝑜𝑏𝑗) ∙ 𝜎 ∙ 𝑇𝑟𝑒𝑓𝑙

4 ∙ 𝜏𝑎𝑡 + (1 − 𝜏𝑎𝑡) ∙ 𝜎 ∙ 𝑇𝑎𝑡
4     (2) 

 

𝑇𝑜𝑏𝑗 = √
𝑊𝑡𝑜𝑡 − (1 − 𝜀𝑜𝑏𝑗) ∙ 𝜏𝑎𝑡 ∙ 𝜎 ∙ (𝑇𝑟𝑒𝑓𝑙)

4
− (1 − 𝜏𝑎𝑡) ∙ 𝜎 ∙ (𝑇𝑎𝑚𝑏)4

𝜀𝑜𝑏𝑗 ∙ 𝜏𝑎𝑡𝑚 ∙ 𝜎

4

              (3) 

 

where; obj is the target emissivity, Trefl is the reflected temperature, Tamb is the ambient 

temperature, Tat is the transmittance of the atmosphere,  is the Stefan Boltzman constant.  

 

The energy emission from the object and the reflected radiation detected by the sensor is 

reduced because the atmospheric air absorbs a part of the radiation. The effect of the atmosphere 

on the signal is compensated when setting of temperature (Tamb), considering also relative 

humidity of the air and distance between target and camera. 

 

Testing procedure 

The set of 20 samples was conditioned at different temperatures in two environments; low 

temperature (-2.5°C) in a refrigerator and the high temperature (35.0°C) in a laboratory oven. 

The reference temperatures in both climatic chambers were assessed with different 

thermometers. Six DHT22 sensors measuring temperature and relative humidity and two 

MLX9014 infrared thermometers were placed in diverse positions over the sample holder box.  

It was possible therefore to determine detailed temperature gradient (reference sample 

temperature) within the camber after sample conditioning. Signals from sensors were acquired 

with Arduino controller and post-processed on the PC. The software used for thermal images 

analysis was FLIR Reporter. 

The raw thermometric image was acquired using value of emissivity ε = 1.00. The real value of 

ε was determined according to Equation 4 on the base of information collected by the thermal 

camera and temperature sensors.  

 

𝜀𝑜𝑏𝑗 =
𝑇𝑜𝑏𝑗,𝑟

4−𝑇𝑎𝑚𝑏
4

𝑇𝑜𝑏𝑗
4−𝑇𝑎𝑚𝑏

4                       (4) 

 

where. Tobj,r  - the sample surface temperature from the thermal image at ε = 1.00, Tobj - the reals 

surface temperature of conditioned samples measured by the nearest thermometer, Tamb - the 

temperature of the ambient measured close to the thermal camera.  
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RESULTS AND DISCUSSION 

The summary of experimentally determined values of emissivity ε is presented in Table 2. Five 

independent tests were conducted at each ambient condition in order to improve statistical 

reliability of ε values computed. The variations within measurements were related to the limited 

accuracy of IR thermal camera as well as to the uncertainty of the reference temperatures of the 

evaluated samples surface. The latest temperature was measured as close as possible, but 

anyway not directly on the sample surface.  

It is evident from the results obtained that the emissivity ε values are different for all cladding 

materials characterized. In the extreme cases the value of ε ranged from 0.84 (material A4 – 

thermally modified frake) to 0.96 (material C3 – wood-plastic composite).  

 

Table 2: Emissivity ε of bio-based materials conditioned in diverse climatic conditions  

Material temperature Tamb = -2.5°C temperature Tamb = 35.0°C  

  

Test 

#1 

Test 

#2 

Test 

#3 

Test 

#4 

Test 

#5 
Mean 

Test 

#1 

Test 

#2 

Test 

#3 

Test 

#4 

Test 

#5 
Mean 

A1 0.90 0.92 0.93 0.94 0.91 0.92 0.92 0.91 0.95 0.92 0.89 0.92 

A2 0.93 0.90 0.92 0.90 0.89 0.91 0.88 0.88 0.91 0.89 0.87 0.89 

A3 0.93 0.92 0.93 0.91 0.91 0.92 0.90 0.90 0.93 0.93 0.89 0.91 

A4 0.88 0.88 0.88 0.87 0.86 0.87 0.86 0.88 0.9 0.88 0.87 0.88 

A5 0.89 0.91 0.91 0.89 0.88 0.90 0.88 0.93 0.92 0.89 0.89 0.90 

B1 0.91 0.89 0.90 0.88 0.89 0.89 0.88 0.89 0.91 0.89 0.88 0.89 

B2 0.96 0.95 0.95 0.94 0.93 0.94 0.92 0.93 0.95 0.93 0.91 0.93 

B3 0.90 0.92 0.91 0.90 0.91 0.91 0.90 0.92 0.91 0.9 0.88 0.90 

B4 0.89 0.90 0.91 0.89 0.90 0.90 0.90 0.92 0.89 0.88 0.89 0.90 

B5 0.92 0.94 0.94 0.93 0.94 0.94 0.91 0.93 0.94 0.93 0.9 0.92 

C1 0.95 0.93 0.94 0.92 0.93 0.94 0.92 0.92 0.94 0.93 0.89 0.92 

C2 0.93 0.92 0.93 0.91 0.90 0.92 0.91 0.93 0.92 0.89 0.88 0.91 

C3 0.97 0.97 0.95 0.96 0.96 0.96 0.94 0.92 0.95 0.95 0.92 0.94 

C4 0.93 0.94 0.95 0.93 0.94 0.94 0.93 0.94 0.93 0.9 0.91 0.92 

C5 - 0.94 0.94 0.93 0.94 0.94 0.91 0.93 0.91 0.91 0.9 0.91 

D1 0.91 0.90 0.91 0.90 0.89 0.90 0.90 0.92 0.92 0.9 0.89 0.91 

D2 0.97 0.95 0.93 0.94 0.93 0.94 0.92 0.92 0.94 0.93 0.91 0.92 

D3 0.93 0.92 0.91 0.90 0.91 0.91 0.89 0.89 0.9 0.9 0.88 0.89 

D4 0.89 0.90 0.90 0.90 0.88 0.89 0.89 0.89 0.9 0.89 0.88 0.89 

D5 0.91 0.91 0.91 0.91 0.89 0.91 0.90 0.90 0.9 0.9 0.89 0.90 

 

It has to be mentioned that IR camera detects infrared radiation emitted not only by the target 

object but also related to other sources of heat, such as neighbor objects in the measurement 

field and/or ambient (FLIR T200 user manual (2009). The infrared radiation can be easily 

reflected from the sample surface into direction of the camera falsifying measurements (Olson 

and Talghader 2012). The measured temperature may be highly inaccurate when the operator 

cannot eliminate (or at least minimize) the influence of such external IR radiation sources. The 

same is related to the proper setting the emissivity ε (López et al. 2013). It is even more essential 

when physical modeling of heat and mass transfer within biomaterials is simulated. The 

availability of experimentally determined ε allowed improvement of the FEM models and better 

representation of the temperature distribution over the building façade as studied within 

BIO4ever project.  
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Nevertheless, in several practical applications, such as monitoring of electric connectors/fuses 

or detecting thermal bridges (moisture spots) in building, the exact value of temperature 

gradients is not critical. In that case, even tabular values of emissivity may be sufficient for 

successful qualitative assessments.  

CONCLUSIONS 

The value of emissivity measured and calculated experimentally for different cladding materials 

are within the ε range reported in the scientific literature (emissivity of natural wood usually 

varies from 0.85 to 0.95 according to different authors). Nevertheless, the experimental results 

revealed noticeable differences in samples of the same wood species but modified with different 

processes. The emissivity parameters obtained experimentally are essential for precise 

numerical modelling of the solar radiation and of the moisture content changes in all 

investigated bio-materials. Consequently, more realistic simulation of the façade appearance 

and its aesthetical changes become possible (the overall goal of the BIO4ever project).  
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